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Downwelling longwave radiation 
and sensible heat flux observations 
are critical for surface temperature 
and emissivity estimation from flux 
tower data
Gitanjali Thakur*, Stanislaus J. Schymanski*, Kaniska Mallick, Ivonne Trebs & Mauro Sulis

Land surface temperature (LST) is a preeminent state variable that controls the energy and water 
exchange between the Earth’s surface and the atmosphere. At the landscape-scale, LST is derived 
from thermal infrared radiance measured using space-borne radiometers. In contrast, plot-scale LST 
estimation at flux tower sites is commonly based on the inversion of upwelling longwave radiation 
captured by tower-mounted radiometers, whereas the role of the downwelling longwave radiation 
component is often ignored. We found that neglecting the reflected downwelling longwave radiation 
leads not only to substantial bias in plot-scale LST estimation, but also have important implications for 
the estimation of surface emissivity on which LST is co-dependent. The present study proposes a novel 
method for simultaneous estimation of LST and emissivity at the plot-scale and addresses in detail the 
consequences of omitting down-welling longwave radiation as frequently done in the literature. Our 
analysis uses ten eddy covariance sites with different land cover types and found that the LST values 
obtained using both upwelling and downwelling longwave radiation components are 0.5–1.5 K lower 
than estimates using only upwelling longwave radiation. Furthermore, the proposed method helps 
identify inconsistencies between plot-scale radiometric and aerodynamic measurements, likely due 
to footprint mismatch between measurement approaches. We also found that such inconsistencies 
can be removed by slight corrections to the upwelling longwave component and subsequent energy 
balance closure, resulting in realistic estimates of surface emissivity and consistent relationships 
between energy fluxes and surface-air temperature differences. The correspondence between plot-
scale LST and landscape-scale LST depends on site-specific characteristics, such as canopy density, 
sensor locations and viewing angles. Here we also quantify the uncertainty in plot-scale LST estimates 
due to uncertainty in tower-based measurements using the different methods. The results of this work 
have significant implications for the combined use of aerodynamic and radiometric measurements to 
understand the interactions and feedbacks between LST and surface-atmosphere exchange processes.

The effects of global change are reflected in land surface temperature (LST) anomalies and their interannual 
 variability1. LST controls the magnitude and variability of the surface energy balance (SEB) components and 
simultaneously gets modulated by the SEB  partitioning2,3. LST contains imprints of surface moisture and is 
extremely sensitive to evaporative cooling, which makes it a preeminent variable for studying evaporation and 
surface-atmosphere  exchange4–6. It directly affects the amount of emitted longwave radiation and influences 
the saturation vapor pressure at the surface that drives latent heat flux. Thus, the ecohydrological functioning 
and carbon-water coupling are largely controlled by the surface temperature of the soil-vegetation  system7. The 
availability of an extensive network of eddy covariance measurements (FLUXNET) allows us to understand the 
interactions and feedbacks between the surface-atmosphere exchange processes such as evaporation, transpira-
tion, and its control by the atmosphere and vegetation at the diurnal time scale. However, the unavailability of 
direct LST measurements at the same scale hinders a detailed understanding of the interactions and feedbacks 
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between LST and surface-atmosphere exchange processes, which is of utmost importance to the climate mod-
eling  community8.

Inversion of the longwave radiation in FLUXNET data to obtain LST has gained popularity in recent years. 
LST estimation depends on the emissivity of the underlying  surface9, which is not available as routine measure-
ment. Therefore, estimating in-situ LST is not straightforward due to the involvement of two unknowns (LST 
and emissivity) inside one measurement variable (upwelling longwave radiation). To circumvent this challenge, 
we conducted simultaneous retrievals of LST and emissivity by exploiting the longwave radiation components 
in conjunction with associated SEB flux  measurements10,11.

The SEB components can be sub-divided into radiative components (often lumped in net radiation, Rnet ) and 
thermodynamic components, including sensible, latent and ground heat flux (H, LE, G respectively):

The instantaneous value of LST is the result of interplay between the net radiation at the surface, ground heat 
flux (G), sensible heat flux (H) and latent heat flux (LE)12. Thus, LST can also be used for the estimation of H13 
and LE14 between the surface and the atmosphere. LST provides the lower-boundary condition in SEB models 
for diagnostic estimates of LE and is highly relevant for drought  monitoring2,5,15. As the surface-to-air tempera-
ture difference drives the exchange of sensible heat between surface and atmosphere, all components of Eq. (1) 
depend on the LST.

Net radiation ( Rnet ) can be sub-divided into downwelling and upwelling  components16 as shown below:

Only a fraction of solar top-of-the-atmosphere radiation reaches the Earth’s surface, as some is reflected back to 
space by clouds, some is absorbed by the atmosphere and emitted later as longwave radiation. Reflected shortwave 
in Eq. (2) is expressed as Rsref = αRsdown , while reflected longwave is represented as Rlref = αRldown , where α is 
the surface albedo. The emitted longwave radiation as a function of surface temperature ( Ts ) and surface emis-
sivity ( ε ) is given by the Stefan-Boltzmann (SB)  equation17

where σ ( Wm−2 K−4 ) is the SB constant, ε is the surface emissivity ranging between 0 and 1, and Ts (K) is the 
LST. For a land surface, emissivity depends on soil type, vegetation cover, soil moisture, soil chemistry, rough-
ness, spectral wavelength, temperature and view  angle18.

