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Abstract: We present a new post-processing method for Quantum Key Distribution (QKD) that
raises cubically the secret key rate in the number of double matching detection events. In Shannon’s
communication model, information is prepared at Alice’s side, and it is then intended to pass it over
a noisy channel. In our approach, secret bits do not rely in Alice’s transmitted quantum bits but
in Bob’s basis measurement choices. Therefore, measured bits are publicly revealed, while bases
selections remain secret. Our method implements sifting, reconciliation, and amplification in a unique
process, and it just requires a round iteration; no redundancy bits are sent, and there is no limit in
the correctable error percentage. Moreover, this method can be implemented as a post-processing
software into QKD technologies already in use.

Keywords: QKD; distillation; amplification; reconciliation

1. Introduction

To put it in historical context, fiber-optic telecommunications over long distances
was not possible until manufacturing techniques that improved drastically its efficiency
were developed. Fibers had been used to see inside the body, but they remained unusable
for long-distance information transfer because too much light was lost along the way.
However, in the 1960s, Charles Kao introduced a new disruptive approach based on pure
glass fibers and laser technology with transcendent achievements [1].

In the quantum era, Quantum Key Distribution (QKD) is one of the most promising
technologies to secure the information intended to cross data networks. However, the
development of new techniques for the rapid establishment of secret key information using
quantum pulses over long distances has become unpostponable [2–6].

Unfortunately, some factors prevent QKD of becoming a widely used technology as
its inability to reach long-distances and produce large keys at high speed. The greatest
weakness of QKD technology lies in its ability to gain useful information to establish a
secret key despite the noise in the quantum channel [7,8]. On the one hand, noise provides
the possibility for an attacker to disguise themselves, and, on the other hand, it imposes
severe difficulties to correct errors produced during transmission in order to derive two
identical cryptographic keys at both sides of the quantum link [9,10]. In the case of BB84
protocol, it has been estimated that a secure key can be distilled when the quantum bit
error rate (QBER) is less than 11% [11].

In the few past years, we have developed a new scheme for QKD quantum called
quantum flows [12–14] capable of resisting challenging attacks [15–25]. In quantum flows
approach, Alice sends to Bob a pair of quantum states, parallel or non-orthogonal, which
is chosen randomly. Bob measures the two quantum states with the same measurement
basis, X or Z under active basis selection. If Bob obtains the same result, a single bit
has been transmitted from Alice to Bob. Quantum flows have allowed us to formulate
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a new method for QKD distillation based on binary structures called frames. Framed
reconciliation integrates the regular QKD stages of sifting, reconciliation, and amplification
in a unique process. This property makes our method unique in the context of QKD
distillation; moreover, it accelerates convergence and produces a key that grows cubically
in the number of double detection events.

In this work, we enhance the framed reconciliation method showed previously for
2 × 2 frames [14], and we discuss that framed reconciliation can surpass Shannon’s infor-
mation bounds for noisy channels. We strongly recommend that the reader consults our
previous work on Quantum Key Distillation Using Binary Frames, so that we can keep
the present article concise, as far as possible. Basic concepts comprise quantum flows,
non-orthogonal quantum states, quantum photonic gains, binary frames, and matching
results (MR). Having introduced 2 × 2 frames, which are the frames with the minimum
size, we discuss here 3 × 2 frames. Throughout the article, we will compare both schemes.

2. Communication Model

Classical theory of communication, as it was established by Claude Shannon in 1948,
defines a general communication system where Alice (the information source) prepares
an information signal, that she sends over a noisy channel, but it corrupts at least in part
due to the presence of noise in the channel [26,27]. At the other side, Bob receives this
information signal, but Alice and Bob must implement a processing method to recover
from the errors produced during transmission [28–32].

Shannon’s theory imposes a limit to the highest transmission speed over a noisy
channel because it can never surpass the channel capacity. The coding rate is computed
as the number of message symbols divided by the number of transmitted signals. A
higher coding rate means higher transmission speed. When the efficiency of the codes
approximates to the channel capacity by increasing the number of transmitted signals,
it is known that these codes approach to the Shannon limit. However, a coding rate too
high makes it impossible to achieve a decoding error probability close to zero because the
optimum channel capacity is achievable just by letting the number of transmitted signals
reach infinity [33]. We claim our method goes beyond this limit because it does not require
the number of transmitted signals to be increased. In fact, the coding rate reaches unity.
The QKD protocol in Reference [34] exhibits a total efficiency of the communication to
come up to 100%, but it does not define an error correction algorithm.

On the other side, if e is the probability that a transmitted 0 bit is received as a 1
and 1− e is the probability to be received as a 0, Shannon theory implies that, in case
that e = 0.5, one can never say anything about the original message [35,36] because the
entropy is maximized when the two possible outcomes are equally probable. Since our
method corrects errors when e = 0.5, we claim that it goes beyond the limits implied by
Shannon’s theory.

In our approach, we call active (or real) information that which is derived from
Shannon’s model viewpoint because information is first prepared by Alice, then transmitted
through the (quantum) channel, and, finally, recovered by Bob after it has been measured
and proven to be correct. Conversely, in our scheme, information is not enclosed in the
transmitted quantum pulses but in the quantum bases (X or Z) that Bob chooses at the
other side. In fact, measured bits are publicly announced but the measurement bases are
never revealed. We designated reactive information to this communication paradigm that
we introduced to the sifting QKD procedure.

Reactive bits are computed using Bob’s measurement bases, so errors produced in the
quantum channel are easily detected by Alice because such bits are publicly revealed by
Bob. Remarkably, in the presence of the unit error rate, information can still be recovered
since errors give reactive information by themselves. For the same reason, not all of
Alice’s information can be recovered, even in the absence of errors produced by the
quantum channel.
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Two reconciliation approaches have been conceived in QKD: direct and reverse recon-
ciliation. In reverse reconciliation (RR), Alice must infer Bob’s outcomes, rather than Bob
guessing Alice’s encodings, known as direct reconciliation (DR). Under this classification
frame, reconciliation is RR, so let us briefly contrast our approach with RR which was
introduced in the context of continuous variable QKD [31,37].

It has been demonstrated that RR reconciliation achieves longer distances even beyond
the 3dB limit of previous CV-QKD works [38]. RR reconciliation has been implemented
over LDPC basis [39], and it was shown that LDPC codes can reach within 0.0045 dB of
the Shannon limit. Unfortunately, it requires large block lengths (107) [40]. Even more,
decoding LDPC has larger computational and memory requirements than either Cascade
or Winnow algorithms [41]. In contrast, our method does not require additional bits
which reduces the coding rate. Our experimental simulations show complete efficiency
in detecting/correcting errors. Moreover, the secret throughput grows cubically in the
number of double detection events.

