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Background-—Traumatic brain injury (TBI) has been reported to increase the concentration of nitric oxide (NO) in the brain and can
lead to loss of cerebrovascular tone; however, the sources, amounts, and consequences of excess NO on the cerebral vasculature
are unknown. Our objective was to elucidate the mechanism of decreased cerebral artery tone after TBI.

Methods and Results-—Cerebral arteries were isolated from rats 24 hours after moderate fluid-percussion TBI. Pressure-induced
increases in vasoconstriction (myogenic tone) and smooth muscle Ca2+ were severely blunted in cerebral arteries after TBI.
However, myogenic tone and smooth muscle Ca2+ were restored by inhibition of NO synthesis or endothelium removal,
suggesting that TBI increased endothelial NO levels. Live native cell NO, indexed by 4,5-diaminofluorescein (DAF-2 DA)
fluorescence, was increased in endothelium and smooth muscle of cerebral arteries after TBI. Clamped concentrations of 20 to
30 nmol/L NO were required to simulate the loss of myogenic tone and increased (DAF-2T) fluorescence observed following
TBI. In comparison, basal NO in control arteries was estimated as 0.4 nmol/L. Consistent with TBI causing enhanced NO-
mediated vasodilation, inhibitors of guanylyl cyclase, protein kinase G, and large-conductance Ca2+-activated potassium (BK)
channel restored function of arteries from animals with TBI. Expression of the inducible isoform of NO synthase was upregulated
in cerebral arteries isolated from animals with TBI, and the inducible isoform of NO synthase inhibitor 1400W restored myogenic
responses following TBI.

Conclusions-—The mechanism of profound cerebral artery vasodilation after TBI is a gain of function in vascular NO production by
60-fold over controls, resulting from upregulation of the inducible isoform of NO synthase in the endothelium. ( J Am Heart Assoc.
2014;3:e001474 doi: 10.1161/JAHA.114.001474)
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V isits to emergency departments in the United States for
traumatic brain injury (TBI) increased by nearly 30%

between 2006 and 2010.1 Despite the increasing public
health concern, few options exist for medical management of

brain trauma, and the fundamental basis of altered brain
function during recovery from an injury are not understood.
Concussive brain injuries can impair cerebral autoregulation2–
4 and decrease regional5–7 and global8 cerebral blood flow
(CBF). Cerebral autoregulation, an essential function of the
vasculature, serves to maintain constant flow over a range of
blood pressures through myogenic, metabolic, and neurogenic
mechanisms.9 The myogenic component (myogenic tone)
represents the intrinsic ability of smooth muscle (SM) to
either constrict in response to increased intravascular
pressure or to dilate when intravascular pressure drops. This
autoregulatory mechanism normally provides protection
against hypotension (and hypertension) by maintaining blood
flow to the brain at relatively constant levels over a range of
physiological blood pressures. However, impaired cerebral
autoregulation occurs in the days following a TBI such that
mild decreases in blood pressure can lead to cerebral
hypoperfusion and ischemia.5,7
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The role of nitric oxide (NO) in TBI-induced dysregulation of
CBF is unclear and controversial. In healthy brains, NO acts as
both a vasodilator and neurotransmitter, with production
catalyzed by the Ca2+/calmodulin-dependent NO synthase
isozymes eNOS (NOS3) and neuronal isoform of NOS (nNOS;
NOS1) in the vascular endothelium and nitrergic nerves,
respectively.10 Subnanomolar concentrations of NO induce
significant vasodilation of small vessels,11 and production of
NO via eNOS in the endothelium plays a prominent role in the
regulation of cerebral artery diameter and the autoregulatory
response.12 A third NOS isozyme, inducible isoform of NOS
(iNOS; NOS2), is Ca2+ independent, constitutively active, and
upregulated at the transcriptional level by proinflammatory
cytokines.13 iNOS is not normally expressed in brain tissue,
but it may become pathologically upregulated by damage or
injury, including TBI.14–17

Both excess and deficiency of NO, at different time points,
can contribute to secondary injury after brain trauma.18

Evidence of TBI-induced disruption of the microvascular
endothelium19 and diminished endothelial-dependent cerebral
artery dilation20,21 suggests that endothelial NO production
may be impaired. Furthermore, a study indicating that inhaled
NO improved CBF and reduced brain damage in a TBI model
might suggest an endothelial NO deficiency, but vascular NO
was not measured.22 Conversely, reduced myogenic tone in
cerebral arteries after a TBI2,4,23 and improvement in tone
with addition of a peroxynitrite scavenger4 suggest that
vascular NO may be increased, thereby disrupting autoregu-
lation. Other reports indicate that neuronal NO is also
increased after trauma because of cytokine-stimulated iNOS
expression,24 which leads to neuronal NO produc-
tion.14,15,25,26 Large increases in neuronal NO resulting from
iNOS upregulation are cytotoxic and contribute to neuronal
injury and death.27 Selective inhibition of iNOS improves
outcome in several experimental models of brain injury,
including TBI.28–30 The gap in knowledge about the sources
and consequences of vascular NO after brain trauma is a
critical barrier to the development of therapeutics such as
iNOS inhibitors for medical management during recovery from
brain injury.

In this study, our goal was to elucidate the source,
quantity, and impact of altered NO signaling in cerebral
arteries following a TBI, using a novel combination of
approaches that included measurements of arterial diameter,
SM Ca2+, and live-cell imaging of 4,5-diaminofluorescein
diacetate (DAF-2 DA) fluorescence under clamped NO condi-
tions to index NO levels. We demonstrated that TBI causes a
60-fold increase in cerebral artery NO levels, severely blunting
pressure-induced increases in SM Ca2+ and myogenic tone.
Furthermore, we found that TBI-induced increases in cerebral
artery NO are endothelial dependent and are driven by
upregulation of iNOS in the endothelium.

