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    Introduction 
 The intracellular architecture of eukaryotic cells undergoes 

drastic changes during the cell cycle. In mitosis, the micro tubule 

cytoskeleton rearranges to form the mitotic spindle, a dynamic, 

bipolar structure that segregates the duplicated chromosomes to 

the new daughter cells. How the molecules constituting the 

spindle organize in space and time is poorly understood. It is 

clear, however, that the correct spatial arrangement of the spin-

dle components is largely a consequence of the dynamic prop-

erties of microtubules and of the forces generated by molecular 

motors ( Wittmann et al., 2001 ;  Gadde and Heald, 2004 ). 

 In the spindle, microtubules point with their minus ends 

toward the spindle poles and with their plus ends to the spindle 

center ( Ding et al., 1993 ;  Mastronarde et al., 1993 ). Although 

microtubules are thought to have a mostly uniform orientation 

close to the poles ( Telzer and Haimo, 1981 ), they overlap in 

the spindle center in an antiparallel manner ( Ding et al., 1993 ; 

 Mastronarde et al., 1993 ;  Sharp et al., 1999a ). Plus ends of spindle 

microtubules are highly dynamic, switching between phases 

of growth and shrinkage ( Sawin and Mitchison, 1991 ;  Tirnauer 

et al., 2004 ), a property called dynamic instability ( Mitchison and 

Kirschner, 1984 ). In addition, spindle microtubules  “ fl ux, ”  with a 

velocity of  � 2  μ m/min toward the spindle pole where their minus 

ends depolymerize ( Sawin and Mitchison, 1991 ;  Waterman-Storer 

et al., 1999 ). Despite this turnover, the overall appearance of the 

spindle is stable. To understand such a steady-state system, it is 

necessary to know the dynamic properties of its components. 

 Motor proteins transform the chemical energy of ATP 

 hydrolysis into mechanical work ( Vale and Milligan, 2000 ). 

Two classes of motors interact with microtubules: kinesins 

( Miki et al., 2005 ) and dyneins ( Oiwa and Sakakibara, 2005 ). 

Most but not all kinesins move toward the plus end of micro-

tubules, whereas dyneins step toward the microtubule minus 

end. Various genetic and biochemical experiments have demon-

strated that several members of the kinesin family and cyto-

plasmic  dynein are required for spindle assembly and function 

( Walczak et al., 1998 ;  Hildebrandt and Hoyt, 2000 ;  Sharp et al., 

2000 ;  Goshima and Vale, 2003 ). 

 Some of the most important motors for spindle assembly in 

almost all organisms studied so far are the members of the  kinesin-5 

(formerly bimC) subfamily. Inhibition or removal of kinesin-5 pre-

vents the formation of bipolar spindles and causes the formation 

of monopolar structures in higher eukaryotes ( Blangy et al., 1995 ; 

 Mayer et al., 1999 ;  Sharp et al., 1999b ;  Goshima and Vale, 2003 ). 

M
olecular motors are required for spindle as-

sembly and maintenance during cell division. 

How motors move and interact inside spindles 

is unknown. Using photoactivation and photobleaching, 

we measure mitotic motor movement inside a dynamic 

spindle. We fi nd that dynein – dynactin transports the es-

sential motor Eg5 toward the spindle poles in  Xenopus 

laevis  egg extract spindles, revealing a direct interplay 

between two motors of opposite directionality. This trans-

port occurs throughout the spindle except at the very 

spindle center and at the spindle poles, where Eg5 re-

mains stationary. The variation of Eg5 dynamics with its 

position in the spindle is indicative of position-dependent 

functions of this motor protein. Our results suggest that 

Eg5 drives microtubule fl ux by antiparallel microtubule 

sliding in the spindle center, whereas the dynein-dependent 

concentration of Eg5 outside the spindle center could con-

tribute to parallel microtubule cross-linking. These results 

emphasize the importance of spatially differentiated func-

tions of motor proteins and contribute to our understand-

ing of spindle organization.
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Eg5 to the surface was prevented by a dense polyethylene glycol 

layer covalently bound to the glass, ensuring that microtubule 

movement occurred only between microtubule pairs. This assay 

allowed us to create a large number of microtubule pairs that we 

observed by fl uorescence microscopy ( Fig. 1 b ). Although about 

half of the generated pairs were static, which is indicative 

of parallel microtubule orientation, the other half contained a 

microtubule that was translocated by Eg5, which is indicative of 

an antiparallel pair ( Kapitein et al., 2005 ). Sliding velocity dis-

tributions could be determined reliably from the movements of 

microtubules in antiparallel pairs ( Fig. 1 c ). Microtubules driven 

by purifi ed Eg5 without a paGFP tag moved with a mean veloc-

ity of 2.8  ±  0.7  μ m/min relative to immobilized microtubules 

( Fig. 1 d ). This velocity agrees with results from a previous 

study ( Kapitein et al., 2005 ) and is very similar to the 3.3  ±  0.7 

 μ m/min measured for Eg5-paGFP ( Fig. 1 d ). This indicates that 

paGFP in the fusion protein has no deleterious infl uence on the 

motile properties of Eg5 in buffer. 

 We next replaced native Eg5 by Eg5-paGFP ( Kapoor and 

Mitchison, 2001 ) in  X. laevis  egg extract by adding recombinant 

Eg5-paGFP to immunodepleted extract at concentrations corre-

sponding to the previously described endogenous level ( Kapoor 

and Mitchison, 2001 ). Eg5-paGFP rescued spindle formation 

and localized to the spindle as described previously (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200801125/DC1; 

 Sawin et al., 1992 ;  Kapoor and Mitchison, 2001 ). This demon-

strated that Eg5-paGFP is also functional in  X. laevis  egg ex-

tracts. We were therefore in a position to measure the dynamics 

of Eg5 in  X. laevis  egg extract spindles in which the entire Eg5 

pool was tagged with paGFP, and to compare the movements of 

Eg5 in the spindle with its behavior in buffer using the same 

Eg5 construct. 

 Local dynamics of Eg5 in different 
positions of the spindle measured by 
fl uorescence loss after photoactivation 
 We next measured the dynamic behavior of Eg5 and of micro-

tubules in  X. laevis  egg extract spindles that were assembled in 

Eg5-depleted, cycled extracts supplemented with recombinant 

Eg5-paGFP and with fl uorescently labeled tubulin. We recorded 

time lapse videos with confocal fl uorescence microscopy after 

simultaneous photoactivation of Eg5-paGFP and photobleach-

ing of Cy5-tubulin in various regions in the spindle. We photo-

activated and photobleached stripes of a 3- μ m width perpendicular 

to the spindle axis in up to three different spindle regions: (1) 

in the spindle center, i.e., the  “ midzone ” ; (2) at the poles; and (3) 

in the region between midzone and pole that we call here the 

 “ halfzone ”  ( Fig. 2 ). These measurements yield the temporal 

development of ensembles of locally photoactivated Eg5-paGFP 

molecules and of locally bleached Cy5-microtubules ( Figs. 3 a  

and S2 a; and Videos 1 – 3, available at http://www.jcb.org/cgi/

content/full/jcb.200801125/DC1). The measured fl uorescence 

intensities of photoactivated Eg5-paGFP and of Cy5 micro-

tubules at the different time points were then projected onto the 

pole-to-pole axis of the spindles, creating one-dimensional fl uo-

rescence intensity profi les along the spindle axis ( Fig. 2 ). From 

these intensity profi les, mean velocities of movement and mean 

Kinesin-5 motors are homotetrameric ( Kashina et al., 1996 ), 

plus end – directed ( Sawin et al., 1992 ;  Cole et al., 1994 ;  Valentine 

et al., 2006 ) molecules, having motor domain dimers at each of 

the two ends of the elongated molecule ( Fig. 1 a ). This bivalent 

arrangement allows members of this kinesin subfamily to cross-

link microtubules ( Kashina et al., 1996 ;  Sharp et al., 1999a ). 