The emitted and downwelling longwave radiance are measured at given angle within its instantaneous field 
of view (fov) by a downward facing sensor relatively close to the surface (a few meters for an eddy covariance 
tower). The radiation received by a pyrgeometer or infrared sensor is a combination of the radiation emitted 
( Rlem ) and reflected ( Rlref  ) by the surfaces in its fov as shown in Eq. (4):

Substitution of Eq. (3) into Eq. (4) and replacing α as 1− ε , Rlup becomes a function of emissivity, surface tem-
perature and downwelling longwave radiation:

Equation (5) is then solved for LST as a function of measured longwave and known surface emissivity:

In order to invert LST as shown in Eq. (6), ε values are required. However, radiometers at eddy covariance sites 
(ECS) do not measure spectral bands separately to deduce emissivity directly. Therefore, we will deduce site 
specific ε from observations of air temperature ( Ta ), measured longwave ( Rldwn , Rlup ) and sensible heat flux 
(H)19. In analogy to Ohm’s law, the linear relationship between H and �T can be expressed mathematically as:

where m ( m s−1 ) is a proportionality constant (defined as m = ρCp/ra and broadly referred to as heat transfer 
coefficient) and depends on surface characteristics and micro-meteorology17, Ta (K) is the temperature of the air 
measured at a reference height above the surface, Cp ( J kg−1 K−1 ) is the specific heat capacity of air, ρ ( kg m−3 ) 
is the air-density, and ra ( s m−1 ) is the total resistance to heat transport from surface to the atmosphere. It is 
evident from Eq. (7) that for Ts − Ta = 0 , H will be zero. This boundary condition and the linear relationship 
between H and �T is used to estimate ε10,19. Another approach for plot-scale ε estimation filters the data where 
H is close to zero, substitutes Ts in Eq. (5) by Ta and solves for ε11.

However, due to surface heterogeneity, sparse canopies are prone to footprint mismatch between the aerody-
namic (flux tower) footprint and radiometric (hemispherical)  footprint20–22, where the aerodynamic footprint 
represents the area contributing to measured sensible heat flux, while the radiometric footprint is dominated by 
the surface below the sensor at a nadir viewing angle, contributing to the measured longwave radiation (used for 
Ts estimation). This can result in a different boundary condition i.e. at �T = 0 , H  = 0 as expressed in Eq. (8):

(1)Rnet = H + LE + G

(2)Rnet = Rsdwn + Rldwn − Rsref − Rlref − Rlem

(3)Rlem = εσT4

s

(4)Rlup = Rlem + Rlref

(5)Rlup = εσT4

s + (1− ε)Rldwn

(6)Ts =
4

√

Rldwn

σ
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Rldwn

εσ
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Rlup

εσ

(7)H = m(Ts − Ta)

(8)H = m(Ts − Ta)+ c
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where H is representative of the sensible heat flux from the eddy covariance tower footprint, Ts is representative 
of all the radiating surfaces in the radiometric sensor’s view, and c is interpreted as the H from surfaces in the 
aerodynamic footprint that are not seen by the radiometer.

Plot-scale estimation of ε and LST using observed H, Ta , Rlup and Rldwn as described above and in the Methods 
section, may be prone to substantial uncertainty. It is unclear how uncertainties in observed fluxes propagate into 
the uncertainty of estimated LST and ε . By design, infrared thermal (IRT) sensors only measure upwelling infra-
red radiance and therefore cannot explicitly account for the amount of reflected downwelling infrared radiation 
in the signal. For a long time, downwelling longwave ( Rldwn ) was not routinely observed at  ECS23 and was also 
considered to be the most poorly quantified component of the radiation  budget24. Therefore, the second term in 
Eq. (5) is commonly omitted, arguing that ε ≈ 1 , and hence, Eq. (5) is simplified to Eq. (3)25:

Equation (9) can be solved for Ts to yield what we will term the “short equation” (seq) for Ts:

Note that the above derivation is actually flawed, as the second term of Eq. (5) was omitted arguing that ε ≈ 1 , 
and yet ε was retained in the first part of the equation. Nevertheless, even with the availability of downwelling 
longwave  measurements26, the use of Eq. (9) is still a common  practice9,25. This gives rise to the question if the 
short equation [Eq. (10)] is adequate to estimate LST from ground-based measurements. In the remainder of 
this paper, we will refer to LST obtained using the long equation [Eq. (6)] as Tleq and to LST obtained using the 
short equation [Eq. (10)] as Tseq.

To better understand and improve approaches of plot-scale LST estimation, the present study addresses the 
following research questions: 

1. Can we obtain an adequate estimate of plot-scale LST while neglecting the reflected downwelling longwave 
radiation?

2. Does the estimation of plot-scale ε based on observed sensible heat flux (H) have an advantage over satellite-
derived ε for plot-scale LST estimation?

3. How much uncertainty is introduced in plot-scale LST and ε due to uncertainty in measured EC fluxes?

To answer these questions, we analysed data for ten eddy covariance sites in different biomes and climates (see 
Table 2). Plot-scale broadband monthly emissivity ( εplot ) was derived using observed H and estimated �T as 
proposed by Holmes et al.10. Plot-scale LST was estimated using either Eqs. (6) or (10), and either εplot or land-
scape-scale emissivity ( εMODIS ). Estimated LST was compared with MODIS LST (TERRA satellite-sensed) for 
the times of satellite overpass. Uncertainty in εplot and LST due to uncertainty in observed fluxes was calculated 
using SOBOL-based uncertainty analysis (SAlib)27. See the Methods section for more details.

Results
Plot-scale ε using long and short equation. Following the method proposed by Holmes et al.10,19, plot-
scale monthly ε was estimated at the study sites by fitting ε to minimise the root mean square error (RMSE) of 
the regression between H and Ts − Ta (see SI Figure 3). In Fig. 1a, c, and d, we used the original data and repro-
duced Figs. 2a, 3C, and 3Q from Holmes et al.10 to validate our interpretation of their approach using the short 
equation (Eq. (10)). We noted only marginal differences between the two results based on the short equation, 
which are likely due to different fitting algorithms. The replication of the H(�T) plot using the long equation 
[Eq. (6)] with the same data is given in Fig. 1b and the monthly ε values are shown in Fig. 1c, d, indicated by blue 
stars. The retrieved LST values were slightly higher when using Eq. (6) (compare a and b in Fig. 1). The use of 
the long equation [Eq. (6)] resulted in substantially (10%) lower values of ε as compared to the values estimated 
by Holmes et al.10 for the common study sites (Brookings, Fig. 1c and Yatir, Fig. 1d). The reduction in ε can be 
attributed to the sensitivity of the two equations to the emissivity. As shown in the SI (Fig. 4), the Ts estimation 
using the short equation is more sensitive to ε than for the long equation, thus even a small reduction in ε can 
lead to a large increase in the Ts (to minimise RMSE).

