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Abstract

N6-methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid 

progress in this field, little is known about genetic determinants of m6A modification and their role 

in common diseases. In this work, we mapped quantitative trait loci (QTLs) of m6A peaks in 60 

Yoruba lymphoblast cell lines (LCLs). We find that m6A-QTLs are largely independent of 

expression and splicing QTLs, and are enriched with binding sites of RNA-binding proteins 
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(RBPs), RNA structure-changing variants and transcriptional features. Joint analysis of QTLs of 

m6A and related molecular traits suggests that downstream effects of m6A are heterogeneous and 

context-dependent. We identified proteins that mediate m6A effects on translation. Integrating with 

data from genome-wide association studies (GWAS), we show that m6A-QTLs contribute to 

heritability of various immune and blood-related traits at levels comparable to splicing-QTLs and 

roughly half of eQTLs. Leveraging m6A-QTLs in a transcriptome-wide association study (TWAS) 

framework, we identified putative risk genes of these traits.

Introduction

The m6A modification plays a critical role in many regulatory processes1,2, including pre-

mRNA processing3–5, mRNA export6, mRNA stability7 and translation efficiency8–12. 

Levels of m6A are controlled by both m6A writers – in particular the METTL3/14 

complex13,14 – and erasers, such as ALKBH515 and FTO16,17. The downstream functions of 

m6A are mediated by reader proteins that recognize m6A and regulate mRNA processing. 

These m6A-mediated regulatory pathways affect many biological processes, such as 

development, stress response, immune, and neuronal functions2,18.

Despite rapid progress, our understanding of m6A regulation and function has notable gaps. 

Among all adenosine sites on mRNA, only a small fraction are m6A-modified and we know 

little about what controls this specificity. While some m6A reader proteins have been 

characterized in detail3,6–8,11,12,19,20, we have limited understanding of how RNA sequence 

contexts may affect recognition of m6A by readers and downstream effects. At the 

phenotypic level, dysregulation of m6A has been implicated in cancer progression21–26. 

However, we know little about whether m6A variation contributes to other common diseases.

To fill these gaps, we took a genetic approach based on mapping variants associated with 

m6A levels in mRNA transcripts, or m6A-QTLs. QTL mapping of molecular traits has 

provided unique insights into gene regulation27–36. Molecular QTLs, especially expression 

QTLs (eQTLs), are enriched with human disease-associated variants, and can be leveraged 

to identify susceptibility variants and genes37–40.

We mapped m6A-QTLs using LCLs, for which QTL data of multiple molecular traits are 

available27–36. We found that the m6A consensus motif (RRACH), while highly enriched, 

explains only a small fraction of m6A-QTLs. We observed that m6A-QTLs are enriched in 

RBP target sites, RiboSNitches (variants affecting RNA secondary structure) and 

transcriptional features, suggesting that these factors are important regulators of m6A 

installation. By integrating with other molecular QTL data, we found that regulatory effects 

of m6A on downstream traits such as translation likely vary across m6A sites in a context-

dependent manner.

We conducted joint analysis of m6A-QTLs and GWAS data. Current efforts to characterize 

GWAS variants have largely focused on transcriptional effects. However, recent studies, 

employing different approaches from colocalization to heritability analyses, estimate that 

eQTLs explain only 10–25% of GWAS signals37,40,41. To fill this gap, researches have 

suggested other mechanisms such as RNA splicing42,43. In our analysis, we found that m6A-
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QTLs are enriched for risk variants of a range of complex traits, particularly autoimmune 

diseases and blood-cell-related traits. The contribution of m6A-QTLs to heritability of these 

traits is roughly half of eQTLs and comparable to splicing-QTLs (sQTLs). Treating m6A 

level as molecular traits, we performed a TWAS of these traits and identified a number of 

m6A sites and related genes. Taken together, our results demonstrate that m6A variation is an 

important link between genetic and phenotypic variation.

Results

Mapping cis-m6A-QTLs.

We used m6A-seq44,45 to profile m6A levels across the transcriptome in LCLs derived from 

60 Yoruba individuals. We obtained on average 60 million reads for unmodified (input) and 

immunoprecipitated (IP) mRNA libraries for each cell (Fig. 1a). We called peaks jointly on 

all samples (see Methods), and identified 20,044 peaks (Supplementary Table 1) located in 

transcripts of 8,448 genes, with an average peak length of 351 bp (Extended Data Fig. 1a). 

Consistent with previous reports44,45, m6A peaks are enriched near start and stop codons 

(Extended Data Fig. 1b, c) and sequences within peaks are enriched of the RRACH motif 

(Extended Data Fig. 1d).

We tested association between m6A level of each peak and nearby genetic variants using a 

linear model, accounting for GC content and other covariates (Fig. 1b, see Methods and 

Supplementary Note). To determine a proper window size for cis-QTL mapping, we first 

tested all single-nucleotide polymorphisms (SNPs) within 2 Mb of m6A peaks (Extended 

Data Fig. 1e). Most SNPs strongly associated with m6A are within 100 kb of m6A peaks 

(Fig. 1c). We therefore restrict our cis-tests to SNP-peak pairs within 100 kb. The resulting P 
values show a strong deviation from the null expectation, while P values from permutations 

are consistent with null, indicating that the test is well-calibrated (Fig. 1d). We used a 

permutation scheme implemented in FastQTL46 to account for multiple genetic variants 

tested per peak. This results in 822 peaks with at least one significant cis-m6A-QTL 

(denoted as ePeaks, following the literature of eQTLs), at 10% FDR47 (Extended Data Fig. 

1f). Most of these ePeaks (86%) have single causal effect (Extended Data Fig. 1g), based on 

computational fine-mapping analysis48.

We quantified the contribution of genetic variation to inter-individual variation of m6A levels 

by estimating the cis-heritability of each peak. Most peaks have low heritability values, with 

918 peaks having heritability > 0 (Extended Data Fig. 2a). Heritability of ePeaks is higher 

with median 0.31 (Extended Data Fig. 2b).

We next examined the distribution of m6A-QTLs relative to gene-based features, using the 

program Torus39,49. m6A-QTLs are most enriched in 3’ UTR (log2 odds ratio = 4.9, log2OR 

hereafter) followed by 5’ UTR (log2OR = 4.5) and CDS (log2OR = 3.8), but not in 

intergenic repressive regions as marked by H3K27me3 (Extended Data Fig. 2c).

Comparing m6A-QTLs to eQTLs mapped in the same LCLs, we find that genes containing 

ePeaks and eQTLs are largely distinct (Fig. 1e). In genes with both m6A- and expression 

QTLs, lead SNPs of two types of QTLs are mostly > 10 kb apart and in low linkage 
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disequilibrium (LD) (Fig. 1f, Extended Data Fig. 2d). Comparison of m6A-QTLs to sQTLs 

shows similar patterns (Extended Data Fig. 2e–g). These results suggest that m6A-QTLs and 

eQTLs/sQTLs are distinct types of molecular QTLs.

m6A-QTLs are enriched in RNA-related features.

To understand which factors may determine m6A deposition, we analyzed features of m6A-

QTLs and their surrounding sequences. We annotated SNPs using RNA-related features 

including m6A consensus motif (RRACH) contained in m6A peaks, binding sites of 121 

RBPs (ENCODE eCLIP-seq peaks50), RiboSNitches51 (genetic variants changing RNA 

secondary structure), and predicted microRNA binding sites52. We used two approaches to 

test enrichment. In our primary analysis, we used Fisher’s exact test, comparing possible 

causal variants of m6A from fine-mapping48 and randomly sampled SNPs that match key 

properties of m6A-QTLs (see Methods)53. We find m6A consensus motif in m6A peaks 

highly enriched in m6A-QTLs with odds ratio (OR) of 685 (P = 1.0 × 10−33). However, only 

12% of m6A-QTLs contained in m6A peaks (most QTLs are outside peaks) disrupt the 

consensus motif. Despite of this, we find m6A-QTLs tend to locate in proximity to the 

consensus motif as additional 33% of m6A-QTLs contained in m6A peaks are located within 

50 bp of the motif and 46% within 100 bp, suggesting many m6A-QTLs may indirectly 

affect binding of the methyltransferase, demethylase or reader proteins to the consensus 

motif. We also find enrichment in RiboSNitches (OR = 6.2, P = 5.9 × 10−4) and RBP 

binding sites (OR = 2.5, P = 8.3 × 10−19) but not predicted microRNA targets52 (Fig. 2a). As 

a secondary analysis, we tested enrichment using Torus, which accounts for uncertainty of 

causal variants due to LD. This analysis reveals similar results (Extended Data Fig. 3a).

We tested enrichment for each RBP and microRNA separately using Torus (Supplementary 

Table 2). Interestingly, several of the most enriched RBPs are known m6A-interacting 

proteins including FTO, an m6A demethylase16,17, and IGF2BP2, an m6A reader protein 

that stabilizes nuclear RNA19 (Fig. 2b). Analyses of individual microRNAs show 

enrichment of m6A-QTLs in binding sites of hsa-miR-582–5p and hsa-miR-331–3p. This 

finding is in line with previous reports that microRNA could affect m6A levels54.