In spindles, kinesin-5 molecules localize along microtubules, and 

in vertebrate spindles, are often enriched toward the spindle poles 

( Hagan and Yanagida, 1992 ;  Sawin et al., 1992 ;  Blangy et al., 

1995 ;  Sharp et al., 1999a ), a localization that was found to depend 

on dynein – dynactin ( Kapoor and Mitchison, 2001 ). The main 

function of Eg5 has mainly been attributed to the sliding of anti-

parallel microtubules and thus to driving microtubule fl ux. Slid-

ing of antiparallel microtubules driven by purifi ed Eg5 has been 

demonstrated directly in vitro ( Kapitein et al., 2005 ), and its im-

portance for microtubule fl ux in the spindle has been shown by 

the use of specifi c inhibitors ( Miyamoto et al., 2004 ). However, 

exactly how and where in the spindle Eg5 drives microtubule fl ux 

is not understood. For example, it has also been proposed that Eg5 

is bound to a hypothetical static matrix throughout the spindle 

( Kapoor and Mitchison, 2001 ), in which case it could move 

microtubules relative to this matrix. 

 To understand the dynamic structure of the spindle, one 

needs to have a quantitative picture of the dynamic interactions 

between molecular motors and microtubules under physiological 

conditions. Despite a wealth of mechanical and biochemical data 

generated for certain purifi ed motors in vitro ( Cross, 2004 ), there 

is hardly any information available about the local activities 

of motors in their physiological context. Here, we measured 

the movement of Eg5 relative to the movement of microtubules 

inside  Xenopus laevis  egg extract spindles using time-lapse 

fl uorescence microscopy in combination with photoactivation 

( Lippincott-Schwartz et al., 2003 ) and photobleaching ( Sprague 

and McNally, 2005 ). We found that the dynamic behavior of Eg5 

varied with its position along the spindle axis. In the region of 

antiparallel microtubule overlap in the spindle center, Eg5 was 

stationary relative to the spindle axis. Outside of the central anti-

parallel microtubule overlap, however, we observed poleward 

movements of Eg5. These movements were dependent on the 

interaction of Eg5 with a functional dynein – dynactin complex. 

 Results 
 Eg5 fused to photoactivatable GFP 
(paGFP) is functional in organizing 
microtubules in buffer and in  X. laevis  
egg extract 
 We generated a recombinant construct of  X. laevis  Eg5 fused to 

paGFP (Eg5-paGFP) to be able to follow the movements of this 

motor inside mitotic spindles. We confi rmed the functionality of 

this construct using two assays. 

 First, we tested the ability of purifi ed Eg5-paGFP to slide 

antiparallel microtubules in buffer. We created microtubule pairs 

connected by Eg5 in which one microtubule of each pair was 

selectively immobilized on a chemically functionalized glass 

surface (see Materials and methods), whereas the other micro-

tubule was free to move ( Fig. 1 a ). Nonspecifi c adsorption of 
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velocities of  � 3.4  μ m/min toward one pole and of 1.5  μ m/min 

toward the other pole of the spindle were obtained from plots of 

the position of the peak maxima versus time ( Fig. 3 c ). In con-

trast to the microtubule photobleach mark, the fl uorescence sig-

nal of photoactivated Eg5-paGFP did not split, and the position 

of its maximum stayed in the middle of the two splitting micro-

tubule peaks ( Fig. 3 b ). Consequently, the position of the maxi-

mum of the Eg5 intensity profi le moved only slightly in this 

example, with a velocity of 0.6  μ m/min in the direction of the 

faster-moving microtubule signal ( Fig. 3 c ). The slight asymme-

try of movement in the spindle shown here is probably a con-

sequence of having illuminated the spindle not exactly in its 

center. The mean velocity of Eg5 determined in the midzone of 

four spindles was 0.05  ±  0.59  μ m/min. This result indicates that 

Eg5 cross-links and pushes microtubules toward the poles 

while  remaining stationary in the center of the spindle. 

 The dynamic behavior of Eg5 and microtubules was strik-

ingly different in the halfzone as compared with the midzone of 

the spindle. As expected, the photobleached microtubule region 

moved unidirectionally toward the spindle pole ( Fig. 3, a and b ). 

This is in agreement with the notion that microtubules are mostly 

parallel in this region of the spindle ( Telzer and Haimo, 1981 ) and 

that they fl ux toward the poles ( Sawin and Mitchison, 1991 ; 

 Miyamoto et al., 2004 ). Interestingly, the fl uorescent pool of photo-

activated Eg5 in the halfzone also moved toward the pole ( Fig. 3, 

a and b ). The velocity of this movement of Eg5 was faster than 

the microtubule fl ux ( Fig. 3 c ). On average, the poleward speed of 

Eg5 was 2.8  ±  0.9  μ m/min, a speed signifi cantly faster than the 

turnover rates of photoactivated Eg5 and photobleached micro-

tubules were extracted for the different regions in the spindle 

(see Materials and methods). To be able to compare the positions 

of the minima of the fl uorescence intensity profi les of Cy5-tubulin 

with the maxima of the intensity profiles of Eg5-paGFP, we 

created  “ inverted ”  intensity difference profi les for Cy5-tubulin 

by subtracting the postbleach profi les from its last prebleach 

 profi le ( Fig. 2  and Materials and methods). By analyzing the 

displacement of these peak maxima, with time, we obtained the 

velocities of microtubule fl ux and of the photoactivated Eg5 pool 

in the spindle. Furthermore, as the measurement of both Eg5 

and Cy5-tubulin was performed simultaneously within the same 

spindle, we could also analyze the movement of Eg5 relative to 

the movement of microtubule fl ux. 

 Eg5 movements vary with the position 
in the spindle 
 We observed different behaviors of Eg5 depending on its posi-

tion in the spindle. Although Eg5 appeared stationary in the 

spindle center ( Kapoor and Mitchison, 2001 ), surprisingly, it 

moved toward the spindle poles in the halfzone ( Fig. 3 a ). 

 In the spindle midzone, the inverted Cy5-tubulin profi les 

did not only decrease with time as a consequence of tubulin turn-

over, but the peak also broadened and split into two peaks after 

 � 30 s ( Fig. 3 b ). This is in agreement with earlier observations 

and a consequence of the sliding of antiparallel microtubules 

into opposite directions in the spindle midzone ( Sawin and 

Mitchison, 1991 ;  Miyamoto et al., 2004 ). In the example shown, 

 Figure 1.    Microtubule pair sliding driven by 
purifi ed Eg5 in buffer.  (a) Schematic of Eg5 
within a pair of antiparallel microtubules. The red 
microtubule is biotinylated and immobilized 
to a chemically functionalized glass surface 
via biotin – neutravidin links. The green micro-
tubule is not biotinylated and mobile. (b) Fluo-
rescence microscopy images of Alexa 568 
microtubule pairs formed with Eg5-paGFP. 
Dimly labeled microtubules immobilized on a 
biotin-PEG glass surface supporting Eg5-medi-
ated binding of brightly labeled microtubules 
(see Materials and methods). (c) Time series 
of confocal fl uorescence microscopy images 
of a Cy5-labeled microtubule (green) moved 
by Eg5 along an immobilized Alexa 568 – 
labeled microtubule (red). Arrows indicate the 
initial position of the Cy5-labeled microtubule. 
The bottom panel shows a kymograph of a 
line along the microtubule pair during the fi rst 
5 min of the time series. (d) Histograms show-
ing distributions for speeds of microtubule slid-
ing driven by Eg5 and Eg5-paGFP.   
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over time (see Materials and methods). Consequently, the mea-

surement of the changing overall intensity was not infl uenced by 

the movement of the photoactivated or photobleached pools (see 

Materials and methods). This separated the analysis of binding/

unbinding turnover from that of movement. The decays of the 

Eg5 fl uorescence were approximately exponential during an ini-

tial period of 2 min ( Fig. 4 a ), and this period was used for the 

analysis. The mean half-life of Eg5 in the spindle was generally 

either shorter or in the same range of the mean half-life of tubulin, 

with the exception of the poles ( Fig. 4 a ). The mean half-life of 

Eg5 increased signifi cantly from 25  ±  6 s in the midzone to 71  ±  

39 s at the pole ( Fig. 4 b ; P = 0.006, Mann-Whitney  U  test with a 

signifi cance level of 0.05). The monoexponential fi ts lead also to 

the detection of a residual spindle-associated pool of Eg5 that 

was dissociating more slowly from the spindle, as became evi-

dent when observing the turnover for longer periods of time (up 

to 5 min). Bleaching during observation of turnover did not affect 

the measured rates as could be demonstrated in control experi-

ments (Fig. S2 b and Materials and methods). 