Before we introduce 3 × 2 frames, we will explain quantum communication based
on frames through a simple example about our reconciliation method. To facilitate its
exposition, we use 2× 2 frames in this example. Then, to simplify exposition we discuss the
role of auxiliary frames in the 2× 2 case. In Section 3, we address the research methodology
for 3 × 2 frames and then we detail the QKD distillation protocol. To make the discussion
more effective, we have placed tables of 3 × 2 protocol in the Appendix A. Finally, in
Section 4, we analyze the efficiency and the security of the 3 × 2 protocol against different
attacks as the Intercept-Resend (IR) attack and the Photon Number Splitting (PNS) attack.

2.1. Quantum Communication

In the BB84 protocol [42–45], a quantum state |iX〉 (or |iZ〉), where i represents the
encoded bit (i = 0, 1), is useful to be distilled whenever it has been measured in the proper
(compatible) quantum basis, basis X for |iX〉 (or Z for |iZ〉). Otherwise, a non-compatible
measurement is produced, the bit derived from this measurement is ambiguous, and it
must be discarded. However, in the quantum flows scheme, ambiguous cases can still be
used for the following reasons [14]:

• The states are grouped by non-orthogonal pairs (|iX〉 , |iZ〉) or (|iX〉 , |(i− 1)Z〉), where
i = 0, 1.

• A non-orthogonal pair is measured with the same quantum basis X or Z. Both
measurements yield the same result half of the times, i.e., if measuring (|iX〉 , |iZ〉)
with X (or Z) gives i, or measuring (|iX〉 , |(i− 1)Z〉) with X (or Z) gives i or 1− i, in
both cases. We call those cases double matching detection event. Then, non-compatible
measurements never occur.

• It implies that the bit encoded in the X or Z basis is transmitted from Alice to Bob. This
communication model defines two communication channels, channel X and channel
Z, because there are two bits enclosed in a non-orthogonal quantum pair: one bit over
channel X and other bit in channel Z. Bob just chooses which channel he wants to
use. Provided a double matching detection event is generated, both measurements
are equally useful.

2.2. Example of Error Correction

In order to better introduce our communication model, let us illustrate it with a simple
example to contrast it with Shannon’s model. To see the effect of the errors instead of
the losses in the channel, let us assume a conservative quantum channel. Table 1 shows
an hypothetical QKD protocol possibly based on BB84, where Alice has sent 18 quantum
states (in practical implementations, some sifted bits must be sacrificed to estimate the
error rate of the channel). In this example, a 30% error rate (e) is produced; therefore, the
QKD distillation process must be declined because prominent reconciliation algorithms,
such as Cascade, Winnow, or LDPC, cannot work with this high error rate.
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Table 1. In this example of a running Quantum Key Distribution (QKD), 6 errors (underlined at
Bob’s column) among 18 measured quantum states are produced, so it gives an error rate of 30%.
According to Shannon’s limit, it yields a transmission rate of 0.0817. It is known that, at 50%, there is
no reconcilable information.

Alice Bob

|0X〉2, |0Z〉1, |0X〉2, |0Z〉1,
|1X〉4, |0Z〉3, |1X〉4, |1Z〉3,
|1X〉6, |1Z〉5, |1X〉6, |1Z〉5,
|0X〉8, |1Z〉7, |1X〉8, |1Z〉7,
|1X〉10, |0Z〉9, |0X〉10, |0Z〉9,
|0X〉12, |1Z〉11, |0X〉12, |0Z〉11,
|1X〉14, |1Z〉13, |1X〉14, |1Z〉13,
|1X〉16, |0Z〉15, |0X〉16, |0Z〉15,
|0X〉18, |1Z〉17 |1X〉18, |1Z〉17

Let us suppose that the same errors are produced using the framed reconciliation
method as it is illustrated in Figure 1. In this example, we ignored the losses due to double
detection events and the amplification gain produced by the amount of combinations
between double matching detection events (we will discuss them later). The reconciliation
based on frames can process this error rate; in fact, it can reconcile any error rate that e has
in the channel, so there is no need to estimate e wasting bits for this purpose. To simplify
the exposition, in this example, we used 2 × 2 frames, but we will discuss 3 × 2 frames in
the Distillation Method section.

Figure 1. Using frame reconciliation, all errors are detected and corrected (or removed).
Each double detection event has been enumerated to follow them into the frames (see
Tables 2 and 3).
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Table 2. Alice receives the Sifting String (SS) from Bob, which she knows belongs to f2, f3, and f4,
respectively, but they are ambiguous, so she uses the auxiliary frames f10, f9, and f9, respectively, to
identify the error and then correct it.

f2
2.

3.

MR = 01 − |1Z〉

− |1Z〉


SS = 00, 11

f10
2.

1.

MR = 01 − |1Z〉

− |0Z〉


SS = 01, 10

f3
4.

3.

MR = 10|1X〉 −

− |1Z〉


SS = 11, 11

f9
4.

1.

MR = 10|1X〉 −

− |0Z〉


SS = 10, 10

f4
7.

9.

MR = 00 |1X〉 −

|1X〉 −


SS = 00, 11

f9
9.

1.

MR = 10|1X〉 −

− |0Z〉


SS = 10, 10

Table 3. After Alice receives these SS, she determines that the respective frames must be eliminated
because ambiguity cannot be removed.

f2
5.

3.

MR = 10|0X〉 −

− |1Z〉


SS = 01, 01

f3
6.

3.

MR = 01 − |0Z〉

− |1Z〉


SS = 01, 01

f6
8.

7.

MR = 00 |0X〉 −

|1X〉 −


SS = 10, 01

2.3. Auxiliary Frames

A major component of the framed reconciliation method relies in the auxiliary frames.
There are two types of auxiliary frames: zero frames and testing frames. Every quantum
state of a zero frame is |0X〉 or |0Z〉. Identifying measurement errors in a zero frame is easy,
as we will see later. A testing frame contains one row that is under evaluation because it
presumably contains error, and the rest of the rows come from a zero verified frame.

To compute the sifting string (SS), we follow the next procedure: A sifting string is
constructed concatenating the bits that result after the⊕ logical operation is applied to each
column of the frame (a blank space is treated as a zero bit) and putting the measured bits
that are produced by the optical detectors. The secret bits are derived from the code that
is assigned to the arrangement of measurements inside the frame. We call measurement
results (MR) to this arrangement. To see the role of auxiliary frames, let us assume that we
intend to apply the framing algorithm to the Shannon’s model; thus, several zero bits are
interleaved between the secret bits to be used as auxiliary correcting bits.

1. To achieve reconciliation in Shannon’s model, the first step is to ensure that auxiliary
zero bits are error-free. However, Shannon’s 2 × 1 frames does not allow to identify
errors in two consecutive zero bits (at least in one round iteration) as indicated by the
following relations: 0
⊕
0

 =

 1
⊕
1

 = 0 (SS).