The enrichment of binding sites of an RBP in m6A-QTLs could occur if binding sites of an 

RBP co-occur with cis-elements regulating m6A, without the RBP playing a direct role in 

m6A deposition. We reason that if the RBP is causal, alterations in motif scores (disruption 

or creation) of SNPs should be correlated with their effects on m6A deposition. We limited 

this correlation analysis to fine-mapped m6A-QTLs that also have significant effects on 

motif score. As a proof of principle, DNA variants creating a consensus motif are much 

more likely to be positively associated with m6A levels (Fig. 2c, an example in Fig. 2d). We 

tested 29 RBPs with > 5 data points, and identified three RBPs with significant correlations 

at FDR 10% (Fig. 2e). Interestingly, SRSF1 is a known splicing factor55, suggesting a 

possible connection of splicing with m6A deposition.

m6A modification is coupled with transcriptional processes.

Recent studies suggest that the deposition of m6A may occur co-transcriptionally and be 

influenced by transcription processes56–58. We used our m6A-QTLs and ENCODE ChIP-seq 
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data from LCLs to examine the link between m6A and transcription32,59. We observed 

significant enrichment (Fisher’s exact test) of fine-mapped m6A-QTLs in RNAPII, phospho-

RNAPII and transcription factor binding sites (TFBSs) as well as in histone marks of 

promoters (H3K4me3), enhancers (H3K4me1, H3K27ac) and active transcription 

(H3K36me3) (Fig. 3a). The enrichment of m6A-QTLs in H3K36me3, the most enriched 

feature, remains strong when conditioned on other histone modifications using Torus 

(Extended Data Fig. 3b). H3K36me3 was shown by a recent study60 to be recognized by the 

m6A writer protein METTL14 to facilitate m6A installation on mRNA, thus validating our 

finding.

We then compared contributions of RNA-related and transcriptional features (TFBSs) to 

m6A-QTLs. We used fine-mapping to quantify the probability of a SNP being a causal 

variant of m6A, known as Posterior Inclusion Probabilities (PIPs). We estimated the 

proportion of causal variants attributed to a feature by summing the PIPs of all variants 

located within that feature (see Methods). Using this approach, we find that TFBSs and RBP 

binding sites make about equal contribution to m6A-QTLs (17.8% and 15.8%, respectively) 

and RRACH motif contributes 1.95% (Extended Data Fig. 3c).

These findings support a tight connection between transcriptional processes and m6A 

installation. Two models have been suggested to explain this connection (Fig. 3b). In the first 

model (“transcription rate model”), m6A installation is affected by the progression rate of 

RNAPII, with fast progression associated with lower m6A methylation57. In the second 

model (“TF recruitment model”), the methyltransferase complex is recruited to mRNA by 

TFs, e.g. ZFP21758, CEBPZ23 or adaptor proteins, e.g. SMAD2/356.

If the transcription rate model is correct, we expect correlation between variant effects on 

transcription rate and variant effects on m6A level in the matched transcript. To assess this, 

we ascertained the lead SNPs of transcription-rate-QTLs from the same LCL samples43, but 

find little correlation between transcription rates and m6A effect sizes (Fig. 3c). As a positive 

control, we observed strong correlation of transcription-rate-QTL effects with eQTL effects 

(R2 = 0.69 and 0.65) and with protein-QTL effects (R2 = 0.37 and 0.42) in the matched 

transcripts (Extended Data Fig. 3d, 3e). These data suggest that overall transcription rate 

may not determine m6A deposition in LCLs. It remains possible that other mechanisms such 

as RNAPII pausing explain the observed correlation between m6A and transcription rates in 

an earlier study57.

To examine the TF recruitment model, we used Torus to assess enrichment of m6A-QTLs for 

binding sites of individual TF while accounting for enrichment of m6A-QTLs in H3K27ac, a 

general transcription marker. 50 TFs are significantly enriched at Bonferroni-corrected P 
value < 0.05 (Fig. 3d, Supplementary Table 2). We then selected a few of these based on 

literature review and performed co-immunoprecipitation (co-IP) experiments. Two TFs 

robustly pull down m6A methyltransferase components in LCLs, including RBBP5, a 

component of COMPASS histone H3K4 methylase complex, and BACH1, a regulator of 

oxidative stress61,62 (Fig. 3e, Source Data Fig. 3e), supporting the “TF recruitment model”.
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Analysis of molecular QTLs suggests context-dependent effects of m6A.

It is generally believed that specific reader proteins recognize m6A and mediate downstream 

effects1,2. The best-studied readers are known to promote translation (e.g. YTHDF1), 

mRNA degradation (e.g. YTHDF2), or affect mRNA nuclear processing (e.g. 

YTHDC1)3,6–8. We use m6A-QTLs as natural perturbations of m6A to explore its effects on 

five possible downstream traits: mRNA expression, ribosome binding, protein level, mRNA 

decay rate and alternative polyadenylation (APA)29,33,36,43.

We first ascertained lead m6A-QTLs at different P value thresholds, and then estimated the 

percentage of m6A-QTLs that are also QTLs of other traits using Storey’s π1 method43,47. 

We find m6A-QTLs are more likely to be other QTLs than random SNP-gene pairs, with 

increased sharing at more stringent P value threshold (Fig. 4a), suggesting functional 

connections between m6A and other molecular phenotypes, as expected from earlier 

studies1,2. The π1 values are generally lower than those between QTLs along the cascade 

from transcription to protein43. One potential problem is that sharing of m6A-QTLs and 

other molecular QTLs may be confounded by eQTLs, as transcription may influence both 

m6A and other traits. However, the majority of m6A-QTLs are not chromatin-associated 

eQTLs, suggesting that in practice, this is not a large concern (Extended Data Fig. 4a).

Based on our current understanding that m6A function is mediated by reader proteins with 

certain downstream effects (e.g. increase of translation efficiency by YTHDF1), we 

hypothesize that m6A-QTLs and other molecular QTLs have consistent effect directions. To 

test this hypothesis, we first confirmed that molecular traits along the cascade from 

transcription to translation show high positive correlations in QTL effects (Extended Data 

Fig. 4b). Surprisingly, the effect sizes of m6A-QTLs and other molecular traits are poorly 

correlated (Fig. 4b). This lack of overall correlation suggests that effects of m6A on 

downstream molecular phenotypes may be heterogeneous, with mechanisms varying across 

transcripts.

The context dependency of m6A function may be partially mediated by RBPs bound near 

m6A peaks. For example, binding by different m6A readers may lead to different 

downstream effects. To examine this hypothesis, we stratified our effect size correlation 

analysis by m6A peaks bound by different RBPs (using eCLIP-seq data). In 8 RBPs, we 

observed significant correlations (FDR < 10%) between effect sizes of m6A-QTLs and at 

least one related molecular trait (Fig. 4c). This result suggests that m6A function may vary 

according to binding of specific RBPs.

m6A affects translation efficiency in a context-dependent manner.

To further investigate context-dependent effects of m6A, we made use of data from an earlier 

study8 of m6A effects on translation in HeLa cells. This study examined the impacts of m6A 

depletion (by METTL3 knockdown) and YTHDF1 (m6A reader) knockdown on translation 

efficiency (TE) of all transcripts, measured by ribosome profiling. Across all m6A modified 

transcripts, the effects of m6A depletion on TE are heterogeneous, with similar numbers of 

up- and down-regulated genes (Extended Data Fig. 4c). To assess the impact of RBP 

context, we compared the effects of m6A depletion on TE of transcripts containing m6A 
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sites targeted by an RBP vs. transcripts not targeted. Among 121 tested RBPs, 33 showed 

statistically significant differences in target sites vs. non-targets (FDR < 5%) (Fig. 4d). 

Again, the effects are quite heterogeneous with almost equal numbers of RBPs involved in 

up- and down-regulation of TE upon m6A depletion. This list includes all four RBPs 

(YBX3, GRWD1, HLTF and PPIG) we identified from m6A vs. ribosome QTL effect 

correlation analysis (Fig. 4c). Furthermore, the effect directions were consistent between two 

studies: m6A depletion resulted in higher TE of the RBP’s targets, in agreement with 

negative correlations of m6A versus ribosome QTL effects (Fig. 4c and 4d). These results 

provide independent support to the hypothesis that the effects of m6A on TE depend on 

contexts, in particular binding of specific RBPs.

Interestingly, even in transcripts targeted by the classical m6A reader, YTHDF1, the effect of 

m6A may be more complex than previously thought. While depletion of YTHDF1 leads to 

an overall reduction of TE in transcripts harboring YTHDF1-bound m6A peaks, ~33% 

YTHDF1 targets show opposite effects (Extended Data Fig. 4d). This observation suggests 

the possibility that the action of reader proteins may be modulated by additional, yet-to-

identify factors, diversifying m6A effects.