Materials and Methods

TBI Model
Adult male Sprague-Dawley rats (aged 3 to 4 months; 300–
350 g; Charles River, Saint Constant, Quebec, Canada) were
used for these studies. Experimental animals were placed
under anesthesia for a fluid-percussion injury to the left
cerebral hemisphere, delivered through a craniotomy provid-
ing a highly reproducible, survivable brain injury with
measurable neurological deficits.31–33 Briefly, rats were
anesthetized with 2% to 5% isoflurane. Craniotomy was
performed at the midline between bregma and lambda (3 mm
in diameter), and a 2-mm internal-diameter stainless-steel
hollow intracranial screw was placed in the skull. Once
secured, the intracranial screw was filled with 0.9% normal
saline and attached by pressure tubing to a cylindrical
reservoir filled with sterile isotonic saline. Injury was induced
by releasing a pendulum that strikes the fluid column within
the reservoir, causing a pressure wave that was transmitted
through the tubing and cranial screw to the dural surface of
the brain. Animals were allowed to recover with free access to
food and water. Recovery was defined as the ability to
maintain an upright posture, to ambulate, and to take oral
hydration. Control animals were identical rodents without
brain injury. All animals received buprenorphine analgesia
(subcutaneous; 0.05 mg/kg) while under anesthesia and at 6
to 12 hours after surgery. Animals were euthanized at
24 hours post-injury by decapitation under deep pentobarbital
anesthesia (intraperitoneal; 0.03 mg/kg) for harvesting of
blood vessels for experiments. All studies were conducted in
accordance with the NIH Guidelines for the Care and Use of
Laboratory Animals (eighth edition) and approved by the
Institutional Animal Care and Use Committee of the University
of Vermont. Chemicals were purchased from Sigma-Aldrich,
except as specifically noted.

Preparation of Intact Cerebral Arteries
At 24 hours post-injury, animals were euthanized to harvest
the posterior cerebral arteries. With TBI model animals, the
posterior cerebral arteries used for experimental study were
obtained from a region adjacent to but not within the area
of mechanical injury in this model, as defined by magnetic
resonance imaging in our previous study.31 For some
experiments, arteries from the contralateral side of the
injury were also studied. Posterior cerebral arteries
(�250 lm maximal diameter) were dissected immediately
and placed in ice cold (4°C) artificial cerebrospinal fluid
(aCSF) containing (in mmol/L) 125 NaCl, 3 KCl, 18
NaHCO3, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 5 glucose,
aerated with 5% CO2, 20% O2, and 75% N2. Artery segments
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(� 2 mm in length) were cannulated on glass resistance-
matched micropipettes filled with aCSF and pressurized
using an electronic pressure servo with a transducer in a
vessel chamber (Living Systems Instrumentation) while
superfused with warmed (37°C), gassed aCSF.33,34 Bath
pH was monitored and maintained at 7.30 to 7.35.35

Ex Vivo Arterial Diameter and SM Ca2+

Measurements
Lumen diameter was recorded continuously using a charge-
coupled device camera and edge-detection software (Ion-
Optix 6.0; IonOptix). Vessels were allowed to equilibrate for
30 minutes at low pressure (10 mm Hg) and then stimu-
lated with 60 mmol/L KCl (K+) to verify vessel viability. To
determine myogenic tone, responses of vessels to stepwise
increases in intravascular pressure were measured over a
pressure range of 20 to 100 mm Hg (20 mm Hg pressure
steps). At 100 mm Hg, vessels were incubated for 15 min-
utes with aCSF containing 0 mmol/L Ca2+ and the
vasodilators diltiazem (100 lmol/L) and forskolin
(1 lmol/L) to achieve maximal diameter, and then a
pressure-diameter curve (passive curve) was performed.
Vessels with pressure leaks or those not responding to
60 mmol/L K+ were not studied. Effect of the NO donor
(spermine NONOate; Cayman Chemical), NOS inhibitors,
large-conductance Ca2+-activated potassium channel (BK)
inhibitor (paxilline, 1 lmol/L) and protein kinase G (PKG;
R(P)-8-Br-cGMPS, 1 lmol/L) were determined at an intralu-
minal pressure of 70 mm Hg. The following NOS inhibitors
were used: Nx-nitro-L-arginine (L-NNA; 100 lmol/L); N-([3-
(aminomethyl)phenyl]methyl)-ethanimidamide, dihydrochlo-
ride (1400W; 10 lmol/L); and N-([4S]-4-amino-5-[(2-amino-
ethyl)amino]pentyl)-N0-nitroguanidine tris(trifluoroacetate)
(AAAN; 30 lmol/L; Santa Cruz Biotechnology). The
1400W compound was administered in the presence of
its cofactor, NADPH (125 lmol/L). For some experiments,
the endothelial layer was mechanically disrupted by
repeated insertion of a human hair into the arterial lumen.
The effectiveness of endothelium removal was confirmed by
absence of responses to the endothelium-dependent vaso-
dilator 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309,
1 lmol/L).36

Percentage of myogenic tone at each pressure was
calculated as the percentage decrease of the lumen (inner)
and vessel (outer) diameters of arteries in Ca2+-free aCSF
from the following equation: tone (%)=[(DP�DA)/DP]9100.
DP indicates the (passive) lumen diameter of the artery in
Ca2+-free aCSF containing the vasodilators diltiazem
(100 lmol/L) and forskolin (1 lmol/L), and DA indicates
the (active) lumen diameter of the artery in Ca2+-containing
aCSF. Similarly, other data were expressed as percentage of

vasodilation, which was calculated as the difference in
diameter before and after agonist administration normalized
to the maximal diameter. Percent change in diameter
(percentage of constriction, decrease in diameter) was
calculated from baseline with the following equation:
(Ddrug�Dbaseline/Dbaseline)9100. Ddrug is the lumen diameter
exposed to the given drug, and Dbaseline is the lumen diameter
prior to adding the drug. Percentage of vasodilation to
spermine NONOate was normalized to maximal dilation and
calculated with the following equation: ([Dspermine NONOate�
Dstart]�[DP�Dstart])9100. Dspermine NONOate is the lumen
diameter at a specific concentration of spermine NONOate,
Dstart is the diameter prior to giving the first concentration of
spermine NONOate, and DP is the lumen diameter of the
artery in Ca2+-free aCSF containing the vasodilators diltiazem
(100 lmol/L) and forskolin (1 lmol/L).