 Loss of dynein – dynactin drastically 
reduces the amount of Eg5 in  X. laevis  egg 
extract spindles 
 To test if Eg5 is transported in the halfzone by the minus end –

 directed motor dynein – dynactin ( Schroer, 2004 ;  Oiwa and 

mean speed of microtubule flux that was 1.5  ±  0.6  μ m/min 

( Fig. 3 d ; P = 0.00005, Mann-Whitney  U  test with signifi cance 

level of 0.05). In control experiments, we demonstrated that such 

a statistically signifi cant difference is also obtained if Eg5 veloc-

ities are compared with microtubule fl ux measured by speckle 

microscopy (Fig. S3, available at http://www.jcb.org/cgi/content/

full/jcb.200801125/DC1), which indicates that this result is in-

dependent of the method used. We draw two conclusions from 

these results. First, in well-focused spindles, the plus end – directed 

motor Eg5 is transported toward the minus ends of microtubules. 

Second, microtubule fl ux is not suffi cient to explain this trans-

port, which suggests the existence of an additional minus end –

  directed transport mechanism. At the pole of the spindle, no or only 

little movement along the spindle axis was observed for photo-

bleached microtubules or photoactivated Eg5 ( Fig. 3, b and c ). 

In conclusion, Eg5 is not static but dynamic in the  X. laevis  egg 

extract spindle, and its movements vary in a characteristic man-

ner with its position along the spindle axis. 

 The turnover of Eg5 varies with the 
position in the spindle 
 To extract information about the turnover of Eg5 and tubulin from 

our photoactivation and photobleaching experiments, we followed 

the overall intensity of the moving photoactivated pool of Eg5-

paGFP and of the moving photobleached pool of Cy5-tubulin 

 Figure 2.    Fluorescence intensity profi les from spindles after photobleaching and photoactivation.  Time-lapse videos of a confocal section through spindles 
containing Cy5 microtubules and photoactivatable Eg5-paGFP were recorded simultaneously in the Cy5 and GFP channel of a confocal fl uorescence micro-
scope. Between the fi rst and the second image of a time series, one or several rectangular stripes in the confocal section were bleached and simultaneously 
photoactivated. To convert the images of the two time series into fl uorescence intensity profi les, the area of the spindle in the Cy5 microtubule image before 
the photobleach was determined by applying an intensity threshold to the image (I). This area served then as a mask for the entire time series of the Cy5 
microtubule images and the Eg5-paGFP (illustrated here only for the second frame of the time series). The intensity values were projected onto the spindle 
axis. This created fl uorescence intensity profi les (II and V). The turnover of microtubules and of Eg5 was extracted from time series of these intensity profi les 
(II and V; see Materials and methods). To determine the exact position of the maximum amount of bleached microtubules, the Cy5 intensity profi les were 
subtracted from the prebleach profi le, resulting in an inverted intensity difference profi le (III). The positions of the maximum of the intensity difference profi les 
of Cy5 microtubules and of the intensity profi les of photoactivated Eg5-paGFP were determined from a Gaussian fi t (blue) to the profi les (IV and VI) and 
used to calculate the velocity of the movements of the peaks (see Materials and methods).   
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 Figure 3.    Directed movements of photoactivated Eg5-paGFP and of photobleached Cy5 microtubules along the spindle axis.  (a) Spindles in egg extract 
depleted from endogenous Eg5 and supplemented with Eg5-paGFP and Cy5-tubulin before and after photoactivation of Eg5-paGFP and simultaneous photo-
bleaching of Cy5 microtubules in two different spindle regions. Time series of confocal fl uorescence microscopy images of Eg5-paGFP (green) and Cy5 
microtubules (MT; red) at the indicated times, and fl uorescence intensity profi les ( Fig. 2 ) for Cy5 microtubules and Eg5-paGFP of the same spindle at the 
indicated times. (b) Intensity difference profi les for bleached Cy5 microtubules and intensity profi les for photoactivated Eg5-paGFP at the indicated times. 
Only parts of entire profi les are shown for the midzone, halfzone, and pole region. Intensity difference profi les for Cy5 microtubules appear inverted as 
compared with the intensity profi les ( Fig. 2 ). Note the splitting of the initial single peak of the red microtubule profi le in the midzone into two peaks of the 
blue microtubule profi le after 56 s. A corresponding split is not observed in the Eg5 profi les. The intensity profi le for the halfzone is derived from the spindle 
shown in section a, whereas the intensity profi les for the midzone and pole are derived from spindles not shown because of different imaging requirements for 
the different regions in the spindle. (c) Displacements of the peaks of photoactivated Eg5-paGFP (green) and of photobleached Cy5 microtubules (red) along 
the spindle axis with time. Linear regression fi ts (lines) to the experimental values (dots) yielded the velocities as indicated. (d, left) Box plots of the speeds of 
Eg5 movement (22 measurements in 19 spindles) and of microtubule fl ux (MT; 16 measurements). (right) Scatter diagram of the speeds of microtubule (MT) 
fl ux as a function of the speeds of Eg5 in the halfzone. Each data point represents two simultaneous measurements in the same spindle region.   
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action ( Fig. 5 d ). Collectively, these results suggest that move-

ment and accumulation of Eg5 toward the spindle poles is a 

consequence of its interaction with dynein – dynactin. 

 Transport of Eg5 toward the spindle pole 
by dynein – dynactin 
 To test the consequences of the reduction of the amount of 

dynein – dynactin from spindle microtubules upon dynactin dis-

ruption on the dynamics of Eg5 at different positions in the 

spindle, we performed photoactivation and photobleaching ex-

periments in spindles reconstituted in extract supplemented with 

either p50 or cc1. 

 In the midzone of p50 spindles, the behavior of Eg5-

paGFP and Cy5-microtubules was similar to that in the mid-

zone of wild-type spindles. Overlapping microtubules moved to 

opposite ends of the spindles, as indicated by a splitting micro-

tubule bleach mark, whereas the signal of photoactivated Eg5 

decayed without splitting ( Fig. 6 a ). In the halfzone of the per-

turbed spindles ( Fig. 6, b and c ), the mean speed of microtubule 

fl ux was 2.5  ±  0.5  μ m/min and 1.7  ±  0.7  μ m/min for p50 and cc1 

spindles, respectively ( Fig. 6, d and e ). The movement of Eg5-

paGFP in the halfzone of the perturbed spindles was now strik-

ingly slower than in wild-type spindles ( Fig. 6, d and e ). Eg5 

moved toward the poles with a mean speed of 1.0  ±  0.8  μ m/min 

and 0.6  ±  0.7  μ m/min in p50 and cc1 spindles, respectively, now 

moving signifi cantly more slowly than the fl uxing microtubules 

( Fig. 6, c – e ; p50 spindles, P = 0.0001; cc1 spindles, 0.0001; 

Mann-Whitney  U  test with signifi cance level of 0.05). These re-

sults suggest that Eg5 is able to step toward the spindle midzone 

along microtubules that fl ux into the opposite direction, resulting 

Sakakibara, 2005 ), we disrupted the dynein – dynactin complex 

by the addition of human p50 (dynamitin) ( Wittmann and Hyman, 

1999 ;  Melkonian et al., 2007 ) or of a fragment containing the 

fi rst coiled coil (cc1) of  X. laevis  p150 Glued  ( King et al., 2003 ; 

 Gaetz and Kapoor, 2004 ), which is part of the dynactin com-

plex. It is known that under these conditions, spindles form with 

pole and length defects ( Fig. 5 a ). Monitoring the fl uorescence 

intensity of photoactivated Eg5-paGFP, we found that in addi-

tion to the previously described redistribution of Eg5 in  X. laevis  

egg extract spindles ( Kapoor and Mitchison, 2001 ), the total 

amount of Eg5 in spindles with disrupted dynein – dynactin com-

plexes was drastically reduced as compared with unperturbed 

spindles ( Fig. 5, a and b ). The amount of Eg5 per spindle tubulin 

decreased to only 26 and 15% (as compared with control spin-

dles) in extracts treated with p50 and cc1, respectively ( Fig. 5 b ). 