We validated an m6A effector protein, YBX3, as a translation repressor of m6A-modified 

and YBX3-bound transcripts (Fig. 4e). We knocked down YBX3 in HeLa cells and 

performed polysome profiling followed by RT-qPCR. We find more RNAs in polysome-

bound fractions in YBX3-depleted cells compared with control (Extended Data Fig. 5a), 

suggesting YBX3 as a translation repressor. To further validate YBX3 function, we selected 

five transcripts harboring m6A peaks overlapping with YBX3-bound sites, all of which show 

elevated TE upon METTL3 knockdown (Fig. 4e). We quantified these transcripts in three 

polysome-bound fractions using RT-qPCR upon YBX3 knockdown. TE of these target 

transcripts is elevated in YBX3-depleted cells compared with control in all but one case 

(Extended Data Fig. 5b). As a negative control, three YTHDF1-targeted m6A transcripts do 

not show TE elevation upon YBX3 depletion. These results suggest that YBX3 likely 

mediates m6A effect by repressing translation of YBX3-bound m6A transcripts. This effect 

is opposite of YTHDF1’s effect (increasing translation), providing a partial explanation of 

why m6A downstream effects appear heterogeneous (Fig. 4b, d).

m6A-QTLs make a significant contribution to the genetics of complex traits.

To study the role of m6A-QTLs in human phenotypic variation, we collected GWAS 

summary statistics of 45 complex traits with an emphasis on immune and blood-related 

traits. For comparison, we also included eQTLs and splicing QTLs (sQTLs) from LCLs. All 

three types of QTLs show excess of low P values in GWAS of these traits, e.g. lymphocyte 

counts (Fig. 5a, Extended Data Fig. 6a). We used Stratified LD score regression (S-

LDSC)41,63,64 to formally test enrichment of GWAS variants in m6A-QTLs. S-LDSC is a 

tool for assessing how the heritability of a complex trait is partitioned among functional 

features, while controlling for LD, allele frequency and other baseline features. Following a 

previously used strategy37,40, we fine-mapped m6A-QTLs48 and used the resulting PIPs as 

an annotation, representing likely causal m6A variants (known as Quantitative Trait 

Nucleotides, or QTNs). We find 10- to 20-fold enrichment of heritability in m6A-QTNs in 
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several selected traits (Fig. 5b, Extended Data Fig. 6b). The enrichment increases to 15- to 

35-fold (Extended Data Fig. 7a), when we used m6A-related annotations (Extended Data 

Fig. 7b), such as RBP binding, as priors to improve fine-mapping (see Methods). Including 

QTNs of expression and splicing in S-LDSC only modestly reduced the enrichment level 

(Fig. 5b). We note, however, that m6A may affect expression (e.g. by changing mRNA 

stability) and pre-mRNA splicing, therefore adjusting eQTLs and sQTLs likely leads to 

underestimation of m6A-QTL enrichment. Expanding S-LDSC analysis to all 45 traits, we 

find that m6A-PIPs are enriched in most immune and blood traits (Fig. 5c, Extended Data 

Fig. 7c), and a small number of other traits such as Coronary Artery Disease (CAD) and age 

at menopause, in which immune systems may play a significant role65–67. These results thus 

support the specificity of our finding, and are consistent with the known role of m6A in the 

immune system68–71.

Using S-LDSC, we compared the relative contributions to trait heritability by m6A-QTLs, 

eQTLs and sQTLs (FDR < 10%). For traits in which m6A-QTNs show enrichment (Fig. 5c), 

m6A-QTLs explain about 2–5% of heritability, comparable to sQTLs and roughly 50–100% 

of the heritability explained by eQTLs (Fig. 5d, Extended Data Fig. 8). These estimates are 

likely conservative, as many QTLs below the FDR cutoff may contribute to trait heritability. 

Nevertheless, given the established roles of eQTLs and sQTLs, this relative comparison 

suggests that m6A-QTLs can make a significant contribution to heritability of complex traits.

TWAS using m6A-QTLs.

To highlight the potential of using m6A-QTLs to identify specific risk genes, we performed 

TWAS72,73 using m6A as a molecular-level trait. We built prediction models of m6A levels 

using genetic variants as explanatory variables, then assessed if genetically determined m6A 

levels correlate with specific phenotypes using TWAS/FUSION72. We find a number of m6A 

peaks passing Bonferroni threshold across a range of immune and blood-related traits (Fig. 

6a) as well as several other phenotypes (Extended Data Fig. 9a). These results show limited 

overlap, at the level of genes, with TWAS results using eQTLs and sQTLs mapped in LCLs 

(Fig. 6b, Supplementary Table 3), suggesting that m6A variation represents a distinct path 

from genetic to phenotypic variation.

We performed an in-depth analysis of lymphocyte count. m6A-TWAS identified a total of 30 

significant m6A peaks in 28 genes (Fig. 6c). Since TWAS associations can result from LD 

and/or pleiotropic effects73, we conducted colocalization analysis74 to identify cases where a 

single causal variant drives both m6A-QTL and GWAS association. Among 30 peaks, 10 

have high colocalization probabilities (PP4 from Coloc > 0.5) (Supplementary Table 4). As 

one example, an m6A peak in the DDX55 gene shows high colocalization probability (PP4 = 

0.929). The SNP driving colocalization result, rs3204541, is the top SNP in both m6A-QTL 

and GWAS (Fig. 6d). A conditional association test adjusting for m6A shows that the TWAS 

association almost fully explains the GWAS signal in the region (Fig. 6e). The same m6A 

peak in DDX55 is also found by m6A-TWAS in leukocyte counts (Extended Data Fig. 9b, 

c). DDX55 is a DEAD-Box Helicase gene, and its paralog gene, DDX10 is implicated in 

myelodysplastic syndrome, a disease with abnormal blood cell counts75. Importantly, 

DDX55 is not found by expression or splicing-TWAS (both P values ≥ 0.1). Together, our 
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TWAS results highlight the promise of using m6A-QTLs to reveal mechanisms in GWAS 

loci where genetic effects are not mediated by expression or splicing.

Discussion

We report a systematic genetic analysis of the most abundant mRNA modification—N6-

methyladenosine. Our analysis reveals insights into m6A regulation, highlighting the 

importance of both RNA-features (e.g. RBPs, secondary structure) and transcriptional 

regulation (e.g. TF binding). We find that the functional effects of m6A on downstream 

processes, in particular translation, can be highly heterogeneous and depend on binding of 

specific RBPs. Our integrated analysis of m6A-QTLs with GWAS supports the role of m6A 

as an important link from genetic to phenotypic variation.

Using an analysis that correlates SNP effects on RBP motifs and m6A levels, we identified 

specific RBPs such as SRSF1, that may be m6A regulators (Fig. 2e). This analysis, however, 

has some limitations. It may not be able to distinguish RBPs from the same families that 

share similar motifs. Due to small sample size of our study, it may also be underpowered to 

detect many more RBPs regulating m6A. The enrichment of m6A-QTLs in transcription-

related features supports an emerging connection between mRNA modification and 

transcriptional control56–58. As a support of the “recruitment model” (Fig. 3b), TF binding 

sites are enriched in m6A-QTLs and several TFs interact with m6A methyltransferase 

complex in LCLs. Given additional TF-methyltransferase interactions reported previously in 

pluripotent stem cells56,58 and AML23, we think TF-methyltransferase interactions may 

broadly exist and participate in cell-type-specific m6A regulation.

Previous studies found that m6A promotes translation efficiency and mRNA decay via 

interactions with reader proteins2. Our results add nuance to this model, suggesting that m6A 

effects on downstream processes, e.g. translation, are much more heterogeneous across 

transcripts than previously appreciated. We identified RBPs that may influence the effects of 

m6A, including some with reported functions in RNA processing (Fig. 4c, d), including 

YBX376, and HNRNPA177. The RBPs uncovered here provide a resource for future studies.

We hypothesize two potential mechanisms that may explain context-dependent m6A effects. 

First, there may be more m6A reader proteins, with potentially different effects, than are 

currently known; some could be readers that respond to m6A through structure-switch 

mechanism78. Alternatively, the functions of RNA regulators may depend on m6A, even if 

they do not directly bind and recognize m6A nor respond through structure switch (and 

hence not readers). These proteins may bind the motif that harbors m6A or a motif nearby 

m6A sites, and compete with bona fide reader proteins on the modified transcripts. Future 

studies are needed to assess these RBPs and their interactions as well as competition in RNA 

binding.