Another approach for plot-scale ε estimation (Maes et al.11) in combination with Eq. 6) resulted in even lower 
ε values for Brookings, as shown in Fig. 1c (red stars), whereas at Yatir, this approach gave an ε value higher than 1 
(red star in Fig. 1d). Note that the long equation also yielded an acceptable H(�T) relationship for more months 
at Yatir Forest (blue stars) than the short equation (black dots), as shown in Fig. 1d. The pattern of lower ε and 
higher LST using the long equation compared to the short equation was confirmed for all the ten sites used in 
the present study (SI Table 2).

Landscape-scale vs plot-scale estimates of ε and LST. At each site, LST was estimated using both 
the short equation ( Tseq , Eq. 10) and the long equation ( Tleq , Eq. 6). In the first step, tower-based longwave radia-
tion and landscape-scale broadband ε from MODIS spectral ε ( εMODIS , Eq. 12) was used. The yearly daytime 
surface-to-air temperature difference for each study site is estimated and shown in Fig. 2. At all sites, Eq. (10) 
resulted in higher day-time plot-scale Ts estimates as compared to Eq. (6), when using εMODIS , with the medians 
of surface-to-air temperature differences ( �T ) differing by 0.8–1.5 K (Fig. 2). The difference in �T using the two 
equations is highest at the water limited sites, e.g. AS and YA. Note that for two sites (LF and HS), the median 
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values of daytime �T are negative. Comparison of plot-scale LST estimated using εMODIS at satellite overpass 
time with landscape-scale LST ( TMODIS ) revealed strong correlations at most of study sites but systematically 
lower plot-scale LST (Fig. 3a, b). Use of εplot for LST estimation ( Tseq and Tleq ) resulted in substantial reduction 
of the bias as shown in Fig. 3c, d. This trend in bias reduction was similar at other sites (SI Table 2 for details). 
The minimum bias is found at TUM, a closed canopy (eucalyptus forest) and the highest bias was obtained at 

Figure 1.  Reproduction of analysis presented in Figs. 2a, 3C, and Q in Holmes et al.10. (a) Sensible heat (H) 
vs. �T = Tseq − Ta based on the short equation [ Tseq , Eq. (10)]; (b) H vs. �T based on the long equation ( Tleq , 
Eq. 6). Both show data for August 2005 at Brookings. Blue crosses represent data points satisfying the filtering 
criteria, while black dots represent points not considered in the analysis. N is the number of blue crosses used 
for regression (red line), m is the slope of regression, RMSE is the root mean square error and R 2 is the square 
of the coefficient of determination. The fitted ε value is reported in the title. (c) Optimised ε values at Brookings 
obtained for the months where R2 > 0.5 using the short equation (Eq. 9, black dots) and long equation (Eq. 6, 
blue stars), and ε obtained using the approach of Maes et al.11 (red stars). (d) Same as (c), but for Yatir Forest, see 
Table 2 for site descriptions.

Figure 2.  Yearly distributions of half-hourly surface-to-air temperature differences ( �T = Ts − Ta ) for a 
representative year at each site. LST was calculated using the short equation [Eq. (10)] or long equation [Eq. 
(6)] with landscape-scale emissivity ( εMODIS ). The median values of �T are shown at the top of the plot and the 
εMODIS values used for the Ts retrieval are shown at the bottom in orange. See Table 2 for site abbreviations. The 
shapes of the violin represent the distributions of �T values.
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LF and HS, heterogeneous ecosystems with sparse canopies (woodland savanna). However, for some sites, weak 
correlation between satellite-derived and local LST estimates were also evident (at DU, R2 was reduced from 0.8 
to 0.4, see SI Table 2). The low correlation between MODIS LST and plot-scale LST can be due to various reasons, 
such as differences in sensor types, viewing angles and distance between the sensors and sources, e.g. requiring 
atmospheric correction for satellite-based sensors. Also, using plot-scale ε for LST estimation resulted in positive 
Ts − Ta at LF and HS as shown in SI Figure 1 in comparison to Fig. 2.

Plot-scale ε estimation using long equation with intercept. In order to account for the possibility of 
bias between radiometric and aerodynamic measurements (e.g. due to footprint mismatch of measuring devices 
or instrument bias), we also fitted Eq. (8), i.e. a relationship allowing for an intercept in the linear fit between H 
and �T (instead of forcing it through zero as in Fig. 1) for plot-scale ε estimation. As shown in Fig. 4, the plot-
scale ε values resulting from this approach ( H = m�T + c ) were substantially closer to the landscape-scale ε 
values compared with the approach without intercept ( H = m�T ), as shown in Table 1. However, comparison 
of the resulting plot-scale LST with landscape-scale LST values revealed an increase in bias at most sites com-
pared to the LST obtained using εplot without an intercept (Table 1). The median values of the resulting intercept 
ranged from − 24 to + 258 Wm−2 , with the highest intercept values at Howard Springs (amounting to 70% of 
the maximum observed H at this site). The minimum value of intercept was obtained at Tumbarumba (5% of 
the maximum observed H). Note, that if we assumed just a slight under-estimation of upwelling longwave radia-
tion by 40 Wm−2 at Howard Springs (ca. 8% of observed Rlup ), the intercept was reduced from 294 (Fig. 4c) 
to 17 Wm−2 (Fig. 5a) without change in other regression paramaters (m, RMSE, R2 ). In this study, we did not 
apply any energy balance closure scheme, as a Bowen ratio closure, although resulting in higher R2 values at 
HS, also led to even greater intercept (c) (Fig. 5b). Interestingly, adding 40 Wm−2 to the measured upwelling 
longwave radiation and subsequent energy balance closure largely removed the intercept and at the same time 
increased R2 , as shown in SI Figure 6. Also, the bias between MODIS and plot-scale LST is reduced from − 10.66 
K (Table 1) to 4.01 K by adding 40 Wm−2 (approx. 8% of observed Rlup) and closing the the energy balance. 