In addition, when using 2 × 1 frames, there is a unique possible matching result
(MR), that is written below; therefore, no secret information can be derived from MRs
in Shannon’s model.
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|•〉
|•〉

.

2. By contrast, using 2 × 2 frames, errors in the auxiliary frames can be easily identified.
Here, we list the error-free zero frames:|0X〉 −

⊕
− |0Z〉

 =

− |0Z〉
⊕

|0X〉 −

 =

|0X〉 −
⊕

|0X〉 −

 =

− |0Z〉
⊕

− |0Z〉

 = 00, 00 (SS),

which can be compared, for illustrative purposes, to the erroneous cases:|1X〉 −
⊕

− |1Z〉

 =

− |1Z〉
⊕

|1X〉 −

 = 11, 11 (SS),

|1X〉 −
⊕

|1X〉 −

 =

− |1Z〉
⊕

− |1Z〉

 = 00, 11 (SS).

3. Ambiguous SS are produced in regular frames. For example, to the left, we indicate
that Alice sends the frame f2 to Bob, who measures it using MR = 11. However, when
applying the Z measurement basis, the photo-detector yields an error reporting |1Z〉
instead |0Z〉; so, we have:

f2a =

|1X〉 |0Z〉

|1X〉 |1Z〉

, f2b =

− |1Z〉
⊕

|1X〉 −

 = 11, 11 (SS).

When Alice receives the string SS = 11,11 which belongs to f2, she knows it implies two
possibilities: either SS comes from the error-free string SS24 = 11, 11 under MR = 10
in f2 or an error is produced in the first measured bit that actually corresponds to
the string SS23 = 10, 01 under MR = 11 in f2. To disambiguate it, Alice uses the
auxiliary frame f10. Thus, she looks at a frame f10 where the ambiguous row (−, |1Z〉)
is allocated. Remember that each row is combined with each other. Previously, the
second row of f10, i.e., (|0X〉 ,−), was verified as a zero frame. Then, suppose Alice
finds the following f10 case:

f10 =

− |1Z〉
⊕

|0X〉 −

 = 10, 10.

The sifting string 10,10 reveals that an error exists in the row that is under evaluation;
therefore, Alice decides SS23. Then, the pair (SS23, f2) determines Alice’s secret bit. It must
be highlighted that the sifting strings of auxiliary frames cannot be distinguished from
other identical SS from regular frames, so privacy is guaranteed. In fact, it is ensured that
each SS can proceed equally from each bit.

2.4. One-Time Pad XOR Equivalency

It is known that the XOR one-time pad encryption method is a perfect cryptosystem
provided the crypto key achieves the same number of bits as the plaintext. Let us show
that the framing method actually behaves as one-time encryption. First, in Table 4, we can
see the logical XOR (⊕) function. Each encrypted bit c could be produced by each key bit
denoted as k.
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Table 4. The logical XOR function.

c k⊕ b

0 0⊕ 0
1⊕ 1

1 0⊕ 1
1⊕ 0

As specified in the framed reconciliation method [14], Bob must reveal the sifting bits
along the measured bits. However, each SS maps two different MRs, as can be verified in
Table 5. Since secret bits are enclosed in MRs, we proved that secret bits of the framing
protocol are equivalent to the secret bits of the XOR one-time pad cryptosystem. The same
analysis can be applied to the 3 × 2 frames.

Table 5. The XOR function for 2 × 2 frames; matching results (MR) is the measurement result, and sb
denotes the final secret bit.

c k⊕ b MR Frames sb

00

(|0X〉 ,−)⊕ (−, |0Z〉) 10 f1 0
(−, |0Z〉)⊕ (|0X〉 ,−) 11 f5 1
(|1X〉 ,−)⊕ (|1X〉 ,−) 00 f2, f6 0
(−, |1Z〉)⊕ (−, |1Z〉) 01 f3, f4 1

01

(−, |1Z〉)⊕ (−, |0Z〉) 01 f1, f6 0
(−, |1Z〉)⊕ (|0X〉 ,−) 11 f4 1
(|0X〉 ,−)⊕ (−, |1Z〉) 10 f3 0
(−, |0Z〉)⊕ (−, |1Z〉) 01 f2, f5 1

10

(|1X〉 ,−)⊕ (|0X〉 ,−) 00 f4, f5 0
(|1X〉 ,−)⊕ (−, |0Z〉) 10 f6 1
(|0X〉 ,−)⊕ (|1X〉 ,−) 00 f1, f3 0
(−, |0Z〉)⊕ (|1X〉 ,−) 11 f2 1

11 (−, |1Z〉)⊕ (|1X〉 ,−) 11 f1, f3, f6 0
(|1X〉 ,−)⊕ (−, |1Z〉) 10 f2, f4, f5 1

3. Distillation Method with 3 × 2 Frames

Before we detail the steps of the distillation method for 3 × 2 frames, let us describe
the research methodology we applied:

1. The 3 × 2 frames must be identified: there are 43 = 64 binary 3 × 2 frames.
2. The measurement results (MR) must be specified: in 3 × 2 frames, there are 8 MR.

Those MR are illustrated in Table A2 of Appendix A.
3. Frames are classified as usable and useless frames: a usable frame is a frame that pro-

duces a distinct SS under each MR. In 3 × 2 frames, there are 8 distinct SS per frame
and 24 usable frames. Sifting bits are written in Table A4 of Appendix A. Remember
that Sifting Strings (SS) are composed by the sifting bits and the measured bits: SS =
1st sifting bit || 2nd sifting bit|| 3th sifting bit, 1st measured bit || 2nd measured bit ||
3th measured bit. The 3th sifting bit is appended to achieve discrimination, and it can
be considered as a parity sifting bit.

4. Auxiliary frames which are intended to catch errors produced in regular frames must
be identified. In 3 × 2 frames, there are 3 auxiliary frames labeled as f25, f26, and
f27. The frame f25 is the zero frame and is used to verify the two (below) rows of the
testing frames f26 and f27. The upper row of f26 and f27 is the row that is being tested.
In the end, Alice will include the auxiliary frames inside the set of frames that Bob
must remove. Auxiliary frames are listed in Table A1 of Appendix A.

5. All usable frames under each MR must be expanded to analyze all possible errors
through SS, from single to multiple errors. Then, ambiguous SS that can be corrected
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under the auxiliary frames must be detected. In addition, all the SS that cannot be
disambiguated must be identified and the corresponding frames must be removed.
We show in Table A5 the cases that can be successfully disambiguated.

6. At Bob’s side, each (SS, MR) pair defines a secret bit (sb). For Alice, the same secret bit
results from the pair (SS, fi) because she knows the frame that is behind each SS. It
must be guaranteed that each SS can be produced equally by both bits. In addition,
it must be ensured that each secret bit proceeds from the same number of frames, so
that the bit probability of each SS is the same in order to reduce the eavesdropper’s
information gain (SS are publicly transmitted over the classical channel). This action
may involve removing some extra SS. Alice sends to Bob the set of SS of all the frames
that must be eliminated including auxiliary frames. Table A3 of Appendix A enlists
SS, MR, frames, and sb.