The most drastic reductions of Eg5 amount were observed in 

the halfzone and at the poles. 

 Interestingly, the typical localization of dynein – dynactin 

to spindle microtubules and its enrichment toward the spindle 

poles ( Heald et al., 1997 ) is also lost upon disruption of the 

dynein – dynactin complex ( Figs. 5 c  and S4, available at http://

www.jcb.org/cgi/content/full/jcb.200801125/DC1). Using pull-

down assays, we could furthermore show that in  X. laevis  egg 

extract, Eg5 interacts biochemically with p150 Glued  ( Fig. 5 d ), 

an interaction previously detected in a yeast two-hybrid screen 

( Blangy et al., 1997 ). This interaction was detected also in the 

presence of nocodazole, demonstrating that it was not mediated 

via microtubules. Furthermore, we were able to disrupt this bio-

chemical interaction between Eg5 and p150 Glued  upon addition 

of cc1 to the extract, demonstrating the specifi city of this inter-

 Figure 4.    Turnover of Eg5 and microtubules in egg extract spindles measured by time-lapse fl uorescence microscopy after photoactivation and photo-
bleaching.  (a) Fluorescence decay of photoactivated Eg5-paGFP (green) and fl uorescence recovery of Cy5 microtubules (red) in the midzone, the halfzone, 
and the pole region within the fi rst 2 min after photoactivation and photobleaching. A monoexponential fi t (lines) to the experimental values (dots) yielded 
half-lives as indicated. (b) Box plots of half-lives and residuals of fl uorescence decays of photoactivated Eg5-paGFP in the three different spindle regions. 
4 – 12 measurements were made per region.   



721EG5 MOVEMENTS IN THE SPINDLE  • Uteng et al. 

 Discussion 
 We performed simultaneous measurements of the dynamic behav-

ior of photoactivatable Eg5 and of microtubules in  X. laevis  egg 

extract spindles. We measured these dynamics at different positions 

of the spindle in the presence and absence of an intact dynein – 

dynactin complex. Our measurements suggest a model with differ-

ent functions of Eg5 depending on its position in the spindle. 

 In the midzone, where antiparallel microtubules overlap 

( Mastronarde et al., 1993 ), Eg5 cross-links antiparallel micro-

tubules ( Sharp et al., 1999a ) and slides them apart ( Miyamoto 

et al., 2004 ), similar to its action between antiparallel micro-

tubule pairs in buffer ( Fig. 1 ;  Kapitein et al., 2005 ). Consequently, 

photoactivated Eg5 remained stationary in the spindle center, 

whereas microtubules were pushed to opposite poles of the spindle 

( Fig. 3 ). We found that the speed with which antiparallel micro-

tubules move apart from each other in the spindle center (twice 

the speed of fl ux) is similar to the speed of anti parallel micro-

tubule sliding measured with the same photoactivatable Eg5 

construct in buffer. Thus, these results suggest that Eg5 slides 

overlapping microtubules with its intrinsic biophysical properties 

in the spindle center. Interestingly, fl ux of kinetochore micro-

tubules was found to be independent of Eg5 function in mamma-

lian cells ( Cameron et al., 2006 ). This agrees with the proposal 

that Eg5 drives fl ux of those microtubules that overlap in the 

spindle center in an antiparallel manner. 

in only a slow net movement of Eg5 toward the pole. Interest-

ingly, in some cases, the photoactivated pool of Eg5-paGFP 

moved even toward the spindle center (negative speed values in 

 Fig. 6, d and e ), which indicates that Eg5 now steps even faster 

toward the microtubule plus end than the microtubules move to-

ward the poles. We conclude from these results that in wild-type 

spindles, the dynein – dynactin complex is responsible for trans-

port of Eg5 toward the poles. 

 The turnover of Eg5 in p50 and cc1 spindles was not sig-

nifi cantly different from the turnover in the halfzone of unper-

turbed spindles ( Fig. 6 f ; wild type vs. p50 spindles, P = 0.39; 

wild type vs. cc1 spindles, P = 0.19; Mann-Whitney  U  test with 

signifi cance level of 0.05). We did also not observe a variation 

of the turnover of Eg5 with position along the spindle axis in 

these perturbed spindles. This is probably caused by the absence 

of intact spindle poles in these spindles. 

 We fi nally tested if transport of Eg5 by dynein – dynactin 

was mediated by the charged part of the C-terminal tail of the 

Eg5 molecule. We created a mutant of Eg5 in which the last 76 

C-terminal amino acids were removed, without disrupting the 

conserved Cdk1 site at position 937. We found that the truncated 

Eg5 construct behaved very similarly to wild-type Eg5, both in 

buffer and in egg extract (Fig. S5, available at http://www.jcb

.org/cgi/content/full/jcb.200801125/DC1). Thus, the C-terminal 

part of the Eg5 tail is neither important for dynein-dependent 

transport of Eg5 in the spindle nor for spindle formation. 

 Figure 5.    Disruption of the dynein – dynactin complex decreases the amount of Eg5 localizing to spindles in  X. laevis  egg extract.  (a) Confocal fl uorescence 
microscopy images of nonfi xed spindles assembled either in the absence or additional presence of p50 or cc1 showing the localization of Eg5. The fl uor-
escence of Eg5-paGFP (green) and of Cy5 microtubules (MT; red) was measured immediately after photoactivation of Eg5-paGFP in the entire spindle. 
(b) Fluorescence intensity profi les for photoactivated Eg5-paGFP and Cy5 microtubules along the spindle axis for the spindles shown in section a. (right) 
Mean ratios of the total fl uorescence intensity of photoactivated Eg5-paGFP divided by the total fl uorescence intensity of Cy5 microtubules (MT) for wild-type 
spindles, p50 spindles, and cc1 spindles are shown. The means were determined from fi ve spindles per condition. The wild-type intensity ratio was set to 
100. Error bars indicate standard deviation. (c) Confocal fl uorescence microscopy images of fi xed spindles assembled either in the absence (top) or pres-
ence (bottom) of cc1 showing the localization of dynein. Dynein heavy chain was detected by immunofl uorescence (green), tubulin by using incorporated 
Alexa 568 – tubulin (red), and DNA by Hoechst staining (blue). (d) Western blot analysis showing pull-down of p150 Glued  with Eg5 on anti-Eg5 beads and 
pull-down of Eg5 with p150 Glued  on anti-p150 Glued  beads in  X. laevis  egg extract, either in the absence ( � cc1) or presence (+cc1) of added p150 fragment 
cc1. Mock represents magnetic beads coated with an irrelevant antibody also incubated in  X. laevis  egg extract. An anti-p150 Glued  antibody was used for 
detection in the top left three lanes and in the bottom right three lanes, whereas an anti-Eg5 antibody was used for detection in the top right three lanes and 
in the bottom left three lanes. All samples in a horizontal row were run on the same SDS gel. Molecular weight markers to the left of the blots are in kD.   
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Euteneuer, 1984 ;  Ding et al., 1993 ;  Mastronarde et al., 1993 ), 