Simultaneous Arterial Wall [Ca2+]i and Diameter
Measurements in Intact Cerebral Vessels
Vascular SM-specific loading with the ratiometric Ca2+

indicator dye Fura-2 AM (acetoxymethyl ester, membrane-
permeant form; Invitrogen) allowed simultaneous monitoring
of changes in vascular SM intracellular Ca2+ concentration
([Ca2+]i), as described previously.33,34 After cannulation,
specific loading of vascular SM cells was performed with
the ratiometric Ca2+ indicator dye Fura-2 AM (10 lmol/L)
and pluronic acid (0.05%; Invitrogen) in aerated aCSF at
room temperature in the dark for 45 minutes. Afterward,
Fura-2–loaded arteries were allowed 30 minutes for de-
esterification of Fura-2 AM by continuous superfusion with
aerated aCSF at 37°C. For ratiometric measurements of
Fura-2 AM, the vessel chamber was placed on an inverted
fluorescence microscope (Nikon TE2000-S) equipped with a
photomultiplier system (IonOptix). Arteries were excited
with alternating 340- and 380-nm wavelengths, and ratio
images were obtained from background corrected images of
the 510-nm emission using software developed by IonOp-
tix.34 In a separate set of experiments, Rmin, Rmax, and b
were measured from arteries treated with ionomycin
(10 lmol/L) and nigericin (5 lmol/L). Rmin and Rmax are
the emission ratios under Ca2+-free (5 mmol/L EGTA) and
Ca2+-saturated (10 mmol/L CaCl2) conditions, respectively.
b was determined as the ratio of F380 intensities at Rmin

and Rmax (Table 1). An apparent dissociation constant (Kd)
of 282 nmol/L of Fura-2 was used as previously calculated
for cerebral arteries after in situ calibration.33 Arterial wall
[Ca2+]i was estimated by using the equation described
by Grynkiewicz et al:37 [Ca2+]=Kd9b9(R�Rmin)/(Rmax�R).
Average values were significantly different between groups;
therefore, individual values for each group of animals were
used for [Ca2+]i estimation (Table 1).
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Estimation of NO Concentration in Intact Cerebral
Arteries
Fixed concentrations of NO were delivered to both pressur-
ized and surgically opened cerebral arteries from control
animals to determine the amount of NO required to replicate
the decreased myogenic tone and increased 4,5-diaminoflu-
orescein triazole (DAF-2T) fluorescence observed in arteries
from TBI animals. NO solutions at controlled and constant
concentrations were set using an NO-clamp approach devel-
oped by Griffiths.19,38 This method provides stable, known NO
concentrations using the combination of an NO donor and an
NO scavenger. Spermine NONOate was selected as an NO
donor because it has a long half-life (39 minutes) and releases
a controlled amount of NO in solution; a cell-permeable NO
scavenger, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide (CPTIO; Enzo Life Sciences), was elected as a
source of NO consumption. L-NNA was added to the
experiments to inhibit endogenous NO production. Using a
mathematical model (K. Held, PhD, W. Dostmann, PhD,
personal communication, 2014), we resolved the series of
differential pharmacokinetic equations with computer soft-
ware (MathCad 1.0; Parametric Technology Corporation) to
determine the concentrations of NO donor and NO scavenger
needed to clamp the NO concentration at a constant level in
the presence of L-NNA to inhibit endogenous NO production.
The concentrations of spermine NONOate, CPTIO, and L-NNA
we used to generate clamped NO solutions, delivered in an
increasing stepwise fashion from 0.1 to 30.0 nmol/L, are
provided in Table 2.

Live Native Cell Imaging of DAF-2T Fluorescence
to Index NO Levels
The nonfluorescent compound DAF-2 DA reacts with NO to
yield highly fluorescent DAF-2T.39 For live native endothelial
cell imaging, arteries were surgically opened and pinned down

on a Sylgard-coated dish with the endothelial surface up (en
face preparation). Arteries were loaded in the dark with DAF-2
DA (10 lmol/L) in the presence of pluronic acid (0.05%)
dissolved in aerated physiological saline solution of the
following composition (in mmol/L) for an hour at 32°C: 118.5
NaCl, 4.7 KCl, 24 NaHCO3, 1.18 KH2PO4, 2.5 CaCl2, 1.2
MgCl2, 0.023 EDTA, and 11 glucose (pH 7.4). NO levels were
indexed in both vascular endothelium and SM cells under flow
conditions and at 37°C; images were acquired at 30 to
35 images per second by using an Andor Technology Nipkow
spinning-disc confocal system coupled to a Nikon Eclipse
E600 FN upright microscope with a 609 water-dipping
objective (numerical aperture 1.0) and an electron-multiplying
charge-coupled device camera, as we have described previ-
ously.40 Fluorescence was detected using an excitation
wavelength of 488 nm, and emitted fluorescence was
collected using a 527- to 549-nm band-pass filter; the same
laser intensity was used for all experiments. DAF-2T fluores-
cence was measured offline in the collected image by an
average fluorescence of 10 images from the same field, using
custom-designed software (A. Bonev, University of Vermont,
Burlington, VT).41 The area of each endothelial cell or vascular
SM surface was determined by drawing a freehand region of
interest (ROI) around the outline of the individual cells. Global
DAF-2T fluorescence was measured over the entire area of a
cell and averaged by the number of cells per field. In some
experiments, slit-open arteries were incubated for 1 hour at
32°C with L-NNA (300 lmol/L) and/or CPTIO (60 lmol/L)
prior to loading of the DAF-2 DA to inhibit endogenous NO
production or scavenger NO, respectively. The L-NNA and/or
CPTIO concentrations were maintained during loading and

Table 1. Ratios of Emission Signals Under Ca2+-Free and
Ca2+-Saturated Conditions (Rmin and Rmax, Respectively) and
Ratio of F380 Intensities at Rmin and Rmax (b) Determined From
a Separate Set of Arteries From Control and TBI Rats

Control TBI

Rmax 4.62�0.64 6.24�1.52*

Rmin 0.40�0.04 0.41�0.02

b 6.28�0.30 7.48�1.52*

n 5 4

Average values are significantly different between groups, so individual values shown for
arteries from control and TBI animals were used for analysis of intracellular Ca2+

concentration measurements. TBI indicates traumatic brain injury. Wilcoxon rank-sum,
*P<0.05.

