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Abstract: Natural killer (NK) lymphocytes are an integral component of the innate immune system
and represent important effector cells in cancer immunotherapy, particularly in the control of
hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled
the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit
the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells
through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells
has resulted into an improved outcome in children with acute leukemia given human leucocyte
antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified
third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based
on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation,
persistence, and expansion also represent a novel field of investigation with remarkable perspectives
of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary
results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs
deserve further investigation, with the goal of obtaining an “off-the-shelf” NK cell bank that may
serve many different recipients for granting an efficient antileukemia activity.

Keywords: NK cells; receptors; acute leukemia; hematopoietic stem cell transplantation; HLA class I;
killer immunoglobulin-like receptors; NK cell alloreactivity; cytokines; CAR-NK cells; immunotherapy

1. Introduction

Natural killer (NK) cells are cytotoxic and cytokine-producing components of innate lymphoid cells
(ILCs), playing important roles in antiviral and antitumor defense [1,2]. ILCs represent a heterogeneous
group of immune cells that are mainly localized at epithelial surfaces, where they maintain tissue
homeostasis and quickly respond to pathogen invasion by mediating appropriate immune responses.
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They develop from a common lymphoid progenitor but, differently from T and B lymphocytes, lack
the expression of antigen receptors encoded by rearranged genes. ILCs can be considered the innate
counterparts of T cell subsets. In particular, NK cells represent the “cytotoxic ILC”, whereas ILC1, ILC2,
and ILC3 are considered as “helper ILCs” because they are noncytolytic and produce sets of cytokines
unique for each subset. Both NK cells and helper ILC1 share the expression of Tbet transcription factor,
encoded by the Tbx21 gene that is involved in IFN-γ production, but differ in eomesodermin (Eomes)
transcription factor expression. Indeed, NK cells are Tbet+ Eomes+ while ILC1 are Tbet+ Eomes− [3,4].
Recent advances of our knowledge underline a certain degree of plasticity among the various ILC
subsets, mainly by the influence of tissue microenvironment [2,5].

NK cells are equipped with a wide array of germline-encoded inhibitory and activating receptors,
which can be engaged by specific ligands expressed on various cells at the immunological synapse.
NK cell function is a finely tuned balance between activating and inhibitory signaling transmitted
by these receptors. NK cells preserve tolerance towards surrounding healthy cells, mainly through
inhibitory receptors recognizing self-major histocompatibility complex (MHC) class I molecules.
In humans, they are represented by killer immunoglobulin-like receptors (KIRs) and CD94:natural
killer group 2A (NKG2A), specific for classical and nonclassical HLA class I molecules, respectively.
In the process of NK cell “education”, the strength of these inhibitory receptor/ligand interactions
positively correlates with the functional potential of NK cells [6]. Responsible for the “on” signal
are several triggering receptors, including natural cytotoxicity receptors (NCRs) and natural killer
group 2D (NKG2D), whose ligands are mainly stress-inducible molecules. NK cells can attack viral
infected and cancer cells that have downregulated HLA class I molecules through “missing self
recognition”, and/or have overexpressed ligands of the activating receptors leading to “induced
self-recognition”. In peripheral blood (PB), two main NK cell subsets have been identified. A minority
is represented by CD56brightCD16− NK cells, characterized by the expression of CD94:NKG2A and not
KIR, and considered the immature subset. Most PB-NK cells are CD56dimCD16+ and are extremely
diversified in terms of KIRs and CD94:NKG2A phenotype, displaying higher cytotoxic potential [7].

The potent and rapid cytotoxicity exerted by NK cells makes them important and robust effectors
in antitumor immunotherapy. NK cells can respond to different types of chemokines released in
tumor sites and can release chemotactic high mobility group box 1 (HMGB1) capable of amplifying the
antitumor response by attracting additional NK cells at the tumor site [8]. Moreover, preclinical studies
and clinical trials have demonstrated the nontoxicity and efficacy of the use of allogeneic NK cells
against various hematological malignancies [9–12]. Although acute myeloid leukemia (AML) patients
have been more investigated in NK cell-based approaches, also chronic myeloid leukemia (CML)
patients can be considered possible candidates, since recent clinical studies, such as IMMUNOSTIM [13]
and EURO-SKI [14], have shown a positive correlation between higher NK cell numbers after imatinib
discontinuation and molecular relapse-free survival.

In this review, we first describe the NK cell biology with the various receptor/ligand
interactions governing their capability to attack malignant cells, particularly of hematological origin,
and then the different immunotherapeutic approaches employing autologous or allogeneic NK cells,
in transplantation and non-transplantation setting, either un-activated or potentiated by different
systems including cell engineering.