Eg5 was observed to move toward the spindle poles with a speed 

clearly faster than microtubule fl ux ( Fig. 3 ). Such a poleward 

 In the halfzone, where the majority of microtubules are 

thought to have a parallel orientation with their minus ends ori-

ented toward the pole ( Telzer and Haimo, 1981 ;  McIntosh and 

 Figure 6.    Dynamics of Eg5 and microtubules in spindles assembled after disruption of the dynein – dynactin complex.  (a) Spindle assembled in the presence 
of p50. Confocal fl uorescence microscopy images of photoactivated Eg5-paGFP (green) and Cy5-labeled microtubules (red) before and after photoactiva-
tion and simultaneous photobleaching in three different spindle regions. Fluorescence intensity profi les for Eg5-paGFP and Cy5 microtubules (MT) of the 
same spindle at the indicated times. (b) Sections of intensity difference profi les for bleached Cy5 microtubules and intensity profi les for photoactivated 
Eg5-paGFP in the halfzone of spindles assembled in the presence of p50 or cc1. (c) Displacements of the peaks of photoactivated Eg5-paGFP (green) and 
of photobleached Cy5 microtubules (red) along the spindle axis with time. Linear regression fi ts (lines) to the experimental values (dots) yielded the veloci-
ties as indicated. (d) Box plots of the speeds of Eg5 and of microtubule fl ux (MT) in the halfzone of p50 spindles (11 measurements in 6 spindles) and cc1 
spindles (20 measurements in 11 spindles) as compared with wild-type spindles (data from  Fig. 3 d ). (e) Scatter diagram of speeds of directed movements 
of photoactivated Eg5-paGFP in the halfzone of p50 spindles (blue), cc1 spindles (green), and in unperturbed spindles (black) as a function of the simultane-
ously measured speeds of microtubule (MT) fl ux. (f) Box plots of the half-lives of the fl uorescence decays of photoactivated Eg5-paGFP in p50 spindles, cc1 
spindles, and unperturbed spindles (data from  Fig. 4 b ) and box plots of the corresponding residuals. Shown are the same measurements as in section e.   
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ing microtubule clamping activity by Eg5. Thus, spindle pole 

defects observed after removal of dynein – dynactin from the 

pole region may therefore not only be a consequence of lacking 

dynein activity per se, but could also, in part, be a consequence 

of the drastic reduction of the amount of Eg5 in the spindle to-

ward the spindle poles. 

 In summary, we propose that in the  X. laevis  egg extract 

metaphase spindle, the function of Eg5 varies according to its 

position. In this model, Eg5 drives microtubule fl ux in the spindle 

center, where it acts largely independently of dynein – dynactin. 

Outside the spindle center, Eg5 is transported by dynein – dynactin 

and contributes to stabilizing spindle poles. What could be the 

origin of the positional dependence of the behavior of Eg5 in 

the metaphase spindle? In the simplest scenario, differences in 

microtubule organization along the spindle axis might affect 

the interaction between Eg5 and dynein – dynactin purely based 

on different mechanical constraints at different positions. Inter-

estingly, a spatial variation of the roles of the Eg5 homologue 

Klp61F depending on the organization of the microtubules in 

the spindle was also discussed for  Drosophila melanogaster  em-

bryo spindles ( Sharp et al., 1999a ). More complicated scenarios 

might involve additional position-dependent biochemical regu-

lation. For example, the dynactin component p150 Glued  has been 

reported to interact with Eg5 in a Cdk1 phosphorylation – dependent 

manner in vitro ( Blangy et al., 1997 ). Together with the observa-

tion that cyclin B accumulates at spindle poles ( Hagting et al., 

1998 ), Cdk1/cyclin B might promote the interaction of Eg5 with 

dynein – dynactin toward the poles of spindles. 

 In conclusion, our data support a model in which the 

motor Eg5 has spatially differentiated roles for spindle assem-

bly and maintenance. We also showed, by using Eg5 as an 

 example of an important spindle component, that internal spin-

dle dynamics correlate with spindle morphology. This illustrates 

the importance of the interplay between kinetics and struc-

ture in self-organizing systems. In the future, it will be impor-

tant to measure also the movements of other spindle motors 

to gain a more dynamic picture of their contribution to spindle 

self organization. 

 Materials and methods 
 Cloning 
 The complete reading frame of Eg5 (corresponding to amino acids 
1 – 1,067; a gift of C.E. Walczak, Indiana University, Bloomington, IN) was 
PCR amplifi ed, introducing a C-terminal pentaglycine linker, and inserted 
(NotI and XhoI) into pFastBacHTa (Invitrogen). To generate expression 
vectors for Eg5 with a C-terminal GFP or paGFP, a PCR-amplifi ed, SalI –
 XhoI-digested sequence of enhanced GFP (Clontech Laboratories, Inc.) or 
paGFP (a gift of J. Lippincott-Schwartz, National Institutes of Health, 
Bethesda, MD;  Patterson and Lippincott-Schwartz, 2002 ) was inserted 
into the XhoI site at the 3 �  end of the pentaglycine linker sequence in 
pFastBacHTa carrying the Eg5 sequence, generating Eg5-GFP and Eg5-
paGFP, respectively. The vector for expression of Eg5 with its last 76 
amino acids replaced by paGFP (Eg5 � C-paGFP) was constructed by 
adding an N-terminal pentaglycine linker sequence to paGFP by PCR 
amplifi cation followed by inserting (XbaI – XhoI) the amplifi ed fragment 
into the pFastBacHTa plasmid carrying the Eg5 sequence at the internal 
restriction site XbaI within the Eg5 sequence. A sequence corresponding 
to amino acids 174 – 505 that are predicted to form the fi rst coiled coil 
(cc1;  Quintyne et al., 1999 ) of  X. laevis  p150 Glued  was amplifi ed from a 
p150  X. laevis  cDNA plasmid (RZPD) and inserted (EcoRI – XhoI) into 
pGEX-6P-1 (GE Healthcare). 

movement is the opposite of what one would expect from a 

plus end – directed motor like Eg5. One may speculate that this 

movement could derive from an indirect effect of dynein – dynactin 

on Eg5 movements. For instance, Eg5 could be bound to short 

microtubules that in turn could be transported by dynein – dyn-

actin toward the poles. Indeed, recent experiments suggested 

that the majority of the microtubules in  X. laevis  egg extract 

spindles are signifi cantly shorter than the pole-to-chromosome 

distance ( Burbank et al., 2006, 2007 ;  Yang et al., 2007 ) and that 

a certain heterogeneity of fl ux velocities exists in the tiled array 

of short microtubules ( Yang et al., 2007 ). However, unless Eg5 

binds selectively to the subset of fast microtubules, this scenario 

of indirect transport of Eg5 by microtubules is unlikely. Instead, 

our data suggest that Eg5 is transported by dynein – dynactin in 

a more direct manner, as we could demonstrate a biochemical 

interaction between Eg5 and the dynactin subunit p150 Glued  in 

egg extract. Our data do not, therefore, support a model in which 

Eg5 is bound to a hypothetical static matrix throughout the 

spindle ( Kapoor and Mitchison, 2001 ), but rather show that Eg5 

is undergoing poleward movement in the spindle halfzone as a 

consequence of dynein – dynactin transport. 

 What is the function of poleward transport of Eg5 in the 

spindle? The velocity of the poleward transport of Eg5 was 

signifi cantly slower than the velocity of purifi ed dynein in buf-

fer ( King and Schroer, 2000 ). This may indicate that Eg5 still 

interacts with microtubules when being transported by dynein, 

 effectively causing a tug of war between these two motors in 

which dynein dominates, although suffering a signifi cant slow-

down as compared with its speed in the absence of a hindering 

load. The notion that Eg5 can still interact with microtubules in 

the halfzone is supported by our observation that after disrupt-

ing its interaction with p150 Glued , the movement toward the pole 

was drastically reduced, or even sometimes reversed toward the 

spindle center. This result indicates that Eg5 located in the half-

zone of the spindle can move with its intrinsic activity toward 

microtubule plus ends that are oriented toward the spindle center. 

Thus, the function of the poleward accumulation of Eg5 could 

be to contribute to microtubule bundling or even clustering of 

microtubules by connecting parallel microtubules close to the 

pole ( Burbank et al., 2007 ). 