Our integrated analysis of m6A-QTLs and GWAS highlights the importance of m6A to the 

etiology of complex traits and adds to the growing evidence that post-transcriptional 

regulation (PTR) plays a key role in common diseases. Genetic variants affecting RNA-

processing are almost as common as, and are largely independent from, those affecting 
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transcription79. These variants have been implicated in a number of diseases including cystic 

fibrosis, type 2 diabetes, Crohn’s disease, and lung cancer79. Identifying variants with PTR 

effects, however, is more challenging than transcriptional effects. Mapping m6A-QTLs may 

be an effective strategy to address this challenge, given the central role of m6A modification 

in almost every step of RNA processing (Extended Data Fig. 10).

One potential caveat of our GWAS analysis is the mismatch between population ancestries 

of QTL (African) and GWAS (mostly European) data. The impact of this mismatch, 

however, is likely limited. Studies have suggested that associations with complex traits, 

especially causal variants, are broadly shared across populations80. A systematic study with 

multiple complex traits estimated that more than 80% of causal variants are shared between 

Europeans and Asians81. In another study, TWAS on asthma using eQTL models trained on 

data from Europeans and Africans gave broadly similar results82. Given these findings, we 

think many m6A-QTNs (causal variants) in Yoruba LCLs are likely shared in Europeans. 

Therefore, population mismatch likely has a small impact in our S-LDSC analysis, which 

used PIPs as SNP annotations; and in our TWAS, where results are often driven by single 

shared variant between molecular QTL and GWAS83. Finally, we note that population 

mismatch will generally reduce the signal, i.e. sharing of QTL and GWAS effects, leading to 

underestimation of enrichment in S-LDSC and false negatives in TWAS, but not false 

positive findings.

Moving forward, we think there are two main challenges and opportunities to leverage m6A-

QTLs to study disease genetics. First, more work needs to be done to characterize the 

possible mechanisms of how m6A-QTLs influence phenotypes. Second, eQTLs or sQTLs 

are often cell-type- and condition-specific84,85. For m6A, recent studies suggest that its 

effects on decay or translation are likely strongest in cells undergoing differentiation18,86 or 

stimulation9,10. A major future direction is thus to map m6A-QTLs under various disease-

related cellular and physiological contexts.

Materials and Methods

Cell culture.

Human lymphoblastoid cell lines (LCL) of 60 Yoruba individuals were purchased from 

Coriell Institute. These 60 individuals were chosen by the availability of other molecular 

QTL data in previous studies27,29,30,33,43. Upon receiving them, cells were split into flasks 

as technical replicates and were processed independently thereafter. Cells were cultured and 

propagated in RPMI 1640 medium with 15% FBS at 37ºC and 5% CO2 until harvest.

RNA extraction and m6A-seq.

Cells were harvested by 1,000x g centrifugation. Total RNA was extracted from cell pellets 

using TRIzol (Invitrogen) and Direct-Zol RNA extraction kit (Zymo Research cat. R2072) 

according to the manufacturer’s instructions. mRNA was further purified with Dynabeads 

mRNA DIRECT purification kit (Thermo Fisher, cat. 61011). mRNA was adjusted to 15 

ng/µl in 100 µl and fragmented using Bioruptor ultrasonicator (Diagenode) with 30s on/off 

for 30 cycles.
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Approximately 50 ng of fragmented mRNA was saved as input sample and ~1,450 ng was 

subject to m6A-immunoprecipitation (m6A-IP) with EpiMark N6-Methyladenosine 

enrichment kit (NEB cat. E1610S). To minimize the variation due to IP experiment, which is 

often a great source of technical noise in IP-based sequencing, m6A-IP was performed by a 

robot (KingFisher Duo Prime System) for 12 samples at a time. Though a monoclonal 

antibody was used, we further controlled for lot variation by pooling antibody prior to 

aliquot to each of the 60 samples.

RNA eluted from m6A-IP was cleaned using RNA Clean and Concentrator (Zymo Research, 

cat. R1013). Input and IP samples were then used to prepare library with KAPA mRNA 

Hyper Kit (Roche, Cat. KK8541). A total of 240 libraries (duplicates per individual, each 

with an input and IP) were constructed in three batches. All libraries were sequenced by the 

HiSeq4000 platform at SE50 mode at the sequencing core facility at the University of 

Chicago. For each batch of library constructed, all libraries (with distinct index) were pooled 

and sequenced at a lane together for 3–5 repetitive lanes. This study design balanced the lane 

effect on each batch of libraries. In sum, about 30 million reads were obtained for each 

library and reads from technical replicates were pooled to result in 60 million reads for each 

input and IP sample per individual.

m6A-sequencing data alignment.

For each dataset, the raw sequencing data were mapped to the hg19 reference genome by 

Hisat2 with parameter --known-splicesite-infile <splice-file extracted from Refseq hg.19 

GTF file> -k 1. We used WASP87 to control for the alignment bias due to genetic variations. 

The BAM files obtained from alignment are used as an input file for reads quantification.

Joint m6A peak calling across samples.

Genes (concatenated exons) are divided into 50-bp consecutive bins where read counts of 

input and IP sample were quantified. Second, we applied a two-tailed Fisher’s exact test to 

call bins significantly enriched in IP vs. input. Specifically, we constructed a contingency 

table consisting of the read counts of a bin in the input (a) and in the IP (b), and the median 

read count of the bins in the gene containing the bin in the input (c) and in the IP (d). The 

odds ratio is represented as b ⋅ c
d ⋅ a . The FDR control procedure was performed on each gene 

and an FDR < 5% cutoff was used to call a bin peak for each sample. Third, to obtain a 

common set of peaks for all QTL analysis, we define joint m6A-peaks by requiring a bin to 

be called as peak in at least 5 individuals. Neighboring bins that satisfied this criterion were 

merged into a single peak. Then, a pair of read counts (the input and IP) were obtained for 

each of the joint m6A peaks. Finally, we filtered out peaks with zero read in any of the 

samples.

To obtain consensus motif of m6A, we used Homer288 to search for de novo motifs in m6A 

peak sequences with the parameter -len 5,6,7 -rna -S 5 -noknown. As a background control, 

we extracted sequences from random peaks of 200-bp size that were sampled from mRNA 

transcript.
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To visualize the distribution of m6A peaks on the transcript, we generated meta-gene plot 

using the R package Guitar89 with default settings.

m6A-QTL mapping.

m6A-seq experiments are characterized by a pair of input and immunoprecipitation (IP) 

measurements. For a given testing window (as defined by joint m6A-peaks), the read counts 

of IP (immunoprecipitated) and input (regular RNA-seq) in individual i are denoted as Y i
(1)

and Y i
(0), respectively. Let Ti

(1) and Ti
(0) be the library size of IP and input, respectively. We 

define log odds ratio (log-OR) as the m6A quantitative phenotype:

yi =
Y i

(1)/T i
(1)

Y i
(0)/T i

(0) (1)

We next corrected for GC content and sample differences as shown in the Supplementary 

Note. We then standardized the log2OR by subtracting out the mean and dividing by the 

standard deviation of each peak followed by quantile normalization. We applied a linear 

model implemented in FastQTL46 to test the association between phenotypes and genotypes, 

adjusting for 15 principal components (PCs). The number of PCs was chosen to maximize 

power. We tested cis-associations between peaks and SNPs within 100 kb, as explained in 

the text.

To account for multiple genetic variants tested for each peak, we performed 1,000 rounds of 

permutation and used the beta-approximation scheme in the FastQTL to obtain empirical P 
values for each peak. We then used Storey’s q value method47 to obtain false discovery rate 

(FDR), accounting for multiple peaks tested.

Genotype data and imputation.

We downloaded the latest 1000 genomes project combined variant calling data release90 

where 50 samples of ours are covered in this dataset. For the rest 10 samples, there are 8 

sample covered in the chip array genotyped data from 1000 genomes. For the two 

individuals that are not covered in the 1000 genomes genotype data, we obtained their 

genotype data from HapMap and lifted over the hg18 coordinates to match the others’ hg19 

coordinates. To fill the missing genotypes of these 10 individuals that are not covered in the 

1000 genomes combined variant call dataset, we pre-phased and imputed missing genotypes 

using Impute291,92. Overall, we obtained genotypes for 9,821,958 SNPs that has MAF > 

5%.

Spatial distribution and genomic annotation of the m6A-QTLs.

To characterize the spatial distribution of the m6A-associated SNPs with respect to the m6A 

peaks, we calculated the distance from the SNP to the center of the corresponding peak. 

Since m6A is an RNA modification, the distances were calculated with respect to the 

transcript strand where a negative distance indicates an upstream location of the transcript 

and vice versa. m6A-QTL SNPs were assigned to 5’ UTR, CDS, 3’ UTR, intron and 
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intergenic annotation using the R package ChIPseeker93. For SNPs that could be assigned to 

different annotation due to multiple isoforms of a gene, the annotation priority was set to be 

UTR > CDS > Intron > Intergenic.

Comparisons between m6A-QTLs vs. eQTLs or sQTLs.