Now, we can proceed to summarize the steps of the distillation method for 3× 2 frames
that comprises sifting, reconciliation, and privacy amplification. The overall steps of the
process are indicated in Figure 2:

1. Alice sends some non-orthogonal quantum pairs either (|iX〉 , |iZ〉) or (|iX〉 , |(1− i)Z〉)
where i = 0, 1. Although quantum non-orthogonal pairs can be mutually interleaved
they are numbered, so each pair can be identified by Alice and Bob

2. Bob measures each quantum pair using the same measurement basis (X or Z) which
is chosen randomly (under active basis measurement). Some double detection events
are produced. Bob informs Alice the tag number of such quantum pairs.

3. Alice computes all usable frames including null frames and auxiliary frames. She
communicates to Bob the frame arrangement information. We call this step privacy
amplification.

4. Bob computes the Sifting String (SS) of each frame. He returns the set of Siting Strings
he obtained to Alice.

5. Alice analyzes the SS received from Bob:
She generates frames f25 to prepare the auxiliary frames.
Using auxiliary frames, Alice removes ambiguity. Alice gets the secret bits using

the relation (SS, fi) and Table A3 of Appendix A.
Alice informs Bob of the cases that must be eliminated (because they cannot be

disambiguated).
6. Bob removes the frames identified by Alice to reach Alice’s secret bit string. Bob’s

secret bits are derived from (SS, MR) and Table A3 of Appendix A.



Entropy 2021, 23, 229 9 of 23

Figure 2. The frame distillation runs in one iteration: Alice sends pairs of non-orthogonal
states (NOi). Bob informs to Alice which cases produced double matching detection events
(i). Alice generates all possible frames and sends to Bob the frame arrangement information
( fn). Bob returns back the sifting strings (SSn). Finally, Alice tells Bob which cases he must
delete (rm). Step 1 is executed over the quantum channel, while steps 2 to 5 are completed
using the classical channel.

4. Secret Rate

The secret rate of the framed reconciliation method can be derived directly from
frames without recurring to quantum physics mathematical relations. First off, we must
enlist the Sifting String (SS) generated by all the frames classified by Measurement Result
(MR) and separate the error-free SS from the erroneous SS (single and multiple errors).
According to the size of frames (2 × 2 or 3 × 2), the error could be in the first bit, second
bit, third bit, two bits, two of three bits, and three bits simultaneously. Then, we proceed to
identify ambiguous SS, (because they appear simultaneously as error-free SS and erroneous
SS for a given frame). Then, we identify the SS that can still be used after they are inspected
under auxiliary frames. We call those cases unequivocal SS cases.

We calculate the secret rate (in absence of eavesdropping) as the sum up of the
information derived from the unequivocal error-free rate and the amount of information
derived from the unequivocal erroneous rate (unequivocal error-free rate is obtained as the
number of unequivocal error-free SS under the total number of error-free SS; conversely,
the unequivocal error rate is obtained as the rate of unequivocal erroneous SS over the
total erroneous SS cases). As mentioned earlier, unequivocal means that ambiguity can be
removed using auxiliary frames. The bits from remaining SS must be eliminated since they
do not contribute to the secret rate.

In Table 6, we detail the deduction of the secret rate. Each SS contributes with a single
bit. In 2 × 2 frames, we have 4 usable frames, and each one generates 4 SS; to compute the
unequivocal erroneous rate, we have 2 SS per frame that can be recovered from 12 SS per
frame yields 1

6 . On the other hand, to derive the unequivocal error-free rate, we have 2 SS
per frame that can be recovered from 4 SS per frame it yields 1

2 . The unequivocal erroneous
rate in 3 × 2 frames yields 1

3 , and the unequivocal error-free rate gives 1
21 (see Figure 3).
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Table 6. The secret rate is indicated without taking the framing gain for each frame size. The secret
rate is shown when e = 0 and e = 1.

Iab(2×2)
Iab(3×2)

1
2 (1− e) + 1

6 e 1
3 (1− e) + 1

21 e
1
2 −

1
3 e 1

3 −
2
7 e

e = 0→ Iab(2×2)
= 1

2 e = 0→ Iab(3×2)
= 1

3
e = 1→ Iab(2×2)

= 1
6 e = 1→ Iab(3×2)

= 1
21

Figure 3. The theoretical transmission rate is plotted as a function of the quantum bit error
rate (QBER) e; we show the 2 × 2 and 3 × 2 lines and the Shannon’s reference function.
When e = 1, the secret rate achieves 0.16 for 2 × 2 frames and 0.047 for 3 × 2 frames.

4.1. Secret Throughput

One of the main advantages of the reconciliation method based on frames is the total
number of secret bits that results when the framing gain is applied. Remarkably, framing
gain results from the amount of total combinations among double matching detection
events. We call this process privacy pre-amplification (or amplification in short). Therefore,
we compute the secret throughput multiplying the secret rate by the framing gain. In the
case of 2 × 2 frames, we have 4 usable frames under 16 total frames, so the framing gain is
1
4 (

n
2). Conversely, in 3 × 2 frames, there are 24 over 64 frames, so the framing gain is 3

8 (
n
3).

Equation (2) describes the secret throughput for each case.

Iab(2x2)
=

1
4

(
n
2

)(
1
2
− 1

3
e
)

Iab(3x2)
=

3
8

(
n
3

)(
1
3
− 2

7
e
). (1)

Just to appreciate the growth rate of each frame size, we compute, in Table 7, some
values of the secret throughput as a function of n and e. As it can be inferred, 3 × 2 frames
have a visible advantage to produce secret bits, e.g., when n = 103, it raises the secret
throughput to n = 108 bits.
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Table 7. The theoretical secret throughput (bits) as a function of n and e for each frame size.

n
e = 0 e = 0.5 e = 1

Iab(2×2)
Iab(3×2)

Iab(2×2)
Iab(3×2)

Iab(2×2)
Iab(3×2)

100 618 20,212 412 11,550 206 2887
500 15,593 2,588,562 10,395 1,479,178 5197 369,794

1000 62,437 20,770,875 41,625 11,869,071 20,812 2,967,267

4.2. Rate Code

The rate code rab is the relation between the secret information and the total bits
generated to achieve reconciliation. In the case of 2 × 2 frames, the total information is
4(n

2), while the total number is 6(n
3) in 3 × 2 frames. The rate code for each size of frame is

written in Equation (2).

rab(2×2)
=

1
16

(
1
2
− 1

3
e
)

rab(3×2)
=

1
16

(
1
3
− 2

7
e
). (2)

4.3. Secret Key Rate

In the case of frame reconciliation, the eavesdropper has a great disadvantage since
they do not know Bob’s bases selection because they are not revealed over the classical
channel. Even if the eavesdropper captures some copies of the quantum pulses, they must
deal with the double detection events and the basis choices. Moreover, although the eaves-
dropper could replicate some double detection events, Alice performs all combinations
between double detection events. As a consequence of the privacy amplification process,
the eavesdropper’s information reduces even more.