Uncertainty in plot-scale ε and LST. Each of the observed input variables used for the estimation of 
plot-scale ε and LST has an associated uncertainty. Here we present exemplary results for Alice Springs, which 
showed the highest correlation between plot-scale and landscape-scale LST estimations (Table 1). The uncer-
tainty in plot-scale ε estimated using Eq. (6) (‘leq’) and Eq. (7) (i.e. without intercept in H(�T) ) was mainly in 
the range of ± 0.02 to ± 0.05, with a maximum of ±0.2 if outliers are included (blue color in Fig. 6a). The short 
equation (Eq. 10, ‘seq’) resulted in a vary narrow range of ε values between 0.94 and 0.99 throughout the year, 

Figure 3.  Landscape-scale LST ( TMODIS derived from MOD11A1) vs. plot-scale LST at Alice Springs for 
2016–2018. (a) Tseq based on short equation (Eq. 10) and satellite-derived (MODIS) broadband emissivity; 
(b) Same as (a), but Tleq based on long equation (Eq. 6); (c) Tseq based on short equation (Eq. 10) and monthly 
plot-scale emissivity; (d) Same as (c), but Tleq based on long equation (Eq. 6). Bias is mean Tseq − TMODIS , N is 
the number of daily overpasses of MODIS between 2016 and 2018, c is the intercept, m the slope, RMSE is the 
root mean square error and R2 is the coefficient of determination. At each site, LST was estimated using both 
the short equation ( Tseq , Eq. 10) and the long equation ( Tleq , Eq. 6). In a first step, we used satellite-derived 
landscape-scale broadband emissivity from MODIS ( εMODIS , Eq. 12) for estimating plot-scale LST from tower-
based longwave measurements, and compared these with landscape-scale LST extracted from MODIS LST 
dataset ( TMODIS).
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with very small uncertainty (around ±0.01 , black boxes in Fig. 6a). Interestingly, the differences in ε uncertainty 
did not propagate into differences in LST uncertainty, which were around ±0.2 K at the hourly scale for each 
equation if plot-scale emissivity was used (blue boxes in Fig. 6b and black boxes in Fig. 6c). In fact, if landscape-
scale values of ε were used, the LST uncertainty was even bigger ( ±0.5 K, orange boxes in Fig. 6b, c). However, 
if an intercept in the H(�T) ) relationship was allowed during estimation of εplot , the uncertainty in εplot largely 
vanished (SI Figure 6a), while the uncertainty in Ts − Ta at the diurnal scale doubled (SI Figure 6b).

Figure 4.  Sensible heat flux as a function of surface-to-air temperature difference based on Eq. (8) 
( H = m(Ts − Ta)+ c ). ε was fitted to minimise RMSE of a robust linear regression. The title of the plot 
contains site, year, month and the fitted ε-value. The legend correspond to Fig. 1. The colour code indicates the 
degree of energy imbalance of each data point (i.e. Rnet −H − LE − G). The panels (a) to (d) refer to the same 
analysis at different sites, as indicated in the title of each panel.

Table 1.  Correspondence between daytime landscape-scale LST ( TMODIS ) and plot-scale LST ( Ts ) (estimated 
at TERRA time of pass), using different emissivity. The emissivity values used to retrieve plot-scale LST are 
either taken from MODIS ( εland ), or derived from flux tower data ( εplot ), using Eq. (7) ( H = m�T ) or Eq. 
(8) ( H = m�T + c ). The reported εplot and intercept (c) are median values over all months for each site. 
Bias is defined as the mean of Ts − TMODIS , R2 is the coefficient of determination between plot-scale LST and 
landscape-scale LST. The site acronyms are explained in Table 2.

Sites

Landscape-scale ε Plot-scale ε H = m�T Plot-scale ε H = m�T + c

εland R2 Bias (K) εplot R2 Bias (K) εplot R2 Bias (K) c ( Wm−2)

SP 0.974 0.81 − 4.61 0.85 0.82 − 1.91 0.92 0.774 − 2.563 18.12

AS 0.974 0.93 − 6.24 0.82 0.93 − 1.92 0.993 0.915 − 4.884 72.46

TT 0.974 0.57 − 8.30 0.80 0.52 − 4.02 0.939 0.521 − 7.466 58.70

HS 0.985 0.16 − 9.90 0.6 0.22 − 2.47 0.949 0.18 − 10.45 237.29

LF 0.985 0.41 − 11.0 0.6 0.41 − 2.57 0.968 0.378 − 11.47 258

AR 0.985 0.27 − 3.51 0.960 0.252 − 2.98 0.996 0.27 − 3.567 14.72

DU 0.985 0.81 4.61 0.985 0.425 − 3.926 0.994 0.405 − 4.603 − 8.11

TUM 0.983 0.84 − 2.10 0.97 0.89 − 1.93 0.955 0.85 − 1.696 − 24.24

BR 0.983 0.937 − 0.195 0.82 0.895 2.72 0.919 0.906 1.662 17.72

YA 0.974 0.855 − 3.45 0.93 0.793 − 0.582 0.873 0.826 0.073 − 22.95
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Figure 5.  Sensible heat flux as a function of surface-to-air temperature difference based on Eq. (8) 
( H = m(Ts − Ta)+ c ). Same analysis and legends as in Fig. 4c), but (a) after adding 40 Wm−2 to measured 
Rlup , and (b) after closing the energy imbalance using a Bowen ratio closure scheme.