To compare m6A-QTLs with eQTLs (both at FDR < 10%), we compared the overlap of 

ePeak-harboring genes and eGenes in the same cohort of YRI LCL samples36. Then, for 

those genes with both ePeak and eGene mapped, we computed the pairwise distances and 

LD between the lead ePeak SNPs and the eGene SNPs. To compare m6A-QTLs with sQTLs 

(both at FDR < 10%), we used the sQTL data from a larger cohort of GEUVADIS YRI LCL 

samples (n = 87)43. We mapped intron clusters with at least one significant sQTL (denoted 

as eSplicing intron clusters) and compared the overlap of ePeak-harboring genes and genes 

containing eSplicing intron clusters. For genes with multiple m6A ePeaks and/or multiple 

eSplicing intron clusters, we computed the pairwise distances and LD between all pairs of 

the lead ePeak SNPs and the eSplicing SNPs.

Functional annotations of m6A-QTLs.

Our functional annotations include m6A consensus motif (RRACH) in m6A peaks, RNA 

binding protein (RBP) CLIP-seq peaks in K562 and HepG2 cells from ENCODE50, 

transcriptional factor (TF) and histone modifications ChIP-seq peaks in LCLs from 

ENCODE59, experimentally determined RiboSNitch51 and predicted microRNA binding site 

by TargetScan52.

To annotate SNPs by the m6A consensus motif (RRACH) in m6A peaks, we used 

MotifBreakR94 to find instance of m6A motifs overlapping with SNPs. We then intersected 

these motif matches with the joint peaks to obtain motifs in m6A peaks. For RBP CLIP-seq 

peaks, we intersected the peaks of the two replicates and from the two cell lines to obtain a 

peak set that are consistent across replicates and cell lines. These peaks shared across cell 

lines are more likely to be functional in LCL than those in single cell line. To define ChIP-

seq peaks for TFs and histone markers, we chose peaks that are “optimal IDR peaks” as 

defined by the ENCODE processing pipeline. We used the microRNA binding sites 

predicted by TargetScan52, limit to the sites that are targeted by microRNA expressed in the 

LCLs. MicroRNA expression data were obtained from the microRNA-seq data of LCLs 

samples from GEUVADIS95. We defined a microRNA being expressed in LCLs by 

requiring the median read count across individuals to be at least five.

Enrichment of functional annotation in m6A-QTLs.

We took the independent SNPs from the fine-mapped m6A-QTLs (see Fine-mapping m6A-

QTL Section) by choosing SNPs with the maximum posterior inclusion probability (PIP) per 

credible set. We then compared the number of QTLs vs. the number of random control SNPs 

overlapping with a functional annotation using the two-tailed Fisher’s exact test. To generate 

the control SNP set, we used a modified version of SNPsnap53 to sample 100 sets of SNPs 

that match the allele frequencies, numbers of SNPs in LD, distances to the nearest genes, 

gene density as well as annotations about SNP locations relative to genes (5’ UTR, CDS, 3’ 

UTR, intron and intergenic regions).
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We also used Torus39 as an alternative method to assess the enrichment of functional 

annotation in the m6A-QTLs. Torus fits a logistic regression model to estimate an 

enrichment parameter for each annotation, which enables joint analysis of multiple 

annotations.

Learning motifs of RBPs from CLIP-seq data.

For each RBP, we took the top 3,000 peaks as ranked by peak strength of each replicate and 

retain the ones that are consistent in both replicates. We then extend 5 bp at both sides for 

peaks that are shorter than 10 bp. The sequence of the resulted peaks served as target 

sequence for de novo motif search by Homer2. To generate matched background peaks for 

each RBP, we first generated a large set of random peaks of length 70 bp (the mean width of 

CLIP-seq peaks) on the transcribed region including both exons and introns. Then we 

annotated the genomic locations (5’ UTR, CDS, Intron, 3’ UTR, etc.) of the top CLIP-seq 

peaks and drew random peaks with matched distribution of genomic annotation. At least one 

motifs of P value < 1 × 10−10 were obtained for 113 RBPs. For each RBP, the top 2 motifs 

sorted by P value were used for motif correlation analysis of RBP binding (Fig. 2e).

To visualize the motifs, we used the R package Loglas96 to generate sequence logo plots that 

highlight both nucleotide conservation and depletion.

Fine-mapping m6A-QTLs, eQTLs and sQTLs.

Many significant m6A-QTLs are likely not causal variants but tagging the causal SNPs. To 

better identify independent associations and likely causal variants, we performed fine-

mapping of m6A-QTLs using the state-of-art tool SuSiE48. We used the standard version of 

SuSiE that takes individual-level phenotype and genotype data. For SuSiE parameters, the 

maximal causal variants per region was set to 3 and estimate_prior_variance = TRUE.

We first fine-mapped m6A-QTLs with uniform prior inclusion probability and applied this 

version in most of our analyses including enrichment analysis comparing m6A-QTLs with 

control SNPs by Fisher’s exact test, m6A-QTL RBP-motif break analysis and partition of 

GWAS traits heritability analysis. We also performed another version of fine-mapping that 

leveraged RNA annotations including RiboSNitch, RBP binding sites by using informative 

priors in SuSiE fine-mapping. For example, a SNP close to a peak and located in an RBP 

binding site would have a higher prior probability of being a causal variant. The informative 

prior probability used in fine-mapping was derived from the functional annotation 

enrichment analysis using the program Torus with flag: -dump_prior. We used the RNA-

features-informed fine-mapping results in the S-LDSC analysis of enrichment of GWAS 

variants in m6A-QTNs (Extended Data Fig. 7).

Similarly, we fine-mapped eQTLs and sQTLs using SuSiE on individual-level expression 

and splicing data in GEUVADIS YRI LCL samples with uniform prior and the same 

parameter settings as fine-mapping m6A-QTLs.
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Evaluating the role of RBP binding in regulating m6A levels.

We checked whether the impact of genetic variants on RBP binding is correlated with the 

effect on m6A levels, measured by m6A-QTL effect size, in a directionally consistent 

manner. To assess the effect of genetic variants on RBP binding affinity, we used 

MotifBreakR94 to map SNPs that breaks a RBP motif. A cutoff of P value < 1 × 10−3 was 

used to filter the motif match result in the parameter setting. To enhance signals, we used 

fine-mapped m6A-QTLs as described in Fine-mapping m6A-QTL Section. To include more 

SNPs in this analysis, we used all SNPs with PIP > 0.5 and for ePeaks without SNP PIP > 

0.5, we included the maximum PIP SNPs to select likely causal SNPs in this analysis. For 

each RBP, we chose the motif-breaking SNPs and peak pairs that are within 0.5 kb range 

with the assumption that m6A is mainly affected by RBPs bound close to the m6A sites. 

RBPs with less than 10 SNP-peak pairs were not included in the analysis. In total, we 

assessed the correlation between binding affinity change of 37 RBP motifs and m6A-QTL 

effect sizes. Storey’s q value method was used for FDR control.

Estimating contribution of RNA features and TFs to the m6A-QTLs.

To compare the relative contribution of RBP binding, secondary structure, RRACH motif, 

microRNA binding and TF binding to the installation of m6A, we estimated the proportion 

of putative causal m6A-QTNs falling in each of these annotation categories. Specifically, we 

took all SNPs from the credible sets of SuSiE fine-mapping and summed the PIP of SNPs in 

each annotation category to obtain an estimation about the expected “number” of causal 

SNPs related to each mechanism. To compute the proportion, we divided the summed PIP of 

each annotation category by the sum of PIP across all SNPs in credible sets.

Joint analysis of transcription-rate-QTLs and m6A-QTLs.

We downloaded published transcription-rate-QTL data43 where transcript rate was measured 

by 4SU-seq at two labeling time points (30 min and 60 min) in the same cohort of YRI 

samples as in our study. 4SU-seq labels newly synthesized RNA using nucleotide analog 4-

thiouridine (4SU), allowing for pulldown of the labeled newly synthesized RNA for 

sequencing. We note that 4SU-seq quantifies the overall transcription rate, but does not 

distinguish different events (e.g. PolII pausing vs. slow progression) leading to transcription 

rate change.

Validating TFs interaction with m6A methyltransferase by co-immunoprecipitation 
experiments.

To experimentally validate that some TFs interact with m6A installing machinery, we 

performed co-immunoprecipitation (co-IP) experiments for several TFs following a modified 

protocol from an earlier study56. Briefly, 150 µl LCL cell pellet was washed with 10 

volumes of PBS once, then washed with 10 volumes of hypotonic lysis buffer (10 mM Tris-

HCl pH 7.5, 10 mM KCl, 2 mM MgCl2, 0.2 mM EDTA, 0.2 mM DTT, 10 mM sodium 

butyrate, 1× protease and phosphatase inhibitor cocktail) once. The pellet was resuspended 

in 8 volumes of hypotonic lysis buffer for 5 minutes to swell cells. We then homogenized the 

swollen cells using the “loose” pestle of a 2-ml Dounce homogenizer for 200–300 strokes. 