Table 2. Nitric Oxide Clamp With the Individual Determined
Concentrations of NO Donor and NO Scavenger (CPTIO)

Clamped [NO]

Spermine NONOate

NO Donor CPTIO

1 nmol/L 2 lmol/L 60 lmol/L

2 nmol/L 4 lmol/L 60 lmol/L

3 nmol/L 5 lmol/L 60 lmol/L

4 nmol/L 6 lmol/L 50 lmol/L

5 nmol/L 8 lmol/L 60 lmol/L

6 nmol/L 10 lmol/L 60 lmol/L

7 nmol/L 10 lmol/L 50 lmol/L

10 nmol/L 15 lmol/L 50 lmol/L

20 nmol/L 75 lmol/L 60 lmol/L

30 nmol/L 100 lmol/L 60 lmol/L

Table showing desired NO concentrations from 1 to 30 nmol/L provided by the
combination of spermine NONOate and CPTIO. CPTIO indicates carboxy-2-phenyl-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; NO, nitric oxide.
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imaging. DAF-2T fluorescence was normalized to basal levels
obtained from control arteries in the endothelium or SM.
Video images were acquired from either endothelium or
vascular SM for 2 minutes. For quantification of NO levels in
live endothelial or SM cells, confocal fields containing >12
cells in cross-section were selected for imaging, and images
were obtained for that field for the 2-minute period. Images at
the same time point (30 seconds) after starting image
acquisition were analyzed offline.

Clamped Nitric Oxide Experiments on Pressurized
Cerebral Arteries
Arteries were cannulated and pressurized to 80 mm Hg, as
described above. Basal NO was then decreased to 0 nmol/L
clamped condition by adding 60 lmol/L CPTIO plus
100 lmol/L L-NNA and superfusing for 20 minutes. After
that, cumulative concentrations of spermine NONOate were
added to the solution in the presence of CPTIO and L-NNA,
increasing in a stepwise fashion from 0.1 to 30 nmol/L
(Table 2).

mRNA Expression of NOS Isozymes
Total RNA was obtained from cerebral arteries of control and
TBI animals using a Trizol isolation procedure and reverse
transcribed into cDNA with the High Capacity cDNA Kit
(Applied Biosystems). Quantitative polymerase chain reaction
(qPCR) was performed using an ABI PRISM 7900HT Sequence
Detection System (Applied Biosystems); iNOS-, eNOS-, nNOS-,
and GAPDH-specific primers; and PerfecCta qPCR supermix
(Quanta Biosciences), as reported previously.42 Briefly, a total
of 6.6 ng of DNAse I-treated RNA was reverse transcribed
into cDNA using the High Capacity cDNA Kit (Applied
Biosystems) in a 20 lL reaction. Moreover, qPCR was
performed in duplicate for each sample using 1 lL of cDNA
as a template for all NOS targets, 19 PerfeCta qPCR supermix
(Quanta Biosciences), and 19 Taqman gene expression
assays in a 20 lL reaction. qPCR was carried out in an ABI
PRISM 7900HT Sequence Detection System (Applied Biosys-
tems) using the following conditions: 45°C for 5 minutes and
95°C for 3 minutes followed by 40 cycles of 15 seconds at
95°C and 45 seconds at 60°C. We amplified GAPDH as a
normalizing internal control. To calculate the relative index of
gene expression, we used the 2�DDCt method43 using control
samples for calibration.

Drugs, Chemical Reagents, and Other Materials
The NO donor solutions were prepared freshly before the
experiments in 10 mmol/L NaOH and kept in ice; each
aliquot of the solutions was used for only 24 hours. CPTIO

was prepared in DMSO as 50 mmol/L stock, and then
aliquots were frozen.

Statistical Analysis
Values are presented as mean�SEM. For clamped NO
experiments, concentration-response curves were calculated
with GraphPad Prism software (version 6.03; GraphPad
Software, Inc) to fit the Hill slope from the data (variable
slope model) for each individual experiment and then
averaged to obtain the mean and SEM values. Statistical
comparisons were performed using GraphPad Prism. Because
of generally small sample sizes, the nonparametric tests
(Wilcoxon rank-sum) were used for comparison between 2
groups. We also used repeated measures analysis of variance
(ANOVA) for the comparison of multiple groups at different
concentrations. Statistical significance was considered at the
level of P<0.05.

Results

Myogenic Tone and Pressure-Dependent
Increases in Smooth Muscle Ca2+ Are Abolished
After TBI
To determine the impact of TBI on the cerebral vasculature,
simultaneous measurements of SM Ca2+ and lumen diam-
eter were made using isolated pressurized posterior
cerebral arteries obtained from brains of control and TBI
animals (Figure 1). At low intravascular pressure (20 mm
Hg), SM Ca2+ concentrations were 144�20 nmol/L and
105�18 nmol/L in cerebral arteries from control and TBI
animals, respectively. In response to stepwise increases in
intravascular pressure, arteries from control animals
showed the expected increase in SM Ca2+ and vasocon-
striction (ie, developed myogenic tone).33 At 60 mm Hg,
for example, SM Ca2+ was increased to 383�16 nmol/L
(n=5), whereas arterial constriction was reduced to 27�8%
(n=5) of maximally dilated diameter. In contrast, pressure-
dependent increases in SM Ca2+ and vasoconstriction were
severely blunted in ipsilateral (injury side) arteries from TBI
animals; the difference between groups was particularly
pronounced at physiological pressures between 60 and
100 mm Hg. At 60 mm Hg, pressure-induced constrictions
were absent, and SM Ca2+ (159�27 nmol/L, n=6) was
minimally increased in arteries isolated from TBI animals
(Figure 1C and 1D). Both the thromboxane A2 analog,
U46619 (100 nmol/L), and elevation of external K+ to
60 mmol/L also constricted ipsilateral arteries from TBI
animals to a lesser extent than controls (Figure 2A and 2B).
Cerebral artery impairment was not limited to the ipsilateral
side of the brain injury; arteries isolated from the
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contralateral side of TBI animals showed a similar reduction
in pressure-induced constrictions (Figure 3). Despite the
marked depression of the ability of arteries from TBI
animals to constrict to vasoactive stimuli, the fully dilated
diameters of arteries from control and TBI animals that
were relaxed by Ca2+-free aCSF containing the vasodilators
diltiazem (100 lmol/L) and forskolin (1 lmol/L) were not
significantly different (Figure 4).