Figure 6.  Uncertainty in plot-scale estimations of ε and surface-air temperature differences ( Ts − Ta ) at Alice 
Springs (AS), based on Eq. (7) (no intercept in H(�T) ). Monthly values of ε shown for 2017 and hourly Ts − Ta 
for 15 August 2017. (a) Uncertainty in monthly εplot due to uncertainty in H, Rlup , Rldw and Ta , using Eq. (5) 
(‘leq’, blue) and Eq. (9) (‘seq’, black). (b) Hourly uncertainty in Ts − Ta on 15 July based on Eq. (5), due to 
uncertainty in Rlup , Rldw and Ta when landscape-scale emissivity is used ( εMODIS , orange) or due to uncertainty 
in H, Rlup , Rldw and Ta when εplot is used (blue). (c) Same as Panel b, but based on Eq. (9). The white dots 
represent the median values of each distribution, the bars extend between the 25 and 75% quantiles and the 
outer-most violin represent the full distributions of the data.
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Discussion
Our analysis revealed a fundamental flaw in the commonly used short equation [Eq. (10)] for estimating plot-
scale LST and εplot , as it does not produce the same results as the long equation [Eq. (6)] even with high values of 
εMODIS . In fact, the short equation strongly over-estimates the sensitivity of LST to ε (SI Figure 4), as it neglects 
the fact that low emissivity results in a greater fraction of reflected longwave in the sensor signal (compare Eq. 
(10) and (6)). The sensitivity of the long equation [Eq. (6)] to ε is driven by the contrast between Rlup and Rldwn , 
whereas for the short equation [Eq. (10)], it is only driven by observed Rlup (SI Figure 2). For instance, an error 
of 0.01 in ε at a water-limited site (e.g. AS) can cause an error of 0.17 K using Eq. (6) and 0.79 K using Eq. (10) 
respectively (SI Figure 4). This means that small errors in ε can result in large differences in LST when using 
the short equation, or conversely, unrealistic LST values can conveniently be rectified by slightly changing the ε 
value. This is illustrated e.g. in Fig. 6, where estimation of εplot resulted in similar LST values between the short 
and long equations, but with vastly different ε values and much greater uncertainty in estimated ε using the 
long equation compared to the short equation. Considering that the short equation ignores an important com-
ponent of longwave radiation, it must be concluded that in this case, it achieves seemingly the right results for 
the wrong reasons. The reduced sensitivity of the long equation [Eq. (6)] to ε is of advantage for plot-scale LST 
estimation, since εplot is usually unknown and therefore used as an approximate  value9. However, when using the 
long equation in conjunction with plot-scale H measurements to estimate εplot , we obtained unrealistically low ε 
values at some sites (e.g. HS and LF, Table 1) in comparison to previously reported ε values for a soil-vegetation 
 system28,29. This strong bias in plot-scale ε estimates was largely removed if the H(�T) linear fit was allowed 
to have an intercept (Table 1, plot-scale ε ). The intercept (i.e. �T  = 0 at H = 0 ) could be caused by combining 
measurements coming from instruments (radiometer, eddy covariance system) with different  footprints21. The 
mismatch of source areas becomes important if the surface underlying the instruments has a heterogeneous land 
cover. Although “footprint awareness” is often omitted at ECS under the assumption of  homogeneity20, in patchy 
vegetation, the radiometer can be “seeing” a different vegetation fraction than that contributing to EC measure-
ments, meaning that H  = 0 at �T = 0 . This problem was not detected by Holmes et al.10, as the short equation 
(Eq. (10)) was used, and due to its high sensitivity to ε (SI Figure 4(a)) even a small reduction in ε corrected the 
offset in H(�T) (Fig. 1a). In contrast, when repeating the same analysis using the long equation [Eq. (6)], a larger 
reduction in ε is required to remove the intercept, resulting in lower ε (Fig. 1b). By allowing an intercept in the 
H(�T) linear fit, we implicitly account for the possibility of a footprint mismatch or instrument bias in the data. 
This small change in methodology enables us to detect such problems by inspecting the value of the intercept 
(c). Considering the aerodynamic footprint to be larger than the radiometric  footprint20,21, a positive intercept 
can be interpreted as the H from the aerodynamic footprint which is not seen by the radiometer.

The intercept was very high for the sites HS and LF (Table. 1). A close inspection of the H(�T) plots at these 
sites (SI Figure 1) revealed negative day-time Ts − Ta (Fig. 2), which may suggest an underestimation of Rlup . 
While testing this hypothesis at HS (having the highest intercept, Fig. 4c) we found that adding roughly 40 Wm−2 
(approx. 8% of observed Rlup , Fig. 5) in observed Rlup led to significant reduction in the intercept from 294 Wm−2 
(Fig. 4c) to 17 Wm−2 and positive day-time Ts − Ta (Fig. 5a). The other linear regression parameters (m, R2 , 
RMSE) were not affected (compare Figs. 5a and 4c). The hemispherical view of the radiometers looking down at 
a heterogeneous canopy makes it possible that they “see” more tree crowns and less soil than the area contribut-
ing to the eddy covariance footprint. This could lead to an underestimation of Rlup , and an underestimation by 
30–40 Wm−2 would be equivalent to approximately 5–10% of the observed flux, which is within the range of 
a typical energy imbalance found at this site. Previous studies have found a dependence of footprint mismatch 
on wind  direction20–22, but we did not find a significant relation between monthly intercept and dominant wind 
direction at Howard Springs.

Surface heterogeneity has also been recognized as one of the potential causes for the lack of energy balance 
closure observed at most ECS at diurnal  scales30,31. However, in our analysis the use of an energy balance closure 
scheme (based on the Bowen ratio) led to much lower values of εplot using Holmes’ approach with the long equa-
tion and without intercept. In contrast, if an intercept was allowed, energy balance closure led to an increase in 
positive intercept (Fig. 5b). Perhaps this is the reason why other studies on plot-scale ε estimation have also used 
the observed fluxes without  correction10,11,19. Other energy balance closure schemes add the missing energy to 
H in water limited  ecosystems32, or to LE in energy limited  ecosystems33. However, our analysis suggests that 
the footprint mismatch may cause a small bias in the upwelling longwave radiation measurements that is not 
accounted for in any conventional energy balance closure approaches. When we added 35 Wm−2 (instead of 40 
Wm−2 , see Fig. 5a) to the measured upwelling longwave radiation and subsequently closed the energy balance 
at the HS site (which had the largest H(�T) intercept), we largely removed the intercept and at the same time 
obtained realistic ε values and an increased R2 (SI Figure 6). In addition, the bias between MODIS LST and plot-
scale LST at HS was reduced by 6.4 K (SI Figure 6b), compared to using upwelling longwave without correction.