4.3.1. The Intercept and Resend Attack (IR)

In the Intercept and Resend (IR) attack, the eavesdropper first measures each pair of
non-orthogonal quantum pulses in the quantum channel, and then they send another pair
of quantum pulses to Bob prepared according to the same quantum states.

Since secret bits are derived only from double matching detection events, Eve must
produce first a double matching detection event using the quantum states she intercepts
in the quantum channel because no useful information could be extracted from double
non-matching detection events nor even single detection events.

In addition, Eve must guarantee that both states she resends to Bob’s station achieve
his optical detectors, which imposes a severe difficulty because vacuum or single detection
events are more probable than double detection events. However, suppose Eve forces both
quantum states to arrive Bob’s receiver station. We can derive the efficiency of the IR attack
using the following example:

— Alice sends the non-orthogonal pair (|0X〉 , |0Z〉) to Bob over the quantum channel.
Eve measures them using Z basis, and let us assume she obtains a double matching
detection event, say (|0Z〉 , |0Z〉).

— Eve prepares and sends the quantum pair (|0Z〉 , |0Z〉) to Bob.
— Suppose Eve can force both quantum pulses to arrive to Bob’s optical station. There

are two quantum measurement bases (X or Z) and five possible outcomes:

– 1
2 due to Bob’s Z basis: (|0Z〉 , |0Z〉).

– 1
2 due to Bob’s X basis: {(|0X〉 , |0X〉), (|1X〉 , |1X〉), (|1X〉 , |0X〉), (|0X〉 , |1X〉)}.

To match Eve’s double detection event (|0Z〉 , |0Z〉), Bob must choose the Z basis
which occurs with 1

2 probability, so Eve’s final probability is 1
4 .
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The overall scheme is depicted in the following diagram, where Q(+,+) represents
Alice’s pairs of non-orthogonal states:

Q(+,+)

1
2 double matching (Eve)

1
2 X basis (Bob) 1

2 Z basis (Bob)

1
2 double non-matching (Eve).

4.3.2. The Photon Number Splitting Attack (PNS)

The eavesdropper has a copy of all the quantum states that arrive to Bob’s station
because Alice sends attenuated (multi-photon) quantum pulses, and the eavesdropper
is equipped with a sufficiently large quantum memory. However, the eavesdropper’s
probability of getting a double matching detection event is 1

2 . In addition, Eve must
measure choosing between two different measurement basis (X or Z); thus, his final
probability is 1

4 :

• 1
2 because of the probability to get a double matching detection event.

• 1
2 due to basis matching. Eve must measure choosing between two different measure-
ment basis (X or Z).

Q(+,+)

1
2 double matching (Bob)

1
2 X basis (Eve) 1

2 Z basis (Eve)

1
2 non-matching (Bob).

4.3.3. The Bases Choice Attack (BC)

The eavesdropper would decide to apply another quantum measurement bases to
gain more information, and then they use the measurement bases X + Z or X− Z. First,
consider that the eavesdropper chooses between the measurement bases (X + Z or X− Z)
with 0.5 probability. However, non-matching detection events are ambiguous for the
eavesdropper, which occur with 6

16 probability. In contrast, they get a double matching
event with 9

16 probability. As a result, the chance to get Bob’s information is 9
32 .

Equation (3) shows the relation to compute the secret key rate for each frame size. It is
written as the secret information multiplied by the rate between the total frames produced
by Alice and those the eavesdropper duplicates.

∆I(2X2) =

[
1
2
− 1

3
e
][

1−
(R·n

2 )

(n
2)

]

∆I(3X2) =

[
1
3
− 2

7
e
][

1−
(R·n

3 )

(n
3)

]. (3)

Table 8 shows the final secret key information for each attack: Intercept and Resend
attack (IR), Photon Number Splitting attack (PNS), and Basis Choice attack (BC). In the
case of 2 × 2 frames, we have ignored the linear term n that is generated in (n

2) because the
quadratic term n2 is dominant. In the same way, we omitted the quadratic and linear terms
produced by (n

3) because of the high order of the cubic term.
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Table 8. The secret key rate is computed as ∆I = Iab − Iae for each attack.

IR PNS BC(
1− ( 1

4 )
2
)
· Iab(2×2)

(
1− ( 1

4 )
2
)
· Iab(2×2)

(
1− ( 9

32 )
2
)
· Iab(2×2)(

1− ( 1
4 )

3
)
· Iab(3×2)

(
1− ( 1

4 )
3
)
· Iab(3×2)

(
1− ( 9

32 )
3
)
· Iab(3×2)

As it can be deduced from Table 8, the secret key rate is affected slightly by the
eavesdropper’s behavior. This new scenario opens the possibility to employ less attenuated
pulses as in CV-QKD to achieve, on one hand, long-distances quantum links or, on the
other, portable QKD in closed buildings [46].

5. Conclusions

We have discussed a new post-processing method for Quantum Key Distribution
(QKD) that raises cubically the secret key rate in the number of double matching detection
events. Secret bits are derived from reactive bits instead of Shannon information, so
Bob’s measured bits are publicly revealed, while bases selections remain secret. Our
method implements sifting, reconciliation, and amplification in a unique process, and it
just requires a round iteration; no redundancy bits are sent, and no limit in the correctable
error percentage. Despite the fact that the reconciliation is performed with a unity error
channel, the secret rate is kept, at least theoretically, in 16% using 2 × 2 frames and 4.7%
when using 3 × 2 frames.

It is not difficult to evaluate the security of this method because it can be evaluated
directly through the frames. There is no dependency on other security mechanism as hash
functions.

The protocol works fast, at least theoretically, convergence is guaranteed, and it can
be implemented as a post-processing software into QKD technologies.
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Appendix A

This Appendix contains the relevant tables used for the framed methodology:

• Table A1 describes the complete set of 3 × 2 frames.
• MR are illustrated in Table A2.
• Table A3 enlists SS, MR, frames, and sb.
• Sifting bits are written in Table A4.
• Table A5 shows the cases that can be successfully disambiguated.
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Table A1. There are 24 useful frames: fi, where i = 1, . . . , 24 and 3 Auxiliary frames f j, where j = 25, . . . , 27.