These data demonstrate a dramatic reduction in cerebral
arterial tone following TBI that is diffuse and that is not limited
to arteries near the site of injury. This impaired myogenic
response persists despite removal of the arteries from the
animal and could reflect enhanced vasodilatory signals
emanating from cerebral arteries after TBI.

NO Is Elevated in Cerebral Arteries Following TBI
Nitric oxide, a potent dilator of the systemic44 and cerebral
vasculature,9 is increased in the brain after TBI in a variety of
species, including humans.14 To examine whether the
concentration of vascular NO, specifically, is increased in

cerebral arteries isolated after TBI, confocal imaging was
performed using surgically opened cerebral arteries loaded
with the NO indicator DAF-2 DA15 (Figure 5). After TBI,
fluorescence was increased 1.3-fold in live endothelial cells
and 2.2-fold in SM cells compared with fluorescence in
comparable tissue from control animals (Figure 5C and 5D).
The possibility of NO diffusion between endothelium and SM
limits our ability to designate the source of NO production. In
addition, NOS inhibition with L-NNA (300 lmol/L) decreased
DAF-2T fluorescence in both endothelium and SM from TBI
animals to levels observed in control animals. These results
demonstrate a marked elevation of NO in cerebral arteries
following TBI.

Inhibition of NOS or Endothelial Removal
Restores Cerebral Artery Function After TBI
To further explore TBI-induced increases in cerebral artery
NO and its impact on vascular function, the effects of
intravascular pressure on SM Ca2+ and diameter were
examined in the presence of the broad-spectrum NOS
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Figure 1. Decreased cytosolic Ca2+ and myogenic tone in cerebral arteries from TBI animals. A and B,
Representative traces showing simultaneous [Ca2+]i and lumen diameter measurements obtained from
intact cerebral arteries isolated from control (A) and TBI (B) animals. Recordings were obtained during
stepwise increases in intravascular pressure (20 to 100 mm Hg). C and D, Summary of myogenic tone (C)
and [Ca2+]i (D) obtained from control (n=5) and TBI (n=6) animals. *P<0.05, repeated measures one-way
ANOVA. [Ca2+]i indicates intracellular Ca2+ concentration; TBI indicates traumatic brain injury.
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inhibitor L-NNA (100 lmol/L) (Figure 6A). Blockade of NO
synthesis with L-NNA increased myogenic tone and SM
Ca2+ in both control and TBI arteries, but the effect of L-
NNA was greater in the TBI arteries, eliminating the
differences between groups (compared with Figure 1). At
60 mm Hg, for example, in the presence of L-NNA, the SM
Ca2+ (control: 348�27 nmol/L, n=4; TBI: 268�43 nmol/L,
n=5) and myogenic tone (control: 28�4% constriction, n=4;
TBI: 22�2% constriction, n=5) were similar in the 2 groups.
Furthermore, constrictions to U46619 and elevated external
K+ were restored by L-NNA (100 lmol/L) in arteries from
TBI animals (Figure 2C and 2D). To determine whether
endothelial removal mimicked the effect of L-NNA, the
lumen of some TBI arteries was mechanically disrupted
before cannulation. As with L-NNA, myogenic tone in
response to stepwise increases in intraluminal pressure
was restored to control levels in endothelial-denuded
arteries from TBI animals (Figure 6B through 6D). Denuding
the arteries from TBI animals of endothelium eliminated the
difference between groups. The myogenic response of
intact arteries from control animals was not different from

that of the arteries from TBI animals without endothelium
(myogenic tone, control: 38�9%, n=5, TBI: 33�8%, n=5)
(Figure 6B through 6D). These results indicate that the
vascular endothelium serves as the source of excess NO
leading to decreased cerebral artery constriction after TBI.

iNOS Upregulation in Cerebral Arteries Following
TBI
The data presented indicate that TBI leads to a gain of
function of endothelial NO production to cause a profound
loss of pressure-induced vasoconstriction. To determine the
NOS isoenzymes that contribute to increased NO following
TBI, expression of eNOS, iNOS, and nNOS was assessed by
qPCR (Figure 7A). iNOS was significantly increased (�10-
fold) in cerebral arteries from TBI animals compared with
control animals. Interestingly, eNOS was unchanged, and
nNOS was modestly but significantly decreased in arteries
after TBI. To examine the functional impact of TBI-induced
iNOS upregulation, pressurized arteries were exposed to the
selective iNOS inhibitor 1400W.45–47 Nonselective NOS
inhibition with L-NNA caused constrictions in control
arteries (15�2% n=5) but caused substantially greater
constrictions in TBI arteries (32�4%, n=5; P<0.05) (Fig-
ure 7B and 7C). Inhibition of iNOS caused only a slight
constriction in cerebral arteries from control animals; in
contrast, cerebral arteries from TBI animals exhibited a
marked constriction in response to iNOS inhibition (26�3%,
n=4) (Figure 7B and 7D). The specific nNOS inhibitor
AAAN48 (30 lmol/L) did not alter tone in arteries from
either control or TBI animals (Figure 7B). Furthermore,
arteries from control and TBI animals responded similarly to
an NO donor in the presence of L-NNA (100 lmol/L)
(Figure 8A), demonstrating that NO sensitivity of vascular
SM was unaltered by TBI. These data support the idea that,
although basal eNOS-catalyzed NO production contributes
to diameter regulation in arteries from control animals,
endothelial iNOS upregulation underlies the NO gain of
function and profound vasodilation observed in cerebral
arteries after TBI.