When estimating plot-scale LST using εMODIS values, we found at many sites with a sparse canopy strongly 
negative bias in comparison to MODIS LST, which is in agreement with previous studies where the bias for sparse 
canopies reached up to 12  K34. The MODIS overpass can have a large off-Nadir viewing angle, which would lead 
to an elongated foot-print35 and therefore, a different distribution of bare soil and vegetated areas compared to 
the mostly Nadir viewing angle of the tower-mounted sensor. The difference in footprint and viewing angles 
between the tower mounted pyrgeometers and MODIS radiometers could also be the reason for bias between the 
two LST estimates. Plot-scale LST estimates based on plot-scale ε using a linear H(�T) fit without an intercept 
largely reduced this bias between plot-scale and MODIS LST (Table 1) and also reduced the uncertainty in diurnal 
LST (Fig. 6b, c) in comparison to the use of εMODIS . However, the resulting plot-scale ε values were unrealisti-
cally low at some sites (Table 1, center). In contrast, allowing an intercept ( H = m�T + c ) in εplot estimation 
resulted in more realistic ε values at these sites, but very large intercept values (over 200 Wm−2 at some sites), 
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indicating that the plot-scale LST values cannot be used in combination with the observed aerodynamic fluxes 
at these sites, as strongly positive H at 0 surface-air temperature difference is physically inconsistent (Fig. 4c). In 
addition, this approach increased the bias between plot-scale and MODIS LST at most of the study sites (Table 1). 
Note that the correspondence between landscape-scale LST and plot-scale LST can vary strongly between sites, 
depending on canopy densities and viewing angles (tower vs. satellite)35, sensor installation height and position, 
and sensor  types21. At the sites with the largest intercept values, we found that an assumed bias in upwelling 
longwave radiation by only 6–9% would largely remove the intercept and also reduce the bias between MODIS 
and plot-scale LST (Fig. 5a, SI Figure 6b). A detailed analysis of such bias and potential correction approaches is 
beyond the scope of this study. Given that the fit of a linear model without intercept is statistically questionable 
in  general36, and the fact that such a fit resulted in unrealistically low values of ε at some sites, we conclude that 
fitting a model with intercept is the more robust approach, and that a significant intercept should be used as a 
red flag for the utility of the data for estimation of plot-scale LST. Additionally, the uncertainty in εplot values 
obtained using a regression model with intercept nearly vanished in comparison to the uncertainty resulting 
from a regression model without intercept (see SI Figure 6a).

Note that the fluxes observed at ECS are representative of the composite signal from both, soil and vegetation, 
which typically have different ranges of surface temperatures and  emissivities37. The ε of soil strongly depends 
on soil moisture  content38, whereas the ε of a canopy depends on its structural attributes and leaf area index, 
the latter of which can vary strongly at the seasonal  scale39. For example, the laboratory-measured directional ε 
for various canopy elements (bark, leaf and its arrangement, stem wood) ranged between 0.9 and 1 at the Yatir 
 site40. Laboratory measurements of thermal infrared reflectance spectra suggest that the ε uncertainty due to 
structural unknowns, such as leaf orientation, is more significant than the differences in leaf component emis-
sivity among plant  species29. Consequently, it is clear that the ε of a surface is a function of many factors and a 
detailed analysis of all these factors is out of scope of the present study. Derivation of landscape-scale broad-
band emissivity ( εMODIS ) from narrowband spectral emissivity is a first-order approximation for capturing the 
integrated effects of land cover from MODIS spectral  bands37, whereas the derivation of εplot from EC flux data 
provides an independent alternative for the estimation of effective plot-scale ε . Our finding that inclusion of an 
intercept in the H(�T) relationship when estimating εplot significantly reduces uncertainty in εplot while increas-
ing uncertainty in �T suggests that this method could be used for reliable estimates of effective εplot within the 
radiometer footprint even in the presence of a footprint mismatch between the radiometric and H measurements. 
The approach could also be extended to urban settings if reliable eddy covariance measurements are available 
and anthropogenic heat components are known. Although the effects of footprint mismatch between radiometric 
and eddy covariance measurements could be large in such a heterogeneous setting, εplot estimation based on 
H(�T) with intercept could provide a robust estimate of effective εplot , which is important for climate models 
simulating urban heat island  effects41.

In summary, our results reveal that the short equation (Eq. (10), neglecting downwelling longwave radia-
tion) leads to biased estimates of LST and substantially over-estimated sensitivity of LST to surface emissivity. 
Therefore, the use of Eq. (10) is not recommended and should be replaced by Eq. (6) if downwelling longwave 
radiation measurements are available. At some sites, the use of Eq. (6) resulted in plot-scale LST estimates that 
were far below satellite-derived landscape-scale LST values, and also inconsistent with plot-scale flux data (nega-
tive surface-air temperature difference when sensible heat flux is strongly positive). In many previous studies, 
such bias would have been removed by slightly lowering surface emissivity ( ε ), but the reduced sensitivity of 
Eq. (6) to ε would require unrealistically low values of ε to remove the low-bias in LST. When estimating plot-
scale ε values, realistic estimates based on Eq. (6) are only possible at these sites if we include an intercept in the 
H(�T) relationship, but this again results in very high intercept values (over 200 W m−2 ). Note that high values 
of intercept do not necessarily make εplot unreliable, they rather suggest poor correspondence between H and Ts 
due to footprint mismatch. Hypothesizing that the intercept is a consequence of a footprint mismatch between the 
aerodynamic and radiometric measurements, a small correction in upwelling longwave (6–9%) and subsequent 
energy balance closure (based on the Bowen ratio) largely removed the intercept and produced realistic εplot 
values and self-consistent H(�T) plots. This approach also reduced the bias between plot-scale LST and MODIS 
LST, although it did not improve the weak correlation between these LST estimates (SI Figure 5(b)). In the past, 
ground-based radiometric measurements have been used for the validation of the MODIS LST  product42, there-
fore our study compared the new plot-scale LST estimates with MODIS LST to check their correspondence.