 In fact, dynein – dynactin might take advantage of the ad-

ditional activity of Eg5 as a microtubule cross-linking agent that 

might provide part of the force required to clamp microtubules 

together close to the poles of the spindle. The effi ciency of pole 

focusing by dynein – dynactin and spindle stability would in this 

scenario also depend on the local concentration of Eg5, which 

in turn would depend on the interaction of Eg5 with the dynein –

 dynactin complex. An assisting role for pole focusing by Eg5 is 

supported by the observations that isolated half spindles in un-

cycled cytostatic factor (CSF) extract have broader poles after 

inhibition or depletion of Eg5 ( Sawin et al., 1992 ) and that, al-

though microtubule asters with a central pole still form in 

Eg5-depleted mitotic mammalian cell extracts, these poles are 

less well focused than in asters with active Eg5 ( Gaglio et al., 

1996 ). The reported fragility of spindles formed after double 

inhibition of both dynein – dynactin and Eg5 ( Mitchison et al., 

2005 ) might also be, at least in part, a consequence of the lack-
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Zeiss, Inc.) with 543- and 633-nm excitation lines, dual-band pass 560 –
 615 and 700 – 800 nm for detection, a 63 ×  oil immersion objective, and 5-s 
time intervals between image frames. Velocity distributions were generated 
from analyzing time – space plots (kymographs) of sliding microtubules cre-
ated in ImageJ using the Kymograph plug-in ( Seitz and Surrey, 2006 ). 
Mean velocities were obtained from Gaussian fi ts to the distributions. 

 Spindle assembly in  X. laevis  egg extracts 
 Nucleocytoplasmic extracts of unfertilized  X. laevis  eggs arrested in meta-
phase of meiosis II were prepared as described previously ( Hannak and 
Heald, 2006 ), with minor modifi cations. Spindles were assembled in ex-
tract around purifi ed  X. laevis  sperm nuclei after cycling the extract once 
through interphase back into metaphase ( Hannak and Heald, 2006 ). Incu-
bation of extract was performed at 22 ° C, and metaphase spindles were 
observed after 30 min. 

 For depletion/add-back experiments, Eg5 was immunodepleted 
from 50  μ l extract by two successive rounds of 30-min incubations of the 
extract with 30  μ l of protein A – Dynabeads (Invitrogen) saturated with poly-
clonal anti-Eg5 antibody. For control experiments, extract was treated in the 
same manner with protein A – Dynabeads saturated with an irrelevant IgG. 
Sperm nuclei, Alexa 568 –  or Cy5-labeled tubulin, and in some experi-
ments, p50 (or dialysis buffer for controls), were then added to the immuno-
depleted extract. Spindles were then sent to interphase by addition of 
calcium. After a 1-h incubation at 22 ° C, recombinant Eg5, and, in some 
experiments, cc1, were added, and the extract was cycled back to mitosis 
by addition of depleted extract. Final concentrations were 0.3  μ M of re-
combinant Eg5, 2  μ M Cy5-tubulin, and 500 nuclei/ μ l, and in some experi-
ments 23  μ M p50 or 3.3  μ M cc1. 

 Fluorescence imaging of fi xed spindles 
 To prepare fi xed spindles, they were centrifuged from 20  μ l of extract 
through a glycerol cushion onto glass coverslips and then fi xed in 4% form-
aldehyde as described previously ( Hannak and Heald, 2006 ). DNA in 
fi xed spindles was stained with 10  μ g/ml Hoechst in PBS. The effi ciency of 
bipolar spindle versus monoaster formation was evaluated by counting 
fi xed structures. For detection of dynein or dynactin in wild-type spindles or 
in cc1- or p50-treated spindles, immunofl uorescence of formaldehyde fi xed 
spindles containing Alexa 568 – labeled microtubules was performed. Cover-
slips were washed with 0.1 M glycin in TBS with Tween (TBST) to quench 
remnants of formaldehyde, blocked with 2% BSA in TBST, and incubated for 
30 min with 11  μ g/ml of a purifi ed polyclonal antibody raised against a 
C-terminal fragment of the dynein heavy chain corresponding to amino acids 
4,179 – 4,415 (a gift of S. Kandels-Lewis and S. Rybina; European Molec-
ular Biology Laboratory, Heidelberg, Germany) or with 4 ng/ml of a mouse 
monoclonal antibody raised against p150 Glued  (BD Biosciences). After incu-
bation with primary antibody, coverslips were washed in TBST containing 
10  μ g/ml Hoechst and incubated for 30 min with 10  μ g/ml of secondary 
antibody fused to Alexa Fluor 488 (Invitrogen), and fi nally washed in TBST. 
Images were taken with a confocal LSM 510 microscope with laser lines of 
405, 488, 543, and 633 nm and a 63 ×  oil immersion objective lens. 

 Pull-down assay 
 100  μ l of magnetic protein A beads (Invitrogen) were saturated with poly-
clonal rabbit anti-Eg5 generated as described previously ( Sawin et al., 
1992 ), 100  μ l of magnetic protein G beads (Invitrogen) were saturated 
with monoclonal mouse anti-p150 Glued  (BD Biosciences), or beads were 
saturated for controls with an irrelevant rabbit IgG antibody according to 
the manufacturer ’ s instructions; beads were then washed with CSF extract 
buffer ( Hannak and Heald, 2006 ). Part of a CSF arrested mitotic  X. laevis  
egg extract was incubated with cc1 at a fi nal concentration of 3.3  μ M and 
nocodazole at a fi nal concentration of 40  μ M for 45 min on ice. 25  μ l of 
extract with or without cc1 was mixed with 25  μ l of antibody beads and 
incubated for 35 min at 22 ° C. The beads were then washed three times 
with 100  μ l PBS and boiled in 50  μ l SDS sample buffer, and fi nally re-
moved. Each sample was analyzed by Western blotting. For the pull-down 
of p150, primary anti-Eg5 and anti-p150 antibodies were applied over-
night at concentrations of 0.02  μ g/ml and 0.5  μ g/ml, respectively. For the 
pull-down of Eg5, primary anti-Eg5 and anti-p150 antibodies were  applied 
for 1 h at concentrations of 0.45  μ g/ml and 0.08  μ g/ml, respectively. 
The secondary HRP antibody (Santa Cruz Biotechnology, Inc.) was used at 
a dilution of 1:5,000. 

 Imaging of the dynamics of Eg5 and tubulin in spindles 
 1.5  μ l of extract with assembled spindles was placed gently between two 
glass coverslips, and spindles were observed for a maximum time period 

 Protein purifi cations 
 Full-length Eg5 without GFP and fl uorescent Eg5 constructs were expressed 
in Sf9 insect cells using the Bac-to-Bac baculovirus system (Invitrogen). Cells 
from a 350-ml culture were harvested 72 h after infection, suspended in 
3.5 ml of lysis buffer (50 mM KP i , pH 8.0, 250 mM KCl, 10 mM imidaz-
ole, 0.5 mM MgATP, 0.1% Triton X100, 5 mM mercaptoethanol [ME], and 
complete EDTA-free protease inhibitors [PI]; Roche) and frozen in liquid 
 nitrogen. Thawed cells were lysed on ice, and the clarifi ed lysate was loaded 
onto 3 ml of Talon metal affi nity resin (Clontech Laboratories, Inc.) equili-
brated with lysis buffer. The column was washed with 100 ml of wash buf-
fer (50 mM KP i , pH 8.0, 250 mM KCl, 10 mM imidazole, 0.1 mM MgATP, 
10% glycerol, 5 mM ME, and PI), then with 30 ml wash buffer containing 
additional 10 mM imidazole, and the protein was fi nally eluted with a 
gradient of 20 – 250 mM imidazole in elution buffer (50 mM KP i , pH 7.0, 
150 mM KCl, 0.1 mM MgATP, 10% glycerol, 5 mM ME, and PI). Eluted 
Eg5 was dialyzed against dialysis buffer (50 mM imidazole, pH 7.0, 50 mM 
KCl, 0.5 mM EGTA, 10% [wt/vol] sucrose, and 10 mM ME), and frozen 
at a fi nal concentration of 1 mg/ml in liquid ethane and stored in liquid 
 nitrogen. Eg5 concentrations were determined by a Bradford assay, and 
molarities refer to Eg5 monomers, if not stated otherwise. 