2. NK Cell Receptors

2.1. HLA-Specific NK Receptors

Two main types of NK cell receptors, capable of recognizing HLA class I molecules, are KIRs and
CD94:NKG2 heterodimers, whose expression is mainly confined to NK cells and small subsets of T
cells [15]. In addition, leukocyte immunoglobulin like receptor B1 (LILRB1) (also named ILT-2, LIR-1,
or CD85j) is not only present on NK and T but also, at high surface density, on B and myeloid cells.
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LILRB1, interacting with conserved α3 domain and β2 microglobulin, recognizes a broad spectrum of
classical and nonclassical HLA class I molecules [16].

KIRs are type I molecules, including both inhibitory (iKIR) and activating (aKIR) receptors [15,17].
Their nomenclature reflects their structure and function: KIR2D and KIR3D indicate two or three
extracellular domains, followed by L (long) or S (short), related to the cytoplasmic tail of iKIR or
aKIR, respectively [18]. Inhibitory KIRs have a long cytoplasmic tail that contains immunoreceptor
tyrosine-based inhibitory motifs (ITIM), able to transduce an inhibitory signal through the recruitment
of tyrosine phosphatases. Conversely, aKIRs are characterized by short cytoplasmic tails lacking ITIM
motifs and display a positively charged amino acidic residue (Lys) in the transmembrane region, which
mediates the association with KARAP/DAP12, a molecule containing immunoreceptor tyrosine-based
activating motifs (ITAM) [19–21]. An exception is represented by KIR2DL4, a receptor characterized
by both a long cytoplasmic tail, including a single ITIM motif, and a charged amino acid (Arg) in the
transmembrane region, allowing its association with γ chain of FcεRI. Notably, in resting NK cells,
engagement of KIR2DL4 results in strong cytokine (IFN-γ) production [22].

The polygenic and polymorphic KIR gene family maps on chromosome 19p13.4 and consists
of 13 genes and 2 pseudogenes. KIR genes are organized in haplotypes and the two main groups,
varying for both type and number of gene content, are termed A and B. Generally, group A haplotypes
comprise a fixed number of genes, most of which encoding iKIR (KIR2DL1, KIR2DL3, KIR3DL1,
and KIR3DL2) with only one aKIR (KIR2DS4), and display high degree of allelic polymorphism.
Conversely, group B haplotypes are characterized by a greater gene content diversity, including a
variable number of aKIR (KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1), and by
low allelic polymorphism [23]. A recombination hot spot, located between KIR3DP1 and KIR2DL4,
splits the haplotypes into centromeric (Cen) and telomeric (Tel) regions [24]. Various combinations of
Cen and Tel regions can be created, and while KIR A haplotypes are composed by Cen-A/Tel-A, all the
others correspond to KIR B haplotypes.

The four main iKIRs are specific for epitopes shared by distinct groups of HLA class I
allotypes, also named KIR-ligands (KIR-L). The dimorphism at position 80 defines two mutually
exclusive HLA-C epitopes, differentially recognized by KIR2DL1 and KIR2DL2/L3. In particular,
KIR2DL1 recognizes HLA-CK80 allotypes (HLA-C2 epitope), while KIR2DL2/L3 recognize HLA-CN80

allotypes (HLA-C1 epitope). In addition, KIR3DL1 is specific for HLA-B or HLA-A molecules sharing
the Bw4 public epitope (Bw4I80 or Bw4T80), and KIR3DL2 binds HLA-A*03 and -A*11 allotypes [15].
Regarding aKIR, except for KIR2DS1 recognizing HLA-C2 as its inhibitory counterpart (KIR2DL1) [25],
their ligand recognition remained elusive for a long time. The actual view of KIR/KIR-L interactions
appears more and more complex, taking into consideration the KIR allelic polymorphism and the
diverse repertoire of peptides bound to the polymorphic HLA class I molecules. Updated data have
been recently reviewed [26].