Useful Frames Auxiliary Frames

f1 =

|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

 f2 =

|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

 f3 =

|0X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

 f25 =

|0X〉 |0Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉



f4 =

|1X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

 f5 =

|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉

 f6 =

|1X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

 f26 =

|0X〉 |1Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉



f7 =

|0X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

 f8 =

|0X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

 f9 =

|1X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉

 f27 =

|1X〉 |1Z〉
|0X〉 |0Z〉
|0X〉 |0Z〉



f10 =

|1X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉

 f11 =

|0X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉

 f12 =

|0X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉



f13 =

|0X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉

 f14 =

|1X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉

 f15 =

|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉



f16 =

|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉

 f17 =

|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉

 f18 =

|0X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉



f19 =

|0X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

 f20 =

|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉

 f21 =

|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉



f22 =

|1X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉

 f23 =

|1X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉

 f24 =

|1X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉


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Table A2. There exist eight possible Matching Results (MR) for 3 × 2 frames. The bit produced by a
double matching event is represented inside the key notation with the symbol •. Additionally, each
MR has been identified with a binary code left to each frame. After the sifting process, such MR code
will become part of the secret key.

MR = 000

|•X〉 −
|•X〉 −
|•X〉 −

 MR = 100

|•X〉 −
|•X〉 −
− |•Z〉


MR = 001

− |•Z〉
− |•Z〉
− |•Z〉

 MR = 101

 − |•Z〉
− |•Z〉
|•X〉 −


MR = 010

|•X〉 −
− |•Z〉
|•X〉 −

 MR = 110

|•X〉 −
− |•Z〉
− |•Z〉


MR = 011

 − |•Z〉
|•X〉 −
− |•Z〉

 MR = 111

 − |•Z〉
|•X〉 −
|•X〉 −


Table A3. Bob sends to Alice the Sifting Strings (SS) which are constructed with the sifting bits and the measured bits. Alice
knows the frames behind each SS, so she can get the secret bit (sb). On his side, Bob uses the SS and the MR to achieve the
same bit.

Sifting String
Bob’s MR Alice’s Frame sb Bob’s MR sb Alice’s Frame

Measured Sifting

110 000 000 f6, f9, f14, f22 0 001 1 f5, f11, f16, f24
011 000 000 f8, f13, f18, f19 0 001 1 f12, f15, f20, f23
011 001 110 f12, f15, f17, f19 0 111 1 f4, f13, f18, f23
110 001 100 f6, f10, f14, f24 0 101 1 f5, f11, f21, f22
010 011 110 f1, f11, f16, f18 0 101 1 f2, f6, f12, f20
111 011 100 f4, f9, f22, f23 0 111 1 f8, f10, f19, f24
001 010 001 f3, f4, f9, f13 0 011 1 f15, f20
100 010 001 f7, f8, f10, f14 0 011 1 f5, f16
010 010 001 f1, f2, f6, f18 0 010 1 f11, f12
111 010 001 f17, f19, f21, f22 0 010 1 f23, f24
001 011 110 f3, f13 0 100 1 f15, f17
100 011 101 f7, f14 0 111 1 f5, f21
001 100 000 f1, f15, f16, f17 0 010 1 f8, f13
100 100 000 f2, f5, f20, f21 0 010 1 f9, f14
010 100 000 f3, f7, f11, f12 0 011 1 f6, f18
111 100 000 f4, f10, f23, f24 0 011 1 f19, f22
001 101 111 f1, f15 0 101 1 f4, f13
100 101 100 f2, f5 0 110 1 f10, f14
010 101 111 f3, f6, f9, f12 0 100 1 f7, f8, f11, f18
111 101 101 f16, f17, f19, f24 0 110 1 f20, f21, f22, f23
011 110 010 f1, f15, f16, f17, f18, f19 0 011 1 f3, f4, f9, f12, f13, f23
110 110 010 f2, f5, f6, f20, f21, f22 0 011 1 f7, f8, f10, f11, f14, f24
011 111 101 f1, f15, f18, f23 0 100 1 f3, f12, f13, f19
110 111 110 f2, f5, f6, f24 0 111 1 f7, f11, f14, f22
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Table A4. We list the 24 frames that Alice uses during the distillation process. Bob computes the sifting bits applying the
XOR function to each column (they are written at the bottom of each frame) and appending an extra (required) sifting
bit. The sifting bits define the set {000, 001, 010, 011, 100, 101, 110, 111} that does not contain redundancy, so that Alice can
identify without ambiguity Bob’s Matching Results.

Alice Bob

f1 =

|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉


|0X〉 −
|0X〉 −
|1X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |0Z〉


0 1 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |0Z〉
|0X〉 −
− |0Z〉


0 0 0|0X〉 −

|0X〉 −
− |0Z〉


0 0 1

 − |0Z〉
− |1Z〉
|1X〉 −


1 1 1

|0X〉 −
− |1Z〉
− |0Z〉


0 1 1

 − |0Z〉
|0X〉 −
|1X〉 −


1 0 1

f2 =

|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉


|1X〉 −
|0X〉 −
|0X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |0Z〉


0 1 0

|1X〉 −
− |1Z〉
|0X〉 −


1 1 0

 − |0Z〉
|0X〉 −
− |0Z〉


0 0 0|1X〉 −

|0X〉 −
− |0Z〉


1 0 1

 − |0Z〉
− |1Z〉
|0X〉 −


0 1 1

|1X〉 −
− |1Z〉
− |0Z〉


1 1 1

 − |0Z〉
|0X〉 −
|0X〉 −


0 0 1

f3 =

|0X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉


|0X〉 −
|1X〉 −
|0X〉 −


1 0 0

 − |0Z〉
− |0Z〉
− |1Z〉


0 1 0

|0X〉 −
− |0Z〉
|0X〉 −


0 0 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|0X〉 −

|1X〉 −
− |1Z〉


1 1 1

 − |0Z〉
− |0Z〉
|0X〉 −


0 0 1

|0X〉 −
− |0Z〉
− |1Z〉


0 1 1

 − |0Z〉
|1X〉 −
|0X〉 −


1 0 1

f4 =

|1X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉


|1X〉 −
|1X〉 −
|1X〉 −


1 0 0

 − |0Z〉
− |0Z〉
− |1Z〉


0 1 0

|1X〉 −
− |0Z〉
|1X〉 −


0 0 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|1X〉 −

|1X〉 −
− |1Z〉


0 1 1

 − |0Z〉
− |0Z〉
|1X〉 −


1 0 1

|0X〉 −
− |0Z〉
− |1Z〉


1 1 1

 − |0Z〉
|1X〉 −
|1X〉 −


0 0 1

f5 =

|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |0Z〉


|1X〉 −
|0X〉 −
|0X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |0Z〉


0 0 0

|1X〉 −
− |1Z〉
|0X〉 −


1 1 0

 − |1Z〉
|0X〉 −
− |0Z〉


0 1 0|1X〉 −

|0X〉 −
− |0Z〉


1 0 1

 − |1Z〉
− |1Z〉
|0X〉 −


0 0 1

|1X〉 −
− |1Z〉
− |0Z〉


1 1 1

 − |1Z〉
|0X〉 −
|0X〉 −


0 1 1
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Table A4. Cont.