60-Fold Elevation of NO Levels Causes Profound
Vasodilation in Cerebral Arteries After TBI
To determine the amount of excess NO responsible for
attenuated myogenic constriction following TBI, we used an
NO-clamp approach11,38 and calibrated the vasodilatory
response of cerebral arteries from control animals to
stepwise increases in NO. Cerebral arteries (with myogenic
tone) from control animals were pressurized to 70 mm Hg,
and endogenous NO was negated by adding CPTIO (60 lmol/
L) to scavenge existing NO and L-NNA (100 lmol/L) to inhibit
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ongoing NO synthesis. Stepwise increases in NO (0.05 to
30 nmol/L NO) revealed that the half maximal effective
concentration for NO-induced dilation was 4.5 nmol/L (n=5)
(Figure 9B) and that �30 nmol/L NO is required to simulate
the loss of myogenic tone following a TBI. We found that
the combination of CPTIO and L-NNA elicited a sustained
constriction (18% change in diameter) that corresponded to a
mean basal NO concentration of 0.4 nmol/L NO (interpolated
from the concentration-response curve using clamped NO
concentrations, [NO]=10�9.4 mol/L) (Figure 9A and 9B).
Using the NO-clamp approach, 30 nmol/L NO was also
applied to arteries from control animals loaded with 4,5-
diaminofluorescein (DAF-2). Consistent with TBI causing a 60-
fold increase in cerebral artery NO, addition of 30 nmol/L NO
to arteries from control animals increased DAF-2 fluores-
cence to comparable levels observed in arteries from TBI
animals in the absence of exogenous NO (Figure 9C and 9D).
Thus, 2 different observations of NO, by the fluorescent
indicator and by a functional response, support the same
estimate of 30 nmol/L NO in cerebral artery endothelium
after TBI compared with 0.4 nmol/L in controls.

TBI-Induced Elevations of NO Dilate Cerebral
Arteries via Activation of Guanylate Cyclase and
Activation of SM BK Channels
We next sought to examine the downstream signaling
pathway linking TBI-induced increases in NO to vasodilation.
NO-mediated vasodilation classically involves activation of SM
soluble guanylyl cyclase (sGC) leading to cyclic guanosine
monophosphate (cGMP)-dependent protein kinase (PKG)
activation.49 Consistent with TBI evoking this canonical NO
signaling pathway, a selective sGC inhibitor (ODQ, 10 lmol/
L) and a cell-permeable cGMP analogue PKG inhibitor (R(P)-8-
Br-cGMPS, 1 lmol/L) restored myogenic tone to control
levels in cerebral arteries isolated from TBI animals (Fig-
ure 10A through 10C). Several downstream targets have been
proposed to contribute to sGC/PKG-dependent vasodilation,
including SM BK channel activation.50,51 In cerebral arteries
from control animals, vasodilation evoked by spermine
NONOate was reduced by BK channel blockade with paxilline
(1 lmol/L) (Figure 8B), consistent with NO activation of BK
channels. Furthermore, BK channel blockade with paxilline
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Figure 5. Nitric oxide bioavailability is increased in cerebral arteries from TBI animals compared with
controls. A and B, Arteries from TBI animals exhibited a significant increase in nitric oxide levels, assessed
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that was reduced to control levels after incubation with L-NNA (300 lmol/L). C and D, Summary data of
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(1 lmol/L) induced a significantly greater constriction in
arteries from TBI animals compared with controls (22�6%
decrease in diameter [n=7], 9�1% decrease in diameter
[n=4], respectively; P<0.05) (Figure 10C). Collectively, these
data indicate that TBI leads to an increase in endothelial NO
production that acts through sGC, PKG, and BK channel
activation to promote vasodilation, leading to a profound
reduction in myogenic tone.

Discussion
TBI is an important global concern. This study addresses the
molecular and functional changes in cerebral arteries
24 hours after brain injury in a rodent model, using intact
vascular preparations with novel live-cell microscopy for NO.
We report the following novel observations: (1) Pressure-
dependent increases in SM Ca2+ and myogenic constriction
are severely blunted in cerebral arteries following TBI;

(2) this profound TBI-induced cerebral artery dilation is
caused by a marked gain of function in endothelial NO
production; (3) upregulation of the inducible isoform of NOS
(iNOS), rather than the endothelial isoform (eNOS), underlies
the TBI-induced increase in cerebral artery NO; (4) basal
cerebral artery NO levels, estimated to be 0.4 nmol/L in
control animals, increased >60-fold (to �30 nmol/L) after
TBI; (5) the cell signaling pathway leading from iNOS-
catalyzed increased endothelial NO to cerebral artery
vasodilation involved activation of SM sGC, PKG, and BK
channels, ultimately leading to decreased SM cytosolic
Ca2+. Taken together, this work suggests that upregulation
of endothelial iNOS drives activation of SM BK channels to
decrease SM Ca2+ to cause cerebral artery dilation after a
TBI (Figure 11). The loss of vascular tone may result in
disruption of CBF and contribute to TBI pathology. Our
results suggest that selective inhibition of iNOS in endo-
thelial cells may be a therapeutic target for medical
management of TBI.
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TBI Increases Cerebral Artery NO Levels
�60-Fold
Previous studies have shown that complex changes in brain
NO metabolism occur after traumatic injury,18 but none have
indexed NO in living cerebrovascular cells. Total brain NO
levels are reported to increase rapidly within the first
30 minutes of injury52,53 and then decline, possibly because
of substrate depletion, leading to a period of relative NO
deficiency lasting �6 hours.54,55 A late-phase increase in
NO then occurs that may persist for days.56 After severe
closed-head injury in humans, cerebral spinal fluid NO
concentrations increase 2- to 3-fold, peaking between 30
and 42 hours, with higher levels reported in nonsurvivors.18

Using a rat TBI animal model, total brain NO concentrations
were previously shown to increase immediately following
injury to 83�16 nmol/L compared with 0.5�4.0 nmol/L in
the sham-injured animals53; however, these previous mea-
surements were performed in intact brain with NO electrodes

examining NO production in the context of direct neuronal
toxicity. Furthermore, NO electrodes lack the spatial resolu-
tion to determine the vascular component of TBI-induced
increases in NO. Our present study used a unique combina-
tion of live-NO imaging using the diaminofluorescein NO
indicator DAF-2 DA57 and an NO-clamp approach11,38 that
delivers set concentrations of NO to examine NO levels in
isolated cerebral arteries 24 hours after fluid percussion–
induced TBI in rats.