Nuclei were pelleted at 800 g for 5 minutes followed by washing once with hypotonic lysis 
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buffer. The nuclei pellet was then resuspended in 4 volumes of nuclear lysis buffer (20 mM 

Tris-HCl pH 7.5, 50 mM KCl, 100 mM NaCl, 2 mM MgCl2, 10% glycerol, 0.1% Tween20, 

0.2 mM EDTA, 0.2 mM DTT, 10 mM sodium butyrate, 1× protease and phosphatase 

inhibitor cocktail). The nuclei were homogenized by 150 strokes of the “tight” pestle of a 2-

ml Dounce homogenizer. After nuclear lysis, Turbo DNase was added at a 1:20 ratio and the 

mix was incubated at 16ºC with rotation for 1 h. The resulting lysate was then cleared by 

centrifuge at 16,000 g, 4ºC for 20 minutes. Immunoprecipitations were performed by 

incubating cleared lysate with antibody specific to TFs (see Supplementary Table 5 for 

details of antibodies used) and 20 µl of corresponding protein A/G beads for 4 hours at 4ºC. 

We then applied 5 rounds of stringent washes using dialysis buffer (20 mM Tris-HCl pH 7.5, 

50 mM KCl, 100 mM NaCl, 2 mM MgCl2, 10% glycerol, 0.2 mM EDTA, 0.2 mM DTT, 10 

mM sodium butyrate, 1× protease and phosphatase inhibitor cocktail) followed by elution in 

1× Laemmli SDS sample buffer.

Molecular QTLs from earlier studies.

We collected QTL data of multiple molecular traits in YRI LCLs from earlier studies, 

including transcription rate, mRNA levels, mRNA decay, mRNA splicing, ribosome loading 

and protein levels. We used processed phenotype data and YRI genotypes complied in Li et 

al.43 (downloaded from http://eqtl.uchicago.edu/jointLCL/). To map cis-QTLs for these 

molecular phenotypes, we chose SNPs within 100-kb windows around genes using linear 

regression by FastQTL, and regressed out PCs to maximize the number of detected QTLs in 

each molecular phenotype.

Alternative polyadenylation (APA) QTL.

Using the RNA-seq data (input) we generated, we predicted and quantified APA events 

based on sequencing coverage at the 3’ UTR regions using a modified version of DaPars97 

as described in Li et al.43. We find 7,617 putative APA sites. Using the ratio of distal to 

proximal polyA site usage as a quantitative phenotype, we tested its association with 

genotypes within 100 kb range by FastQTL46. 7 PCs were included to maximize the QTL 

discovery. At SNP-level FDR < 10% (Storey’s qvalue method), we obtained 3,586 APA-

QTLs.

Estimation of QTL sharing between m6A and other molecular phenotypes.

Following the procedure of Li et al.43, we first ascertained m6A-QTLs at a given P value 

threshold. We then limited our analysis to the lead SNP per m6A locus; thus, the SNPs we 

include are largely independent. We next assessed the proportion of non-null (π1) from P 
values of the ascertained SNPs in another molecular phenotype, using Storey’s method in 

the qvalue R package47. 80% bootstrap confidence intervals for the π1 estimates were 

computed by resampling P values with replacement 100 times. Control SNPs were randomly 

sampled across the genome.

QTL effect size correlation analysis stratified by RBP binding.

We ascertained lead m6A-QTLs, and grouped m6A peaks bound by different RBPs, 

requiring the genomic intervals of RBP binding sites to be entirely within m6A peaks 
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(results are similar if we require only 1-bp overlap). 82 RBPs with at least 50 data points 

(peak-SNP pairs) were selected. In each group of m6A peaks bound by an RBP, we assessed 

the correlations of effect sizes between m6A-QTLs and QTLs of other molecular 

phenotypes. When computing effect sizes for molecular QTLs, we used the slope of the 

linear regression as a measure of effect size, and did not regress out PCs as that could 

modify effect size estimates43. Significant correlations of effect sizes between m6A-QTLs 

and QTLs of other molecular phenotypes were selected at FDR (Benjamini & Hochberg 

method) 10% threshold.

Re-analysis of ribosome-profiling data of METTL3 and YTHDF1 knockdown in Hela cells.

To validate our finding of heterogeneous effect of m6A on downstream molecular traits, we 

used translation efficiency as an example and re-analyzed the ribosome profiling data of 

METTL3- (m6A methyltransferase) and YTHDF1- (m6A reader) depleted Hela cells from a 

published study8. The detailed description was in the Supplementary Note.

Validating YBX3 function in repressing translation efficiency.

We depleted YBX3 using siRNA (Qiagen, Cat No. SI00355019) in Hela cells and performed 

polysome profiling as described previously8 to assess the effect on translation efficiency. We 

quantified transcripts level of selected targets in three polysome-bound fractions: 

monosome, polysome1 and polysome2 (as indicated in Extended Data Fig. 5a) and non-

polysome-bound fraction for further gene-specific analysis. We selected 5 YBX3 target 

genes from the analysis of ribosome profiling data in m6A depleted cells; all 5 YBX3-targets 

have m6A peaks overlapping with YBX3 CLIP-seq peaks and showed increased TE upon 

m6A depletion. As negative controls, we selected 3 YTHDF1-targets, which showed 

decreased TE upon m6A depletion. For each gene, we normalized the monosome, 

polysome1 and polysome2 fractions by the non-polysome-bound fraction to obtain a 

translation efficiency estimation.

GWAS summary statistics.

We download summary statistics of 45 phenotypes from UK Biobank98, the Price 

laboratory41 and the GWAS Catalog. The GWAS traits and corresponding references are 

listed in Supplementary Table 6.

Testing enrichment of GWAS signals in m6A-QTL.

We extracted GWAS SNPs that also belong to m6A-QTLs (association P value < 1 × 10−4) 

and plotted the QQ-plot of the GWAS P values for those SNPs. Similarly, we plotted GWAS 

SNPs that are also eQTLs or sQTLs (association P value < 1 × 10−4) for comparison. 

Genome-wide GWAS P values were also plotted as a control.

Heritability and enrichment analysis of GWAS summary statistics using S-LDSC.

We partitioned the heritability of complex traits and estimated heritability enrichment of 

m6A-QTL, eQTL and sQTL41,63,64. S-LDSC partitions the heritability of genomic 

annotations using GWAS summary statistics and estimates the enrichment as a ratio of the 
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proportion of heritability explained by an annotation divided by the proportion of SNPs in 

that annotation.

We then constructed a probabilistic (continuous-valued) annotation using PIP (posterior 

inclusion probability) estimates from SuSiE fine-mapping with RNA-features-informed 

prior (Extended Data Fig. 7) or uniform prior inclusion probability (Fig. 5b–d). We applied 

S-LDSC to our QTL-based annotations using separate models for each QTL annotation and 

joint model with all three types of QTL annotations together. In our S-LDSC analysis, we 

adjusted for various baseline annotations of SNPs using a baselineLD model63, including 

gene annotations (coding, UTRs, intron, promoter), MAF bins and LD-related annotations. 

We did not include functional annotations such as enhancer markers in our baseline model, 

because these annotations are likely correlated with the QTL features of interest (e.g. 

enhancers are enriched in eQTLs), and including them will bias our estimated enrichment.

To estimate heritability explained by molecular QTLs, we constructed a binary annotation 

containing all SNPs at given SNP-level FDR cutoffs. We repeated the analysis on m6A-QTL, 

eQTL, sQTL at thresholds of 20%, 10% and 5% FDR (Extended Data Fig. 8). We find our 

conclusion is robust at varying thresholds.

TWAS and heritability analysis of m6A peaks.

TWAS was performed using the FUSION72 software. We trained regression models 

(LASSO, Elastic Net and top SNPs) using our own m6A data in LCLs, published RNA-seq 

data in YRI LCLs95, and splicing data99 using GEUVADIS YRI LCLs data43, and the 

corresponding YRI genotype data. In m6A-TWAS analysis, we computed weights for each 

m6A peak using LASSO and Elastic Net models as well as regression model with the single 

most significantly associated SNPs (using the R function FUSION.compute_weights.R 

provided by FUSION with parameter --models lasso,enet,top1). The best performing model 

in cross-validation was selected for each peak to perform imputation. We used a 100-kb cis-

window, and restricted the genotypes to the set of markers in the LD reference panel (1000 

Genomes European samples) provided on the FUSION website (http://gusevlab.org/projects/

fusion/), as we used the LD reference data for the GWAS-m6A association analysis. 19,130 

m6A peaks had estimated heritability (Extended Data Fig. 2a). We obtained trained weights 

for 918 peaks with estimated heritability significantly greater than 0 (with default parameter 

hsq p = 0.01). We then performed imputation of genetically determined m6A levels and 

estimated GWAS-m6A associations. We selected genome-wide significant m6A peaks/genes 

at Bonferroni-corrected P value < 0.05. Similarly, we built prediction model of gene 

expression as well as splicing (introns with missing values were ignored) and estimated the 

GWAS-gene expression as well as GWAS-splicing associations using FUSION.