Alice Bob

f6 =

|1X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉


|1X〉 −
|1X〉 −
|0X〉 −


0 0 0

 − |0Z〉
− |1Z〉
− |0Z〉


0 1 0

|1X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |0Z〉
|1X〉 −
− |0Z〉


1 0 0|1X〉 −

|1X〉 −
− |0Z〉


0 0 1

 − |0Z〉
− |1Z〉
|0X〉 −


0 1 1

|1X〉 −
− |1Z〉
− |0Z〉


1 1 1

 − |0Z〉
|1X〉 −
|0X〉 −


1 0 1

f7 =

|0X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉


|0X〉 −
|1X〉 −
|0X〉 −


1 0 0

 − |1Z〉
− |0Z〉
− |0Z〉


0 1 0

|0X〉 −
− |0Z〉
|0X〉 −


0 0 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|0X〉 −

|1X〉 −
− |0Z〉


1 0 1

 − |1Z〉
− |0Z〉
|0X〉 −


0 1 1

|0X〉 −
− |0Z〉
− |0Z〉


0 0 1

 − |1Z〉
|1X〉 −
|0X〉 −


1 1 1

f8 =

|0X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉


|0X〉 −
|1X〉 −
|1X〉 −


0 0 0

 − |1Z〉
− |0Z〉
− |0Z〉


0 1 0

|0X〉 −
− |0Z〉
|1X〉 −


1 0 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|0X〉 −

|1X〉 −
− |0Z〉


1 0 1

 − |1Z〉
− |0Z〉
|1X〉 −


1 1 1

|0X〉 −
− |0Z〉
− |0Z〉


0 0 0

 − |1Z〉
|1X〉 −
|1X〉 −


0 1 1

f9 =

|1X〉 |0Z〉
|1X〉 |0Z〉
|0X〉 |1Z〉


|1X〉 −
|1X〉 −
|0X〉 −


0 0 0

 − |0Z〉
− |0Z〉
− |1Z〉


0 1 0

|1X〉 −
− |0Z〉
|0X〉 −


1 0 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|1X〉 −

|1X〉 −
− |1Z〉


0 1 1

 − |0Z〉
− |0Z〉
|0X〉 −


0 0 1

|1X〉 −
− |0Z〉
− |1Z〉


1 1 1

 − |0Z〉
|1X〉 −
|0X〉 −


1 0 1
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Table A4. Cont.

Alice Bob

f10 =

|1X〉 |1Z〉
|1X〉 |0Z〉
|1X〉 |0Z〉


|1X〉 −
|1X〉 −
|1X〉 −


1 0 0

 − |1Z〉
− |0Z〉
− |0Z〉


0 1 0

|1X〉 −
− |0Z〉
|1X〉 −


0 0 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|1X〉 −

|1X〉 −
− |0Z〉


0 0 1

 − |1Z〉
− |0Z〉
|1X〉 −


1 1 1

|1X〉 −
− |0Z〉
− |0Z〉


1 0 1

 − |1Z〉
|1X〉 −
|1X〉 −


0 1 1

f11 =

|0X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |0Z〉


|0X〉 −
|1X〉 −
|0X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |0Z〉


0 1 0

|0X〉 −
− |1Z〉
|0X〉 −


0 1 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|0X〉 −

|1X〉 −
− |0Z〉


1 0 1

 − |1Z〉
− |1Z〉
|0X〉 −


0 0 1

|0X〉 −
− |1Z〉
− |0Z〉


0 1 1

 − |1Z〉
|1X〉 −
|0X〉 −


1 1 1

f12 =

|0X〉 |0Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉


|0X〉 −
|1X〉 −
|0X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |1Z〉


0 0 0

|0X〉 −
− |1Z〉
|0X〉 −


0 1 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|0X〉 −

|1X〉 −
− |1Z〉


1 1 1

 − |0Z〉
− |1Z〉
|0X〉 −


0 1 1

|0X〉 −
− |1Z〉
− |1Z〉


0 0 1

 − |0Z〉
|1X〉 −
|0X〉 −


1 0 1

f13 =

|0X〉 |0Z〉
|1X〉 |0Z〉
|1X〉 |1Z〉


|0X〉 −
|1X〉 −
|1X〉 −


0 0 0

 − |0Z〉
− |0Z〉
− |1Z〉


0 1 0

|0X〉 −
− |0Z〉
|1X〉 −


1 0 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|0X〉 −

|1X〉 −
− |1Z〉


1 1 1

 − |0Z〉
− |0Z〉
|1X〉 −


1 0 1

|0X〉 −
− |0Z〉
− |1Z〉


0 1 1

 − |0Z〉
|1X〉 −
|1X〉 −


0 0 1

f14 =

|1X〉 |1Z〉
|1X〉 |0Z〉
|0X〉 |0Z〉


|1X〉 −
|1X〉 −
|0X〉 −


0 0 0

 − |1Z〉
− |0Z〉
− |0Z〉


0 1 0

|1X〉 −
− |0Z〉
|0X〉 −


1 0 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|1X〉 −

|1X〉 −
− |0Z〉


0 0 1

 − |1Z〉
− |0Z〉
|0X〉 −


0 1 1

|1X〉 −
− |0Z〉
− |0Z〉


1 0 1

 − |1Z〉
|1X〉 −
|0X〉 −


1 1 1
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Table A4. Cont.