Using the combination of a long half-life NO donor and an
NO scavenger, sustained concentrations of NO were math-
ematically modeled and accurately delivered to tissue. This
NO-clamp approach was established using NO probes in
vitro38,58 and validated using an intracellular cGMP biosen-
sor in vascular SM.11 By calibrating the vasodilatory
response of pressurized cerebral arteries in the presence
of set concentrations of NO, we estimated that rat cerebral
arteries have a baseline NO level of 0.4 nmol/L, achieve
maximal dilation with 30 nmol/L NO, and have a half
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Figure 7. Relative expression of nitric oxide synthase isozymes and effect of nitric oxide synthase
inhibition in cerebral arteries isolated from control and TBI animals. A, Summary data showing total mRNA
levels for eNOS, iNOS, and nNOS obtained from cerebral arteries from control (n=6) and TBI (n=5) animals.
B, Summary data showing percentage of constriction elicited by L-NNA (100 lmol/L), 1400W (10 lmol/L),
and AAAN (1 lmol/L) in arteries pressurized to 70 mm Hg from control (n=5 to 6) and TBI (n=4 to 6)
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maximal effective concentration for vasodilation of
4.5 nmol/L (Figure 9B). This is consistent with estimates
of physiological concentrations of NO in the range of
100 pmol/L to 5 nmol/L.59

We now provide 2 lines of evidence indicating that NO
levels are increased �60-fold in cerebral arteries isolated
from TBI model rats 24 hours after induction of injury. First,
using the NO-clamp in cerebral arteries from control animals
pressurized to physiological intravascular pressures, it was
determined that a concentration of �30 nmol/L NO was
required to induce the level of vasodilation observed in
vessels from TBI animals. Second, using the NO indicator dye
DAF-2 for live imaging of NO fluorescence in intact cerebral
arteries, we observed marked elevations in both SM and
endothelial cell NO after TBI (Figure 5). As an example of the
use of this technique for live-cell imaging in intact blood
vessels, we included a high-speed (30 frames per second)
video of intracellular NO production in a cerebral artery using
the DAF-2 indicator in a z-stack sweep from the lumen
through endothelium and vascular SM (Video S1). Because of
the much larger volume of the cells, the SM cells appear to
have a higher signal, but the SM cells and endothelial cells
cannot be compared directly, and quantification of NO was
based on still images of confocal sections containing
>14 cells per field in cross-section.

We determined that addition of 30 nmol/L NO to arteries
from control animals mimicked the increased DAF-2 fluo-
rescence observed after TBI. Consistent with the specificity
of DAF-2 DA as a dynamic NO-specific indicator, we
observed that the combination of the NOS inhibitor L-NNA
and the NO scavenger CPTIO abolished DAF-2 fluorescence
in both animal groups (Figure 5). Although prior reports
have described the detection and imaging of NO with

diaminofluoresceins in cultured endothelial cells,57 we
believe our study provides the first demonstration of DAF-
2 to measure NO in intact endothelium and the first use of
this technique to quantify TBI-induced increases of cere-
brovascular NO.

Upregulation of Endothelial iNOS Underlies TBI-
Induced Increases in Cerebral Artery NO and Loss
of Myogenic Tone
Our data indicate that increased endothelial expression of
iNOS is the major contributor to vascular NO after a TBI.
Using isolated cerebral arteries, with qPCR and primer sets
unique to the NOS isozymes, we observed that iNOS
expression was significantly increased (Figure 7). Consistent
with marked elevation in iNOS expression after TBI, the
selective iNOS inhibitor 1400W constricted cerebral arteries
from TBI animals but was without effect on cerebral arteries
from control animals (Figure 7B). After treatment with
1400W, the level of constriction observed in arteries from
TBI animals was restored to levels observed in untreated
arteries from control animals. Furthermore, in arteries from
TBI animals, the effect of 1400W was similar to the effect of
endothelial removal (Figure 6A through 6C), suggesting TBI-
induced iNOS expression occurred in endothelial cells but not
in vascular SM. Previous studies have also examined iNOS
expression after TBI, including a human study using tissue
sections from patients who died from a TBI.15 In postmortem
tissue from human TBI victims, increased iNOS immunoreac-
tivity was observed in neutrophils, macrophage/microglial
and cerebral artery vascular SM 2 to 7 days following TBI. In
addition, these authors state that endothelial cells in these
vessels may also be iNOS positive.15 Another study using

-8 -7.5 -7 -6.5 -6 -5.5

0

20

40

60

80

100

120

Log[Spermine NONOate], (M)

%
V

as
od

ila
tio

n

Control (+ L-NNA) (n=4)
TBI (+ L-NNA) (n=5)

-8 -7.5 -7 -6.5 -6 -5.5

0

20

40

60

80

100

120

Log[Spermine NONOate], (M)

%
V

as
od

ila
tio

n

Spermine NONOate + Paxilline (n=4)
Spermine NONOate (n=3)

*

A                     B

Figure 8. Sensitivity of vascular smooth muscle to exogenous nitric oxide in cerebral arteries from
control and TBI animals. Summary data showing the vasodilatory response to addition of spermine
NONOate in the presence of (A) L-NNA (100 lmol/L) and (B) paxilline (1 lmol/L) in arteries from control
(n=3) and TBI (n=4) animals. Repeated-measures one-way ANOVA, *P<0.05. TBI indicates traumatic brain
injury.

DOI: 10.1161/JAHA.114.001474 Journal of the American Heart Association 12

Endothelial iNOS in Traumatic Brain Injury Villalba et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



surgically obtained tissue from TBI patients also reported
increased iNOS staining in neurons, neutrophils, and macro-
phages.58 Interestingly, a study relying on immunohistochem-
istry reported increased staining for eNOS but not for nNOS or
iNOS in cerebral microvessels in rat brain slices obtained near
the site of injury 1 day after fluid percussion injury.60 We
cannot exclude the possibility of a modest eNOS contribution
to the increased NO levels observed in our present study,
because of eNOS changes in caveolin 1 binding or phosphor-
ylation.61 Based on the similarity of functional responses we
observed using a selective iNOS inhibitor (1400W) and a
broad-spectrum NOS inhibitor (L-NNA), it appears that TBI-
induced elevations in cerebral artery NO occur predominantly
through increased iNOS expression. Identification of the
trigger for increasing endothelial iNOS expression after TBI
was outside of the scope of this work, but inflammatory
responses to traumatic injury may play a role. Future studies
will address the role of extracellular histones, polyphosphates,

and other circulating factors that are released after trauma
that might interact with the endothelium.62