 GST-cc1 was expressed in  E. coli  BL21-RIL (Stratagene) at 30 ° C for 
3 h and was purifi ed from clarifi ed lysate using GST-bind resin (EMD) ac-
cording to the manufacturer ’ s instructions. The protein was dialyzed into 
20 mM Tris-HCl, pH 7.5, 150 mM KCl, and 1 mM DTT, and cleaved at 
4 ° C with GST-PreScission protease (European Molecular Biology Labora-
tory). Free GST and protease were removed with GST-Bind resin. cc1 was 
concentrated (Vivaspin; Sartorius) to a fi nal concentration of 2.5 mg/ml, 
frozen, and stored at  � 80 ° C. p50 was purifi ed as described previously 
( Wittmann and Hyman, 1999 ). 

 Tubulin was purifi ed from porcine brain ( Castoldi and Popov, 2003 ) 
and labeled with Alexa 568 – succinimidyl ester, Cy5 – succinimidyl ester, and 
biotin – XX – succinimidyl ester (all from Invitrogen) as described previously 
( Hyman et al., 1991 ). Polyclonal antibodies against Eg5 were a gift of 
J. Cahu (European Molecular Biology Laboratory, Heidelberg, Germany). 

 Microtubule pair sliding in buffer 
 Microtubules were polymerized from 40  μ M tubulin supplemented either 
with 15  μ M biotinylated tubulin and 5  μ M Alexa 568 – labeled tubulin (bio-
tinylated; dimly labeled microtubules) or with 20  μ M Alexa 568 – labeled 
tubulin (or 10  μ M Cy5-labeled tubulin; brightly labeled microtubules) in the 
presence of 1 mM GTP in BRB80 (80 mM Pipes, pH 6.8, 1 mM EGTA, and 
1 mM MgCl 2 ) at 35 ° C for 30 min, pelleted by centrifugation at 20,000  g  
for 10 min, and resuspended in dialysis buffer supplemented with 20  μ M 
paclitaxel (Sigma-Aldrich). 

 Flow chambers of  � 5  μ l volume were constructed from one function-
alized and one nonfunctionalized glass coverslip using double sticky tape 
(Tesa Tape) as a spacer. To generate functionalized glass, coverslips were 
covalently coated with biotin – polyethylene glycol (biotin-PEG) as described 
previously ( Bieling et al., 2007 ). In brief, the glass was silanized, passiv-
ated with diamine-PEG ( Lata and Piehler, 2005 ), and fi nally treated with 
 N -hydroxysuccinimide – biotin. 

 Microtubules were immobilized on the biotin-PEG glass surface by 
applying the following sequence of solutions to the fl ow chamber: 4 cham-
ber volumes of dialysis buffer, 4 volumes of 3  μ M neutravidin (Invitrogen) 
in dialysis buffer, and 4 volumes of 0.4  μ M biotinylated microtubules in di-
alysis buffer. Unattached microtubules were washed out by 10 volumes of 
assay buffer (50 mM imidazole, pH 7.0, 100 mM KCl, 0.5 mM EGTA, 
10% sucrose, 10 mM mercaptoethanol, 0.1 mg/ml  �  casein, and 20  μ M 
paclitaxel). 2 volumes of 0.2% pluronic F-127 (Sigma-Aldrich) in assay buf-
fer were introduced into the chamber to block the nonfunctionalized cover 
glass followed by rinsing with 10 volumes of assay buffer B (assay buffer 
containing 1  μ M MgATP). Eg5 was bound to the immobilized microtubules 
by adding 50 nM recombinant Eg5 in assay buffer B followed by a wash 
with 4 volumes of assay buffer B. The fl ow chamber was then incubated 
with 0.4  μ M of brightly labeled or Cy5-labeled microtubules suspended in 
assay buffer B for 3 min, which allowed for microtubule pair formation. 
Finally, antiparallel microtubule sliding was initiated by introducing 2 vol-
umes of assay buffer supplemented with 100 nM recombinant Eg5, 5 mM 
MgATP, and oxygen scavengers (8 mM glucose, 0.1 mg/ml glucose oxi-
dase [Sigma-Aldrich], and 0.03 mg/ml catalase [Sigma-Aldrich]). 

 Single-color time-lapse fl uorescence microscopy was performed at 
25 ° C on a wide-fi eld cell observer (AxioVision) with a 63 ×  oil immersion 
objective and a camera (AxioCam MRm; all from Carl Zeiss, Inc.), using 
5-s time intervals, and 300-ms exposure time. Dual-color time-lapse fl uo-
rescence imaging was performed on a confocal microscope (LSM 510; Carl 
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 Online supplemental material 
 Fig. S1 shows that purifi ed Eg5 fused to paGFP rescues spindle formation 
in egg extract immunodepleted from native Eg5. Fig. S2 a shows an ex-
ample of a photoactivation/photobleaching experiment in an egg extract 
spindle. Fig. S2 b shows that there is no contribution of bleaching to the 
turnover during time-lapse imaging of fl uorescently labeled tubulin and Eg5 
in the spindle. Fig. S3 shows a control experiment in which microtubule fl ux 
was measured by speckle microscopy. Fig. S4 illustrates the localization 
of dynein and dynactin in fi xed spindles. Fig. S5 presents the analysis of a 
truncated Eg5 construct lacking a C-terminal part of its sequence. Videos 1 
and 2 show a time-lapse fl uorescence video of photoactivated Eg5-paGFP 
and of Cy5 microtubules after photobleaching, respectively. Video 3 is an 
overlay of Video 1 and 2. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200801125/DC1. 

 We thank Mathias Utz for technical assistance; Ivo Telley for help with data 
analysis; Timo Zimmermann, Arne Seitz, Joel Beaudouin, and Jan Ellenberg for 
help with confocal microscopy; Jacob Piehler for help with surface chemistry 
on glass; Henry Schek, Iva Kronja, and Thomas Mayer for suggestions; and 
Kresimir Crnokic from the animal facility for taking care of the frogs. 

 M. Uteng acknowledges support from the Norwegian Research Coun-
cil (NFR; grant 159989/V40), C. Hentrich from the European Union Marie 
Curie Research Training Network  “ Spindle Dynamics ”  (grant 512348) and 
T. Surrey and P. Bieling from the German Research Foundation (DFG; grant SU 
175/4-1,2). 

Submitted:  22 January 2008 
Accepted:  23 July 2008 

 References 
   Bieling ,  P. ,  L.   Laan ,  H.   Schek ,  E.L.   Munteanu ,  L.   Sandblad ,  M.   Dogterom ,  D.  

 Brunner , and  T.   Surrey .  2007 .  Reconstitution of a microtubule plus-end 
tracking system in vitro.    Nature   .   450 : 1100  –  1105 .   

   Blangy ,  A. ,  H.A.   Lane ,  P.   d ’ Herin ,  M.   Harper ,  M.   Kress , and  E.A.   Nigg .  1995 . 
 Phosphorylation by p34cdc2 regulates spindle association of human Eg5, 
a kinesin-related motor essential for bipolar spindle formation in vivo.  
  Cell   .   83 : 1159  –  1169 .   

   Blangy ,  A. ,  L.   Arnaud , and  E.A.   Nigg .  1997 .  Phosphorylation by p34cdc2 pro-
tein kinase regulates binding of the kinesin-related motor HsEg5 to the 
dynactin subunit p150.    J. Biol. Chem.    272 : 19418  –  19424 .   

   Burbank ,  K.S. ,  A.C.   Groen ,  Z.E.   Perlman ,  D.S.   Fisher , and  T.J.   Mitchison .  2006 . 
 A new method reveals microtubule minus ends throughout the meiotic 
spindle.    J. Cell Biol.    175 : 369  –  375 .   

   Burbank ,  K.S. ,  T.J.   Mitchison , and  D.S.   Fisher .  2007 .  Slide-and-cluster models 
for spindle assembly.    Curr. Biol.    17 : 1373  –  1383 .   