Other receptors are represented by the inhibitory CD94:NKG2A and the activating CD94:NKG2C
heterodimers, composed by type II proteins belonging to the C-type lectin superfamily, which recognize
the non-classical HLA class I molecule HLA-E [27]. HLA-E is characterized by limited polymorphism
and binds a restricted set of peptides, mainly derived from the leader sequences (from −22 to
−14 residues) of HLA-A, -B, or -C molecules. For this reason, CD94:NKG2A is considered a sensor
of the overall amount of HLA class I expressed on the cell surface. The M/T dimorphism at position
−21 of the leader sequence of HLA-B has been described as impacting the CD94:NKG2A/HLA-E
interaction. Indeed, in −21M HLA-B individuals, higher HLA-E expression and more efficient NKG2A+

NK cells have been detected [28]. This feature has been shown relevant in NK cell activity against
AML blasts, which display a low HLA-E expression. Studying a cohort of AML patients receiving
histamine dihydrochloride and low dose interleukin (IL)-2 to prevent relapse, Hallner et al. found that
patients carrying at least one −21M HLA-B had a better clinical outcome [29].

Among different individuals, a great heterogeneity of PB-NK cell phenotypes, particularly within
the CD56dim subset, can be observed. This diversity is primarily due to the high polymorphism
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of KIR and HLA class I genes, which segregate independently, leading to diverse compound
genotypes [17]. In addition, the clonal distribution of KIRs and CD94:NKG2A, which are epigenetically
regulated, creates highly stochastic repertoires of self-tolerant NK cells, following the rules of NK
cell “education” [6]. Thus, each competent NK cell, expressing at least an inhibitory receptor specific
for self-HLA, can attack unhealthy cells that have downregulated HLA class I molecules through
“missing self” recognition. By the same mechanism, NK cells can be alloreactive when expressing only
“educated” inhibitory KIR(s) that are not engaged by the HLA class I molecules (i.e., KIR-L) present
on allogeneic cells. This situation frequently occurs in HLA-haploidentical hematopoietic stem cell
transplantation (haplo-HSCT), when a KIR/KIR-L mismatch in graft-versus-host (GvH) direction is
present. Genetically defined by donor KIR gene profile and donor/recipient KIR-L, the actual size of
the alloreactive NK cell subset can greatly differ among different donors [11].

2.2. Non-HLA Specific Activating NK Receptors

One of the earliest functions described for NK cells was the capability to perform antibody
dependent cell-mediated cytotoxicity (ADCC) through the engagement of CD16, the low affinity
receptor for fragment crystallizable (Fc) of IgG (FcγRIIIa) [30]. This activating receptor can be exploited
to potentiate the antitumor NK cell activity in adoptive immunotherapy by the use of IgG antibodies
recognizing tumor-associated antigens, bispecific, or trispecific killer engagers (BiKEs and TriKEs,
respectively), as described in 4.2 paragraph.

In addition, NK cells express a set of triggering receptors and coreceptors that deliver the “on”
signal upon interaction with specific ligands on tumor target cells. Major NK cell receptors are the
natural cytotoxicity receptors (NCRs) [31], type I molecules of the Ig family, consisting of three members:
NKp46, NKp30, and NKp44 [32–36]. While NKp46 and NKp30 are expressed on virtually all resting
NK cells, NKp44 is acquired upon activation. NCR transmembrane domains contain a positively
charged amino acid, allowing the association with ITAM-bearing adaptor proteins, namely FcεRIγ
and/or CD3ζ for NKp46 and NKp30 [31], as well as DAP12 for NKp44 [37]. Although NCR expression
was considered confined to NK cells, more recently, one or another NCR has been also detected on
subsets of ILC [2,38,39]. Notably, upon appropriate culture conditions, NKp30 is inducible on γδT cells
or CD8+ αβT cells that acquire a “gain of function”, and thus, an enhanced leukemia recognition and
killing [40–42]. Functional evidences that NCRs, especially NKp46, play a primary role in leukemia
recognition and killing induction have been provided [43]. Although many NCR ligands (NCR-Ls)
have been characterized, the panel of the membrane bound molecules, possibly overexpressed in
hematological malignancies, appears incomplete [44,45]. In this regard, relevant surface molecules
are B7-H6 and a splice variant of mixed-lineage leukemia 5 (21spe-MLL5), identified as NKp30-L and
NKp44-L, respectively [46,47]. Importantly, the interaction between NKp44 and a subset of HLA-DP
molecules (i.e., HLA-DP401) has been recently proven to trigger functional NK cell responses [48].
Other NCR-Ls are represented by nuclear antigens that can reach the plasma membrane during
tumor transformation and can be expressed in exosomes by tumor cells: Proliferating cell nuclear
antigen (PCNA), recognized by NKp44, and HLA-B-associated transcript 3 (BAT3), also known as
BCL2-associated athanogene 6 (BAG6), by NKp30 [49,50]. Several soluble NCR-Ls have been identified,
including complement factor P (CFP) recognized by NKp46, platelet-derived growth factor (PDGF)-DD
and nidogen-1 by NKp44, in addition to soluble forms of the NKp30-L BAG6 and B7-H6 [51–54].
Soluble NCR-Ls are studied as biomarkers for cancer patients. Regarding hematological malignancies,
in chronic lymphocytic leukemia (CLL) patients, high plasma levels of soluble BAG6 have been
associated with advanced disease stages; in contrast, NK cells were activated by BAG6 presented on
the surface of exosomes [55]. The shedding of NCR-Ls by neoplastic cells can be envisaged as a tumor
immune escape mechanism; indeed, it can induce receptor surface downmodulation with consequent
NK cell dysfunction. The observation of NK cells with NCRdull phenotype [56] has been described
in AML and CLL patients [57–59]. Moreover, impairment in NCR expression and function can be
induced by hypoxia or additional soluble factors present in the tumor microenvironment, including
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indoleamine 2,3-dioxygenase (IDO), transforming growth factor-beta (TGF-β), and prostaglandin E2
(PGE2) [60–62]. Indeed, in patients affected by solid and hematologic tumors, NCRdull NK cells can be
detected in peripheral blood but particularly in the tumor site [63]. Moreover, TGF-β contributes in the
plasticity of group 1 ILCs, driving the conversion of NK cells into ILC1. This represents a mechanism
of immune evasion in the tumor microenvironment [64].