The combination of radiometric and aerodynamic measurements for the estimation of εplot and LST provides 
a quality check on the correspondence between observed fluxes and temperatures at ECS. The intercept value 
can be used as a consistency criterion for observed data (radiometric and aerodynamic measurements) before 
using them in combination, as a strong intercept indicates inconsistency between observed sensible heat flux and 
surface-to-air temperature difference. Therefore, the proposed method of fitting a linear relation with intercept 
to H and �T has the potential to provide more reliable benchmark data sets for model evaluation and validation 
at the ecosystem scale (plot-scale). The εplot estimates could also be used to parameterize climate and weather 
prediction models at ecosystem scale, but this was not tested in the present study. Overall, the implications of 
our study are of particular relevance for the research community interested in process-based understanding of 
the diurnal and seasonal feedbacks in soil-vegetation systems based on observed fluxes.

Methods
In the last two decades, plot-scale radiometric data collected at ECS have gained popularity for in-situ LST 
retrieval due to its high temporal  resolution31,43. In addition to this, the LST estimates at plot-scale originate 
from a relatively homogeneous footprint in comparison to the satellite-derived LST (MODIS pixels). This section 
describes: (i) how to retrieve plot-scale LST and ε using eddy covariance measurements, (ii) how to quantify 
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the correspondence between plot-scale LST with MODIS LST and, (iii) how to quantify the uncertainty in plot-
scale LST and ε.

Tower data. ECS collect micro-meteorological measurements above the surface (vegetation canopy) using 
towers (flux tower) following common measurement  protocols44. The towers are generally equipped with pyrge-
ometers or radiometers to measure upwelling and downwelling shortwave and longwave radiation, which is 
further used to calculate net radiation (Eq. 2). Besides radiative fluxes, measurement at ECS also include sen-
sible and latent heat fluxes, net carbon-dioxide exchange and a range of meteorological variables, such as air 
temperature ( Ta ), humidity and wind speed. Ta is the air temperature measured at a reference height above the 
canopy. Each flux measurement is accompanied by a flagging system based on the second CarboEurope-IP QA/
QC  workshop45. In our current work, we use high quality available data (flag 0) as it is without atmospheric cor-
rections. For the analysis, ten sites were selected to represent a variety of land cover types and climates (Table 2). 
Eight sites belong to the North Australian Tropical Transect (NATT) and two sites (Yatir Forest, Brookings) are 
chosen to replicate results from Holmes et al.10 as shown in Table 2. Eddy covariance level 3 data is obtained 
from http:// data. ozflux. org. au/ portal/ pub/ listP ubCol lecti ons. jspx for Australian sites. The data for Brookings 
was obtained from Ameriflux whereas the data for Yatir Forest was obtained through personal communication 
with Professor Yakir’s lab in order to obtain the older version of the data, which was used by Holmes et al.10.

MODIS data. Landscape-scale emissivity and LST data (MODIS product MOD11A1) was downloaded 
from NASA earth data https:// lpdaac. usgs. gov/. It is a level 3 daily LST product gridded in the sinusoidal pro-
jection at a spatial resolution of 0.928 km by 0.928 km. The daily LST pixel values in each granule (tile contains 
1200 x 1200 grids in 1200 rows and 1200 columns) is retrieved by the generalized split-window algorithm under 
clear-sky conditions and MODIS LST values are averaged by overlapping pixels in each grid with overlapping 
areas as  weight46. The downloaded data in hierarchical data format (hdf), were converted into tagged image file 
format (tiff) using the python package  PyModis47. Alternatively MODIS data can also be obtained from https:// 
appee ars. earth datac loud. nasa. gov/. MODIS measures spectral emissivity through four channels (28, 29, 30, 31) 
at wavelengths ranging between 8 and 12 µm37 and the system of equations is iteratively solved for a given 
range of wavelengths (8–12 µm ) to obtain ε and LST using radiative transfer  models23,37,48. In the current study, 
dataset columns used to compare plot-scale LST are day time daily LST and local view time. In order to obtain 
landscape-scale ε , the emissivity from bands 31 and 32 are used. These bands have stable emissivities than other 
channels ranging from  0.92 to 1, and can be used to derive broadband  emissivity46.

Plot-scale ε and LST estimation. LST is defined as the “ensemble directional radiometric surface tem-
perature”18, and can be estimated from the infrared radiance emanating from a given surface with known 
 emissivity50. The emissivity at ecosystem-scale can also be estimated using observed H, Rlup , Rldwn , and Ta . A 
plot-scale ε ( εplot ) estimation approach was initially proposed by  Holmes10 using the short equation (Eq. 10). In 
the present work, we have used both the long equation (Eq. 6) and the short equation (Eq. 10) to estimate εplot . 
The prime variables used in the study are H, Rlup , Rldwn , and Ta , whereas the ancillary variables Rn and wind 
speed ( Ws ) are used to filter the data for analysis. The data filtering criteria are sufficient net radiation ( Rn > 25 
Wm−2 ) and wind speed ( Ws > 2m s−1)10. For each month, a linear regression (with and without intercept, see 
main text) between sensible heat (H) and Ts − Ta ) is performed (Fig. 7b) using Scipy (https:// docs. scipy. org/ 
doc/ scipy/ refer ence/ gener ated/ scipy. stats. linre gress. html). Ts is estimated by solving Eq. (6) and Eq. (10) using 
measured longwave radiation and prescribed ε , starting with the maximum possible value for a grey body, 0.99, 
and then progressively reducing ε with step size of 0.002 until we reach a minimum RMSE for a linear relation-
ship between H and �T . Only months with R2 > 0.5 between H and �T are considered for εplot estimation. An 
illustration plot for RMSE as a function of ε is shown in SI Figure 5. The monthly εplot is obtained using the long 
[Eq. (6)] and short equation [Eq. (10)] and termed as εleq and εseq respectively, as shown in Fig. 7b. For two sites 

Table 2.  Description of study sites.