Colocalization of m6A-QTL and GWAS associations.

Our colocalization analysis was performed using the Approximate Bayes Factor (ABF) test 

implemented in software Coloc74, which has been incorporated in the TWAS/FUSION 

pipeline. Coloc computes five posterior probabilities (PP0, PP1, PP2, PP3 and PP4), each 

corresponding to a hypothesis – H0: no association with either trait; H1: association with 

trait 1, not with trait 2; H2: association with trait 2, not with trait 1; H3: association with trait 
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1 and trait 2, two independent SNPs; H4: association with trait 1 and trait 2, one shared SNP. 

We ran coloc incorporated in the FUSION pipeline with default parameters for TWAS-

significant associations (using the R function Fusion.assoc_test.R in FUSION software with 

--coloc_P flag) and used PP4 to assess evidence of colocalization. We visualized the 

colocalization of m6A-QTL and GWAS associations using LocusCompareR package 

(https://github.com/boxiangliu/locuscomparer).

Reporting Summary

Further information on research design is available in the Life Sciences Reporting 
Summary linked to this article.

Data availability

The m6A profiles of the 60 YRI samples generated in this study have been deposited in GEO 

repository: accession GSE125377. Raw data associated with Figure 3e is in the 

Supplementary Information.

Code and software availability

The code used for m6A-QTL data processing and analyses are available at: https://

scottzijiezhang.github.io/m6AQTL_reproducibleDocument/index.html.

Our method for joint peak calling is implemented as an R package “MeRIPtools” and is 

freely available at: https://github.com/scottzijiezhang/MeRIPtools.
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Extended Data

Extended Data Fig. 1. Joint m6A peak calling and QTL mapping.
a, Distribution of merged m6A peak length. Dash line marks the mean peak width. b, 
Distribution of all m6A peaks vs. ePeaks on a meta-gene. c, Proportion of all m6A peaks vs. 

ePeaks in each genomic annotation. d, m6A motif learned by Homer2, and visualized using 

EDlogo package. e, Spatial distribution of m6A-QTLs illustrated by density plot of SNP to 

peak distances of m6A-QTL with nominal P-value < 1X10−4 in a 2 Mb window surrounding 

m6A peaks. We also showed the significance by the -log10 P-value of the association tests in 

the blue dots. f, Volcano plot of overall statistics of m6A-QTLs with peak-level FDR < 10% 

(ePeaks). g, Distribution of the number of causal effects of ePeaks (FDR < 10%) by SuSiE 

fine-mapping with uniform prior. We set SuSiE parameters L = 3 (assuming at most three 

causal effects) and coverage = 0.95 (95% coverage for credible sets).

Zhang et al. Page 20

Nat Genet. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 2. Heritability of m6A peaks and independence of m6A-QTLs, eQTL and 
sQTLs.
a, Distribution of estimated heritability of the 19,130 peaks included in the TWAS analysis, 

in which 918 peaks had estimated heritability significantly greater than 0 (minimum 

heritability P-value of 0.01). b, Distribution of estimated heritability of ePeaks (n = 822 

peaks). c, Enrichment (log2 odds ratio) of m6A-QTLs in gene annotations. d, Distribution of 

the LD between the lead ePeak SNP and the eGene SNP in genes that have both ePeak and 

eGene mapped. e, Overlap between ePeak-harboring genes and eSplicing-harboring 

(splicing event with at least one significant sQTL) gene (both at FDR < 10%) mapped in 

YRI LCL samples. f, Distribution of the distance between the lead ePeak SNP and the 

eSplicing SNP in genes that have both ePeak and eSplicing mapped. g, Distribution of the 

LD between the lead ePeak SNP and eSplicing SNP in genes that have both ePeak and 

eSpicing mapped.
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Extended Data Fig. 3. Contribution of RNA features and transcriptional features to m6A 
variation.
a, Enrichment of m6A-QTLs in RNA related features by Torus. Error bars represent the 95% 

confidence intervals. b, Enrichment of m6A-QTLs in the binding sites of RNA polymerase2 

subunit A (POLR2A), and phosphorylated POLR2A at two residues (S2 and S5) by Torus 

joint analysis of all annotations (upper panel), and enrichment of m6A-QTLs in histone 

modifications from Torus joint analysis. Error bars indicate the 95% confidence intervals. c, 
Proportion of putative causal m6A-QTNs in RNA features and transcription factor binding 

site annotations (see Methods). d-e, To confirm that transcription rate affects mRNA and 

protein level, we ascertained transcription rate QTLs (Txn-QTLs) and assessed the 

correlation between transcription rate (Txn)-QTL effect sizes (30 min and 60 min 4sU 

labelling, respectively) and eQTL effect size (panel d, n = 425 and 1,387 SNP-gene pairs), 

and protein-QTL effect sizes (panel e, n = 425 and 408 SNP-gene pairs). Correlation is 
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computed using linear regression. Fitted lines and 95% confidence intervals are shown in 

blue lines and shades.

Extended Data Fig. 4. Downstream effects of m6A are context dependent.
a, The number and fraction of m6A-QTLs in chromatin related genomic regions (using the 

union of promoter and enhancer regions annotated by ChromHMM in GM12878 cell line), 

and in chromatin related eQTLs (eQTLs with nominal P-value < 0.05 and also in promoter 

and enhancer regions). b, High correlations of effect sizes between molecular QTLs along 

the cascade from transcription to translation. Correlation is computed using linear 

regression, in which fitted lines and 95% confidence intervals are shown in blue lines and 

shades. c, Log2 fold change of translation efficiency of m6A methylated transcripts in 

METTL3 knockdown vs. controls. d, Log2 fold changes of translation efficiency upon 

YTHDF1 (m6A reader protein) knockdown. Transcripts harboring YTHDF1-bound m6A 

peaks are labeled in yellow and non-targets in blue.
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Extended Data Fig. 5. YBX3 mediates translation efficiency of m6A modified transcripts.
a, Sucrose gradient A260 absorbance profile from YBX3 knockdown and control Hela cells. 

The arrows indicate the fraction sampled for subsequent qPCR analysis of YBX3 target 

transcripts. This experiment is repeated 2 times. b, Translation efficiency of YBX3 targets in 

comparison with YTHDF1 targets. We accounted for mRNA level variation by dividing 

polysome-bound fraction by the non-polysome-bound fraction. Transcript levels are 

quantified using RT-qPCR. Three polysome-bound fractions, as indicated in panel a, are 

sampled from sucrose gradient fractionation. 2 technical replicates were measured to obtain 

the data. The lower and upper hinges correspond to the first and third quartiles. Horizontal 

line indicates median value, and whiskers correspond to the value no further than 1.5x inter-

quartile range.
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Extended Data Fig. 6. Enrichment of GWAS signal in m6A-QTLs.
a, Quantile-quantile (QQ) plots of P-values from GWAS of selected traits. m6A-QTLs, 

eQTLs and sQTLs are shown in comparison with genome wide SNPs. GWAS SNPs are 

binary annotated using m6A-QTLs, eQTLs and sQTLs with P-value < 1X10−4. b, 

Enrichment of GWAS trait heritability assessed by stratified LD-score regression (S-LDSC). 

Shown are the results of GWAS traits not reported in Fig. 5b. Posterior inclusion probability 

(PIPs) in this analysis are derived from SuSiE with default (uniform) priors. Error bars 

represent the 95% confidence intervals.
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Extended Data Fig. 7. Enrichment of complex trait heritability in m6A-QTNs using RNA-
features-informed priors.
a, Enrichment of selected immune and blood GWAS trait heritability assessed by stratified 

LD-score regression (S-LDSC). PIPs of m6A-QTLs are derived from SuSiE using RNA-

features-informed priors. PIPs of eQTL and sQTL are based on uniform prior. Error bars 

represent 95% confidence intervals. b, Enrichment parameters of annotations that are used to 

derive RNA-features-informed priors (by Torus) for SuSiE fine-mapping. Error bars 

represent the 95% confidence intervals. c, Summary of GWAS traits heritability enrichment 

analysis using m6A-QTL PIP (using RNA-feature informed priors) as annotation. The -log10 

P-value is plotted against the enrichment of heritability. The dots are colored by disease 

category. The red dashed line shows FDR 5% threshold.
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Extended Data Fig. 8. Partitioning complex trait heritability by m6A-QTLs, eQTLs and sQTLs.
Heritability is assessed by S-LDSC in which QTLs are binary annotated with varying SNP-

level FDR thresholds of 5%, 10%, and 20%. Error bars represent standard errors.
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Extended Data Fig. 9. m6A-TWAS identifies putative risk genes in human complex traits.
a, Number of significant m6A-TWAS genes in all 45 GWAS traits. Significance is defined 

by the Bonferroni corrected P-value 0.05. b, LocusCompare plot showing the scatter plot 

and aligned Manhattan plots of leukocyte count GWAS and m6A-QTL association signal at 

the DDX55 locus. c, Manhattan plot of GWAS association signals before and after 

conditioning on the TWAS-predicted m6A level (gray and blue dots, respectively) for the 

leukocyte count at the DDX55 locus.
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Extended Data Fig. 10. m6A modification mediates the impact of genetic variation on human 
complex traits.
Genetic variation exerts its impact on complex traits through varies mechanisms. As one of 

these mechanisms, we propose that variation of m6A modification may lead to variation of 

mRNA processing, including mRNA decay, splicing, APA, export and translation efficiency. 