Elevated NO Leads to Decreased SM Ca2+ and
Loss of Myogenic Tone via Increased Activity of
SM BK Channels TBI
NO plays a prominent role in the regulation of cerebral artery
diameter,12 with activation of SM soluble sGC leading to
vasodilation through cGMP formation and increased activity of
cGMP-dependent protein kinase (PKG) activation.49 Several
downstream sites of action have been proposed for PKG-
mediated vasodilation,49,63 including activation of large-
conductance Ca2+-sensitive potassium (BK) channels.44,51

Activation of BK channels promotes membrane potential
hyperpolarization and decreased Ca2+ influx through L-type
voltage-dependent Ca2+ channels, leading to vasodilation.64

We used a pharmacological approach with blockers of sGC,
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PKG, and BK channels to establish that this cell signaling
pathway links TBI-induced increases in NO to vasodilation
(Figure 6). Although not examined in the present study, it is
likely that the observed NO-induced BK channel activity
results from an increase in Ca2+ spark frequency.50,65 In
addition, to NO-mediated BK channel activation, it is also
possible that other mechanisms13 involving cGMP-dependent
decreases in SM Ca2+ may contribute to TBI-induced cerebral
artery dilation.49,63 Excessive NO might also increase perox-
ynitrite, which might also diminish myogenic tone after TBI4;
however, our data support a prominent role for NO-mediated,
PKG-dependent activation of SM BK channels.

Clinical Implications
Complex changes in cardiovascular physiology occur after a
TBI. We and others have previously shown that sympathetic
nervous system activation after TBI leads to hypertension,
hypercontractile cardiac function, and generation of reactive
oxygen species. Blood vessels respond to changes in
mechanical forces from circulating blood as shear stress
and in mechanical strain as the result of heart propulsion.
Among various cell signaling pathways induced by mechanical
forces, a role for NO and reactive oxygen species have been
implicated in several studies. Cyclic strain stimulates altered
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gene expressions and NO/reactive oxygen species induction
in cultured endothelial cells.65,66 It is likely that sympathetic
nervous system activation after a TBI induces hypertension,
hyperthermia, and reactive oxygen species induction, which
leads to endothelial iNOS upregulation and vasodilation of the
cerebral arteries (Figure 11).

Our observations suggest several additional lines of
research that might provide insight into the vascular effects
of TBI. Because the regulation of vascular tone is mechan-
ically different between small vessels and larger vessels, it
would be of interest to further elucidate the differences
between small vessels such as mesenteric resistance arteries
and larger vessels such as aorta. In addition, we cannot
exclude the contribution of adventitial cells or circulating
inflammatory cells, which might bind to endothelium after
trauma.

We have not ruled out possible contributions by alterations
in cyclooxygenase metabolites, the prostanoid synthesizing
enzymes constitutively expressed in the brain, which also
could contribute to responses to TBI. Reductions in hypome-
tabolism may also contribute to changes in CBF after brain
trauma. Additional studies of longitudinal effects over a longer
time course after TBI, in women, or using older animals would
also be of interest.

Presently, it is unclear if the observed 60-fold increase in
endothelial NO levels is a protective, adaptive response or a
contributor to deleterious consequences after TBI. Studies
have examined both NO administration and NO inhibition after
TBI, with conflicting results.27,53,68 A study with iNOS null-

mice, for example, suggested that iNOS provides modest
improvement in long-term behavioral outcomes after TBI
(20 days) but did not include any data about cerebrovascular
function, neurovascular coupling, CBF, or edema. NO con-
centration influences basal tone, and both excess and
deficiency of NO may contribute to brain pathologies after
TBI. NO overproduction by neuronal iNOS, for example, can
yield micromolar concentrations of NO that mediate nitrosy-
lation processes and neurotoxicity. Conversely, NO underpro-
duction, due to vascular eNOS knockout or phosphorylation,
has been implicated in impairment of cerebral perfusion in
cerebral ischemia models.27,61 Thus, an increase of vascular
NO levels in the range of 30 nmol/L might be neuroprotective
by increasing perfusion, protecting the concussed brain from
ischemia and breakdown of the blood–brain barrier. In
contrast, excessive vasodilation of cerebral arteries in the
days after a TBI could also contribute to cerebral edema,
diffuse hemorrhage, and intracranial hypertension. Studies of
NO inhibition in vivo have provided conflicting results. During
the initial peak of NO, the administration of L-NAME did not
improve outcome or cause resolution of neurological deficits;
however, inhibition of iNOS in the late phase after TBI was
shown to be neuroprotective in experimental models of
TBI.28,30,69 Furthermore, NO inhalation to increase NO levels
was reported to benefit mice after TBI.22 Future work is
needed to determine whether targeted iNOS inhibitors or
other modulators of this pathway might provide therapeutic
benefit after TBI.

Conclusions
TBI causes profound cerebral artery vasodilation resulting
from a 60-fold elevation of NO production via upregulation of
endothelial iNOS. In addition, TBI-mediated increased endo-
thelial NO production acts through sGC, PKG, and SM BK
channel activation to cause vasodilation and ablation of
myogenic tone. This loss of myogenic tone, a major contrib-
utor to cerebral autoregulation, may represent a significant
aspect of TBI pathology.

Appendix
Supplementary Video: Intracellular NO, indexed by 4,5-dian-
imofluorescein (DAF-2) fluorescence, in the endothelium and
smooth muscle of a live cerebral blood vessel.

The video shows the wall of a cerebral blood vessel in a
field of view of �1139136 lm, using high-speed (30 to
35 frames per second) image acquisition of intracellular NO-
indicator fluorescence in a z-stack sweep from the luminal
surface of the endothelial cells through vascular smooth
muscle.
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Figure 11. Overview of the mechanism by which TBI causes
impaired cerebral vascular function. TBI causes an increase in
iNOS expression leading to enhanced endothelial NO production,
decreased smooth muscle Ca2+ levels, and profound cerebral
artery dilation. cGMP indicates cyclic guanosine monophosphate;
GTP, Guanosine-50-triphosphate; iNOS, inducible isoform of
nitric oxide synthase; L-Arg, L-arginine; NO, nitric oxide; PKG,
protein kinase G; sGC, soluble guanylyl cyclase; TBI, traumatic
brain injury.
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