Study site Latitute, longitude Landcover Time-period Longwave sensors Sensor installation height (m) Altitude (m)

Sturt Plains (SP) − 17.1507, 133.3502 Mitchell Grass 2016–2019 pyrgeometers (CG-2) 4.8 230

Alice Springs (AS) − 22.2828, 133.2493 Mulga woodland, hummock 
grassland, river red gum forest 2016–2018 Radiometer (CNR1) 12.2 606

Ti Tree East (TT) − 22.2870, 133.6400 Grassy mulga woodland, Cor-
ymbia/Triodia savanna 2016–2018 Radiometer (CNR1) 9.9 553

Howard Springs (HS) − 12.4943, 131.1523 Open woodland savanna 2016–2018 Pyrgeometers (CM-7B, CG-2) 23 63

Litchfield (LF) − 13.1790, 130.7945 Tropical savanna 2016–2018 Radiometer (CNR4) 31 222

Adelaide River (AR) − 13.0769, 131.1178
Savanna dominated by Euca-
lyptus tectifica and Planchonia 
careya

2006–2009 Pyrgeometers (CNR1) 15 90

Daly Uncleared (DU) − 14.1592, 131.3881 Woodland savanna 2016–2018 Radiometer (NRlite) 21 110

Tumbarumba (TUM) − 35.6566, 148.1517 Wet sclerophyll 2015–2018 Pyrgeometers (CM3 and CG3) 70 1200

Brookings (BR) 44.352, 96.840 Cropland 2005 Pyrgeometers49 NA 51042

Yatir Forest (YF) 31.344894, 35.051922 Evergreen needleleaf forest 2005 Pyrgeometers49 NA 641

http://data.ozflux.org.au/portal/pub/listPubCollections.jspx
https://lpdaac.usgs.gov/
https://appeears.earthdatacloud.nasa.gov/
https://appeears.earthdatacloud.nasa.gov/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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with a high value of intercept (HS and LF in Table 1) we tested if adding 6–8% to the observed Rlup and closing 
the energy balance using Bowen ratio closure before εplot estimation would remove the intercept (Fig. 5).

Recently, another approach for plot-scale ε estimation using Eq. (4) was used by Maes et al.11. In this approach, 
data sets are filtered for non rainy days without snow cover ( α < 0.4 ) and near-zero H ( −2 < H < 2 ). The ε 
values are then estimated by substituting Ts = Ta in Eq. (4) as shown in Eq. (11). The monthly ε was obtained as 
the median of ε obtained by substituting filtered data in Eq. (11) (red stars in Fig. 1).

(11)ε =
Rldwn − Rlup

Rldwn − T4
aσ

Figure 7.  Schematic representation of steps followed for plot-scale LST retrieval using landscape-scale 
emissivity (a) or plot-scale emissivity (b). To estimate plot-scale εplot , surface-air temperature difference ( �T ) is 
computed from observed longwave radiation ( Rlup and Rldwn ) and Ta for given εplot , and then εplot is varied in a 
way to minimise RMSE of a linear relationship between observed sensible heat flux (H) and �T . The resulting 
surface temperatures ( Tleq,Tseq ) are then compared to TMODIS , with the R2 , RMSE, and bias reported in Fig. (3).
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LST comparison. MODIS LSTs are a global reference for LST and used world-wide, also in conjuction 
with plot-scale flux measurements. To calculate plot-scale LST for the exact time of TERRA day-time overpass 
for each site, the 30 minute tower data was interpolated linearly, and the interpolated Rldwn and Rlup observa-
tions corresponding to the time of overpass were used in conjunction with the monthly εplot or εMODIS for the 
calculation. Plot-scale daily LST is compared to MODIS LST in terms of the mean, bias, RMSE and R2 using a 
robust linear regression model (scipy stat model) as shown in Fig. 7a. The goodness of fit between plot-scale and 
landscape-scale LST was determined by looking at R2 (Fig. 7b). The bias is estimated as the mean of the deviation 
between daily MODIS LST and plot-scale Ts . See SI Table 1 for data sources and acronyms.

General approach. We estimate landscape-scale broadband ε using MODIS spectral ε as shown in Bahir 
et al.51.

Tower-based longwave radiation measurement ( Rlup , Rldwn ) passing the filtering criteria (as mentioned in plot-
scale emissivity estimation) along with MODIS based ε was used to invert LST using Eqs. (6) and (10). The 
obtained plot-scale LST was compared to landscape-scale MODIS LST using a robust linear regression as men-
tioned above and shown in Fig. 7a.

Uncertainty estimation. Uncertainty in plot-scale ε and LST was quantified based on an assumed sys-
tematic error (caused by a potential bias in measurement devices) at the study sites. In a first step, based on the 
 literature24,52, the error bounds of each input variable (H, Rlup , Rldw , Ta ) used for plot-scale ε estimation were 
defined. The error bounds for Rlup and Rldwn are − 5 to 5 Wm−224, for H, we used − 20 to 20 Wm−2 and for Ta 
we used − 1 to 1  K52. The error samples (perturbation) within these bounds were generated using the Saltelli 
sampling scheme (using the python package  SALIB53). Each error sample is added to the monthly segregated 
measured fluxes as explained above. Observed fluxes combined with perturbed fluxes are used to estimate Ts 
using Eqs. (10) and (6). The obtained range of diurnal Ts and observed Ta based on the perturbation is used to 
calculate the uncertainty in �T ; an example for July 15 is shown in Fig. 6c. Perturbed sensible heat flux ( H+

sample error) and perturbed �T is used to obtain εplot as described above. The distribution of monthly εplot 
values is reported as uncertainty in monthly ε.

Code and data availability
The data and code used for this study is freely available from zenodo.org (https:// doi. org/ 10. 5281/ zenodo. 63850 
16).
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