   Cameron ,  L.A. ,  G.   Yang ,  D.   Cimini ,  J.C.   Canman ,  O.   Kisurina-Evgenieva ,  A.  
 Khodjakov ,  G.   Danuser , and  E.D.   Salmon .  2006 .  Kinesin 5 – independent 
poleward fl ux of kinetochore microtubules in PtK1 cells.    J. Cell Biol.   
 173 : 173  –  179 .   

   Castoldi ,  M. , and  A.V.   Popov .  2003 .  Purifi cation of brain tubulin through two 
cycles of polymerization-depolymerization in a high-molarity buffer.    Protein 
Expr. Purif.    32 : 83  –  88 .   

   Cole ,  D.G. ,  W.M.   Saxton ,  K.B.   Sheehan , and  J.M.   Scholey .  1994 .  A  “ slow ”  homo-
tetrameric kinesin-related motor protein purifi ed from  Drosophila  embryos.  
  J. Biol. Chem.    269 : 22913  –  22916 .  

   Cross ,  R.A.   2004 .  The kinetic mechanism of kinesin.    Trends Biochem. Sci.   
 29 : 301  –  309 .   

   Desai ,  A. ,  P.S.   Maddox ,  T.J.   Mitchison , and  E.D.   Salmon .  1998 .  Anaphase A 
chromosome movement and poleward spindle microtubule fl ux occur At 
similar rates in  Xenopus  extract spindles.    J. Cell Biol.    141 : 703  –  713 .   

   Ding ,  R. ,  K.L.   McDonald , and  J.R.   McIntosh .  1993 .  Three-dimensional reconstruc-
tion and analysis of mitotic spindles from the yeast,  Schizosaccharomyces 
pombe .    J. Cell Biol.    120 : 141  –  151 .   

   Gadde ,  S. , and  R.   Heald .  2004 .  Mechanisms and molecules of the mitotic spindle.  
  Curr. Biol.    14 : R797  –  R805 .   

   Gaetz ,  J. , and  T.M.   Kapoor .  2004 .  Dynein/dynactin regulate metaphase spindle 
length by targeting depolymerizing activities to spindle poles.    J. Cell 
Biol.    166 : 465  –  471 .   

   Gaglio ,  T. ,  A.   Saredi ,  J.B.   Bingham ,  M.J.   Hasbani ,  S.R.   Gill ,  T.A.   Schroer , and  D.A.  
 Compton .  1996 .  Opposing motor activities are required for the organization 
of the mammalian mitotic spindle pole.    J. Cell Biol.    135 : 399  –  414 .   

   Goshima ,  G. , and  R.D.   Vale .  2003 .  The roles of microtubule-based motor pro-
teins in mitosis: comprehensive RNAi analysis in the  Drosophila  S2 cell 
line.    J. Cell Biol.    162 : 1003  –  1016 .   

of 5 min. The temperature was kept at 25 ° C. Photoactivation of Eg5 con-
structs fused to paGFP and photobleaching of Cy5-tubulin was performed 
by illuminating an elongated rectangular region of 3  ×  40  μ m, perpendicu-
lar to the pole-to-pole axis, simultaneously with the 405- and 633-nm light 
of a confocal microscope. The lowest possible laser powers suffi cient 
for effi cient photoactivation and photobleaching were used. In some con-
trol experiments, Eg5-paGFP was photoactivated without simultaneously 
photobleaching Cy5-tubulin. Time-lapse imaging of the fl uorescence of 
photoactivated paGFP and of Cy5 was performed before and after photo-
activation/photobleaching (LSM 510, 63 ×  1.2w NA immersion objective 
[Carl Zeiss, Inc.], 488- and 633-nm excitation lines, band pass 505 – 530 
nm and long pass 650 nm for detection, pinhole of 3  μ m, 8-s time intervals 
between image frames, 25.6- μ s pixel time, and 512/97.5  ×  512/97.5 
pixel/ μ m image size). We analyzed the dynamics of Eg5-paGFP in 19 
spindles assembled in fi ve different extracts, of Eg5 � C-paGFP in six spin-
dles, and of Cy5 microtubules in 16 spindles. 

 To test for the potential contribution of bleaching to the measurement 
of Eg5 turnover, we measured the time course of the fl uorescence intensity 
of Cy5 tubulin in an area of the spindle where no tubulin bleach mark was 
set initially, and used a monoexponential fi t to the data to determine the 
bleaching rate (Fig. S2 b, left). To test for the potential contribution of 
bleaching to the measurement of Eg5 turnover, we measured the time 
course of the GFP fl uorescence intensity of Eg5-GFP in spindles reconsti-
tuted in extract in which native Eg5 was replaced by recombinant Eg5-
GFP, and used a monoexponential fi t to the data to determine the bleaching 
rate (Fig. S2 b, right). All microscope settings were identical to those used 
during a turnover measurement. In both cases, the bleaching rate was found 
to be negligible as compared with the measured turnover rates of micro-
tubules and Eg5. 

 In control experiments, the speed of microtubule fl ux was also mea-
sured by fl uorescent speckle microscopy ( Waterman-Storer and Danuser, 
2002 ). From a total of 11 spindles, we obtained an average speckle fl ux 
velocity of 1.9  ±  0.3  μ m/min (Fig. S3), which is similar to previous studies 
( Sawin and Mitchison, 1991 ;  Desai et al., 1998 ;  Maddox et al., 2003 ). 
This fl ux velocity was not statistically different from our measured fl ux ve-
locities obtained by photobleaching (Mann-Whitney  U  test: P = 0.0989, 
signifi cance level 0.05). The spindles used for speckle microscopy were 
assembled in Eg5-depleted, cycled extract supplemented with 0.3  μ M of 
recombinant Eg5-paGFP and 15 nM of Alexa 568 – labeled tubulin. Time 
lapse imaging with a 500-ms exposure time and 2-s interval time, covering 
a time period of 2 min, was performed on a epifl uorescence microscope 
(Axiovert 135 TV; Carl Zeiss, Inc.) equipped with a 100 ×  1.4 NA oil ob-
jective and a camera (Cool Snap HQ; Roper Scientifi c). 

 Data analysis 
 Fluorescence intensity profi les were extracted from time-lapse images of 
spindles ( Fig. 2 ) using a self-written ImageJ plugin. To determine the veloci-
ties of the movement of Eg5 and of microtubules in the spindle, the maxima 
of inverted intensity difference profi les of Cy5 microtubules and of intensity 
profi les of photoactivated Eg5-paGFP were obtained from Gaussian fi ts to 
the peaks and plotted as a function of time. A regression analysis yielded 
the velocities. To determine the turnover of Eg5 and tubulin from fl uores-
cence decays and recoveries after photoactivation and photobleaching at 
the various spindle positions, we fi rst determined the range within which a 
given fl uorescence peak was observed during the entire time lapse. The in-
tegrated areas under the profi les within this range were then plotted 
against time. This means that we followed the entire pool of photobleached 
tubulin or photoactivated Eg5 during the time course of the experiment. 
The measured turnover as defi ned here was therefore not affected by move-
ment but was exclusively a consequence of binding/unbinding to/from the 
spindle structure. A potential contribution from bleaching could be ne-
glected when analyzing the decays and recoveries (Fig. S2 b). Half-lives of 
turnover were determined from monoexponential fi ts to the data obtained 
during the fi rst 2 min using  �  1/2  = ln2/k, with k being the time constants of 
the fl uorescence decays and recoveries. The monoexponential fi t to the 
data measured within the fi rst 2 min after photoactivation or photobleach-
ing resulted also in the detection of a  “ residual ”  pool of Eg5 and tubulin 
that does not turn over with monoexponential kinetics. This pool represents 
molecules that turn over more slowly, as was observed when the period of 
observation was extended to 5 min. This slower-turnover residual pool 
might be a consequence of rebinding events in the large spindle before the 
observed molecules leave the detection volume by diffusion. Because we 
always followed the entire photoactivated and photobleached population 
of molecules for the analysis of the turnover, this residual pool does not 
imply a  “ static ”  pool. 
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