These variations in turn may change protein levels and functions, and lead to phenotypic 

variations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Mapping common genetic variants associated with m6A.
a, Overall study design and workflow of m6A-QTL mapping. The linear regression model 

for association testing, adjusting for GC content and IP efficiency. b, An example of m6A-

QTL. The left panel shows the box plot of m6A levels grouped by the genotypes of the 

example m6A-QTL (rs1045405). n = 60 biologically independent samples. The lower and 

upper hinges correspond to the first and third quartiles. Horizontal line indicates median 

value, and whiskers correspond to the value no further than 1.5× inter-quartile range. The 

right panel shows the mean coverage of each genotype at the m6A peak. The m6A peak is 

shown by the blue track and the gene model by the gray track. The coverages of input and IP 

libraries are shown in lines and shadows, respectively. c, Spatial distribution of m6A-QTLs 

represented by cumulative fraction of SNPs with increasing distance from m6A peaks at 

varying P value cutoffs of SNP-peak association. d, Quantile-quantile (QQ) plot of P values. 

cis tests (n = 60 individuals) results are plotted in black and results of five permutation tests 
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are shown in different colors. e, Overlap between ePeak-harboring genes and eGenes (both 

at FDR < 10%) mapped in the same cohort of YRI LCL samples. f, Distribution of the 

distance between the lead ePeak SNP and the eGene SNP in genes that have both ePeak and 

eGene mapped.
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Fig. 2: Functional features enriched in m6A-QTLs.
a, Log2 odds ratio enrichment of fine-mapped m6A-QTLs (SNP with the highest posterior 

inclusion probability, or PIP, in each credible set) vs. random control SNPs (see Methods) in 

RNA features by Fisher’s exact test. Error bars represent 95% confidence intervals from 

two-tailed tests. b, Enrichment of m6A-QTLs in RNA binding protein (RBP) binding sites of 

individual RBPs using eCLIP-seq data from ENCODE50 by Torus39,49. The red dashed line 

represents the Bonferroni-corrected P value 0.05 threshold. c, Distribution of m6A-QTL 

effect sizes between SNPs creating vs. breaking the m6A consensus motif. P value was 

computed using Welch’s test (n = 32 SNPs). The lower and upper hinges correspond to the 

first and third quartiles. Horizontal line indicates median value, and whiskers correspond to 

the value no further than 1.5× inter-quartile range. d, An m6A-QTL example illustrating how 

a genetic variant disrupting a RRACH motif could lead to m6A variation. e, RBPs for which 

changes in binding affinities are significantly correlated with fine-mapped m6A-QTL effect 
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sizes (all SNPs with PIP > 0.5, and maximum PIP SNPs for ePeaks without SNP PIP > 0.5). 

Changes in binding affinity are represented by the alteration of motif match scores from the 

reference to alternative allele. Shaded region and line show the 95% confidence interval and 

fitted line from the linear model (n = 7, 5 and 5 SNPs for SRSF1, DDX55 and RPS3, 

respectively).
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Fig. 3: m6A installation is coupled with transcriptional processes.
a, Enrichment of fine-mapped m6A-QTLs (SNP with the highest posterior inclusion 

probability, or PIP, in each credible set) in chromatin features by the two-sided Fisher’s 

exact test comparing m6A-QTLs to control SNPs. The error bars represent 95% confidence 

intervals. b, Two possible models of m6A regulation through transcription. c, Effect sizes of 

ascertained transcription rate QTLs (Txn-QTLs) vs. their effects on m6A level. The 

transcription rate was measured by 4sU-seq in an earlier study43. 4sU-seq of 30 mins 4sU 

labeling (upper, n = 698 SNPs) and 60 mins 4sU labeling (lower, n = 688 SNPs) showed 

similar results. Shaded region and line show the 95% confidence interval and fitted line from 

the linear model. d, Enrichment of m6A-QTL in transcription factor (TF) binding sites of 

individual TFs conditioned on H3K27ac peaks by Torus analysis. The red dashed line shows 

the Bonferroni-corrected P value 0.05 cutoff. e, Western blot of transcription factor (TF) co-

IP experiment. 10% of lysate was loaded as “input”. The cropped blot of each TF of interest 
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is shown, as well as three m6A methyltransferase complex components—METTL3, WTAP 

and VIRMA. These experiments were repeated twice with similar results.
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Fig. 4: Joint analysis of m6A-QTLs and other molecular QTLs.
a, The estimated fractions of m6A-QTLs shared with other molecular phenotypes, measured 

by π1, the fraction of true positives. The five bars in each panel correspond to random SNPs 

and m6A-QTLs at different P value cutoffs. Error bars show 80% confidence intervals (n = 

100 bootstraps). b, Low correlations of effect sizes between m6A-QTLs and related 

molecular QTLs, estimated from linear regression (n = 709, 884, 742, 884 and 393 SNPs-

gene pairs for APA, Expression, Decay, Ribosome and Protein, respectively). c, Correlations 

of effect sizes between m6A-QTLs and related molecular traits QTLs stratified by the m6A 

sites bound by different RBPs. Correlations are determined by linear regression. Shown are 

RBPs having at least one trait significantly correlated trait with m6A at FDR < 10%. Pearson 

correlations are shown by color code and P value by dot size. d, RNA binding proteins 

(RBPs) that modulate the impact of m6A depletion on translation efficiency. For each RBP, 

Welch’s two-sided t test is used to test the log2 fold-change in translation efficiency in RBP 

targets vs. non-targets, upon METTL3 knockdown (n = 11,412 transcripts). RBP targets are 
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defined by transcripts harboring m6A peaks that are bound by certain RBP. Shown are RBPs 

with FDR < 5% (Benjamini & Hochberg method). RBPs with significant correlation 

between m6A-QTL and ribosome-QTL effect sizes are highlighted in blue. e, Distribution of 

log2 fold-change in translation efficiency of YBX3 targets, upon m6A (METTL3) depletion, 

in comparison with non-targets. P value is computed by Welch’s two-sided t test (n = 11,412 

transcripts).
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Fig. 5: Integrated analysis of m6A-QTLs and GWAS data of human complex traits.
a, Quantile-quantile (QQ) plot of lymphocyte count GWAS P values. m6A-QTLs, eQTLs 

and sQTLs are shown in comparison with genome wide SNPs. GWAS SNPs are binary 

annotated using m6A-QTLs, eQTLs and sQTLs with P value < 1 × 10−4. b, Enrichment of 

selected immune and blood GWAS trait heritability estimated by S-LDSC41,63,64. We used 

two QTL annotations: (1) m6A-QTL continuous annotation using PIP from fine-mapping 

(with uniform prior); (2) m6A-QTL PIP annotation conditional on eQTL and sQTL PIP 

annotations (with uniform prior). Error bars represent the 95% confidence intervals. c, 
Summary of GWAS trait heritability enrichment for all 45 traits using m6A-QTL PIP (with 

uniform priors) as annotation conditional on the baseline LD model. The dashed line shows 

the significance threshold at FDR 5%. d, Proportion of GWAS trait heritability explained by 

m6A-QTLs, eQTLs and sQTLs. Because it would be hard to estimate heritability 

contribution using PIP (continues annotation) from fine-mapping, we used binary 

annotations at SNP-level FDR 10% threshold in this analysis. Error bars represent standard 

errors.
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Fig. 6: m6A-TWAS and colocalization analysis.
a, Number of significant m6A-TWAS genes in selected immune and blood-related traits. b, 
Overlaps between significant genes discovered by TWAS analyses using m6A, expression 

and splicing as molecular-level phenotypes. c, Manhattan plot of m6A-TWAS associations of 

lymphocyte count. The dashed line shows the Bonferroni-corrected P value threshold of 

0.05. Genes are colored by Coloc PP.4 (posterior probability of GWAS trait and m6A-QTL 

sharing common genetic causal variants). 10 genes with Coloc PP.4 > 0.5 are labeled. d, 
Aligned Manhattan plots of GWAS and m6A-QTL at DDX55 locus generated by 

LocusCompare. SNPs are colored by LD (r2) with the lead m6A-QTL (rs3204541). e, 
Manhattan plot of GWAS association signal of lymphocyte count at DDX55 locus before 

(gray dots) and after (blue dots) conditioning on the TWAS-predicted m6A level. The top 

panel labels all genes within 200 kb and the significant m6A peak (green).
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