Alice Bob

f15 =

|0X〉 |0Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉


|0X〉 −
|0X〉 −
|1X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |1Z〉


0 0 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |0Z〉
|0X〉 −
− |1Z〉


0 1 0|0X〉 −

|0X〉 −
− |1Z〉


0 1 1

 − |0Z〉
− |1Z〉
|1X〉 −


1 1 1

|0X〉 −
− |1Z〉
− |1Z〉


0 0 1

 − |0Z〉
|0X〉 −
|1X〉 −


1 0 1

f16 =

|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |0Z〉


|0X〉 −
|0X〉 −
|1X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |0Z〉


0 0 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |1Z〉
|0X〉 −
− |0Z〉


0 1 0|0X〉 −

|0X〉 −
− |0Z〉


0 0 1

 − |1Z〉
− |1Z〉
|1X〉 −


1 0 1

|0X〉 −
− |1Z〉
− |0Z〉


0 1 1

 − |1Z〉
|0X〉 −
|1X〉 −


1 1 1

f17 =

|0X〉 |1Z〉
|0X〉 |1Z〉
|1X〉 |1Z〉


|0X〉 −
|0X〉 −
|1X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |1Z〉


0 1 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |1Z〉
|0X〉 −
− |1Z〉


0 0 0|0X〉 −

|0X〉 −
− |1Z〉


0 1 1

 − |1Z〉
− |1Z〉
|1X〉 −


1 0 1

|0X〉 −
− |1Z〉
− |1Z〉


0 0 1

 − |1Z〉
|0X〉 −
|1X〉 −


1 1 1

f18 =

|0X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉


|0X〉 −
|1X〉 −
|1X〉 −


0 0 0

 − |0Z〉
− |1Z〉
− |0Z〉


0 1 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |0Z〉
|1X〉 −
− |0Z〉


1 0 0|0X〉 −

|1X〉 −
− |0Z〉


1 0 1

 − |0Z〉
− |1Z〉
|1X〉 −


1 1 1

|0X〉 −
− |1Z〉
− |0Z〉


0 1 1

 − |0Z〉
|1X〉 −
|1X〉 −


0 0 1

f19 =

|0X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉


|0X〉 −
|1X〉 −
|1X〉 −


0 0 0

 − |1Z〉
− |1Z〉
− |1Z〉


0 1 0

|0X〉 −
− |1Z〉
|1X〉 −


1 1 0

 − |1Z〉
|1X〉 −
− |1Z〉


1 0 0|0X〉 −

|1X〉 −
− |1Z〉


1 1 1

 − |1Z〉
− |1Z〉
|1X〉 −


1 0 1

|0X〉 −
− |1Z〉
− |1Z〉


0 0 1

 − |1Z〉
|1X〉 −
|1X〉 −


0 1 1



Entropy 2021, 23, 229 20 of 23

Table A4. Cont.

Alice Bob

f20 =

|1X〉 |0Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉


|1X〉 −
|0X〉 −
|0X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |1Z〉


0 0 0

|1X〉 −
− |1Z〉
|0X〉 −


1 1 0

 − |0Z〉
|0X〉 −
− |1Z〉


0 1 0|1X〉 −

|0X〉 −
− |1Z〉


1 1 1

 − |0Z〉
− |1Z〉
|0X〉 −


0 1 1

|1X〉 −
− |1Z〉
− |1Z〉


1 0 1

 − |0Z〉
|0X〉 −
|0X〉 −


0 0 1

f21 =

|1X〉 |1Z〉
|0X〉 |1Z〉
|0X〉 |1Z〉


|1X〉 −
|0X〉 −
|0X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |1Z〉


0 1 0

|1X〉 −
− |1Z〉
|0X〉 −


1 1 0

 − |1Z〉
|0X〉 −
− |1Z〉


0 0 0|1X〉 −

|0X〉 −
− |1Z〉


1 1 1

 − |1Z〉
− |1Z〉
|0X〉 −


0 0 1

|1X〉 −
− |1Z〉
− |1Z〉


1 0 1

 − |1Z〉
|0X〉 −
|0X〉 −


0 1 1

f22 =

|1X〉 |1Z〉
|1X〉 |1Z〉
|0X〉 |1Z〉


|1X〉 −
|1X〉 −
|0X〉 −


0 0 0

 − |1Z〉
− |1Z〉
− |1Z〉


0 1 0

|1X〉 −
− |1Z〉
|0X〉 −


1 1 0

 − |1Z〉
|1X〉 −
− |1Z〉


1 0 0|1X〉 −

|1X〉 −
− |1Z〉


0 1 1

 − |1Z〉
− |1Z〉
|0X〉 −


0 0 1

|1X〉 −
− |1Z〉
− |1Z〉


1 0 1

 − |1Z〉
|1X〉 −
|0X〉 −


1 1 1

f23 =

|1X〉 |0Z〉
|1X〉 |1Z〉
|1X〉 |1Z〉


|1X〉 −
|1X〉 −
|1X〉 −


1 0 0

 − |0Z〉
− |1Z〉
− |1Z〉


0 0 0

|1X〉 −
− |1Z〉
|1X〉 −


0 1 0

 − |0Z〉
|1X〉 −
− |1Z〉


1 1 0|1X〉 −

|1X〉 −
− |1Z〉


0 1 1

 − |0Z〉
− |1Z〉
|1X〉 −


1 1 1

|1X〉 −
− |1Z〉
− |1Z〉


1 0 1

 − |0Z〉
|1X〉 −
|1X〉 −


0 0 1

f24 =

|1X〉 |1Z〉
|1X〉 |1Z〉
|1X〉 |0Z〉


|1X〉 −
|1X〉 −
|1X〉 −


1 0 0

 − |1Z〉
− |1Z〉
− |0Z〉


0 0 0

|1X〉 −
− |1Z〉
|1X〉 −


0 1 0

 − |1Z〉
|1X〉 −
− |0Z〉


1 1 0|1X〉 −

|1X〉 −
− |0Z〉


0 0 1

 − |1Z〉
− |1Z〉
|1X〉 −


1 0 1

|1X〉 −
− |1Z〉
− |0Z〉


1 1 1

 − |1Z〉
|1X〉 −
|1X〉 −


0 1 1
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Table A5. We list the cases that can be successfully disambiguated. Zero cases refer to the error-
free SS.

Frame MR SS Disambiguated Bits

f1
010 011,110

2nd & 3rd101 011,111

f2
010 110,110

1st & 2nd110 110,111

f3
011 011,110

2nd & 3rd100 011,111

f4 100 111,011 zero & 1st

f5

001 110,000

zero & 2nd
010 110,110
101 110,001
110 110,111

f6

000 110,000

zero & 1st
010 110,110
100 110,001
110 110,111

f7
011 110,110

1st & 2nd111 110,111

f8 111 111,011 1st & 3rd

f9 100 111,011 1st & 3rd

f10 111 111,011 zero & 3rd

f11

001 110,000

zero & 1st
011 110,110
101 110,001
111 110,111

f12

001 011,000

zero & 3rd
011 011,110
100 011,111
110 011,001

f13

000 011,000

zero & 2nd
011 011,110
100 011,111
111 011,001

f14

000 110,000

zero & 2nd
011 110,110
100 110,001
111 110,111

f15

001 011,000

zero & 2nd
010 011,110
101 011,111
110 011,001

f16 101 111,101 1st & 3rd

f17 101 111,101 zero & 1st
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Table A5. Cont.

Frame MR SS Disambiguated Bits

f18

000 011,000

zero & 3rd
010 011,110
101 011,111
111 011,001

f19

001 111,010

zero & 1st
011 111,100
101 111,101
111 111,011

f20 110 111,101 1st & 3rd

f21 110 111,101 zero & 3rd

f22

001 111,010

zero & 3rd
011 111,100
100 111,011
110 111,101

f23

000 111,100

zero & 1st
010 111,010
100 111,011
110 111,101

f24

000 111,100

zero & 3rd
010 111,010
101 111,101
111 111,011
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