Another major NK-activating receptor is the NKG2D homodimer, a type II and C-type lectin-like
molecule, which is expressed on all NK and cytotoxic T lymphocytes, mainly γδT cells and CD8+

αβT cells. Upon receptor engagement, human NKG2D transduces an activation signal via the
associated transmembrane adaptor protein DAP10. Multiple NKG2D ligands (NKG2D-Ls) have
been characterized and are represented by MHC class I chain-related protein A/B (MICA/B) and
UL16 binding proteins (ULBP)1-6 [65]. It’s well known that their expression on the cell membrane
is induced upon stress and malignant transformation. MICA/B are transmembrane molecules and
have been mainly described on epithelial tumors and melanoma [66,67]. ULBP1/3/6 are GPI-anchored
molecules and ULBP4/5 are transmembrane molecules, whereas ULBP2 can be in both forms. NKG2D-L
expression on primary leukemias and the consequent involvement of NKG2D in NK cell-mediated
target recognition has been documented [43,68,69]. In leukemia patients, the levels of NKG2D-Ls,
as surface expressed and/or in soluble form, have been correlated with NKG2D downregulation and
reduced NK cell function and clinical data, underlying the relevance of NKG2D-mediated tumor
immunosurveillance and escape [68].

NK cells are also equipped with costimulatory receptors, which can collaborate with NCR and
NKG2D, enhancing the activating signaling and NK cell function. They include DNAM-1 [70], 2B4
(CD244) [71], NTB-A [72], CD59 [73], and NKp80 [74]. Relevant for antileukemia activity, DNAX
accessory molecule 1 (DNAM-1) (CD226) can recognize the specific ligands poliovirus receptor (PVR)
(CD155) and Nectin-2 (CD112), found to be expressed on various acute leukemias [43,75]. Belonging to
the signaling lymphocytic activation molecule (SLAM) family receptors, NK-T-B-antigen (NTB-A)
displays homophilic interaction like the other members, while 2B4 recognizes CD48, exclusively
present on hematopoietic cells. Upon receptor engagement, the ITSMs in their cytoplasmic tail become
phosphorylated and associate with SLAM associated protein (SAP), which in turn activates downstream
signaling pathways resulting in NK cell activation. High levels of CD48 and NTB-A are expressed by
Epstein-Barr virus (EBV) infected B cells and lymphomas [76]. Conversely, a downregulation of these
molecules is often observed on acute leukemia cells [43].

In addition, NK cells can be activated by the recognition of bacterial or viral products via toll-like
receptors (TLRs) [77,78].

2.3. Inhibitory Checkpoints Expressed on Human NK Cells

In addition to the HLA class I specific inhibitory receptors (iKIRs and NKG2A), additional
inhibitory checkpoints, responsible for maintaining the immune cell homeostasis, can be expressed
on human NK cells. They include programmed death-1 (PD-1), T-cell Ig and ITIM domains (TIGIT),
CD96, and T-cell Ig and mucin domain-containing protein 3 (TIM-3) [79,80]. In pathological conditions,
such as hematological malignancies, high expression of ligands for inhibitory checkpoints have been
associated with poor prognosis [81]. Indeed, the tumor microenvironment can induce the de novo
expression of some of these immune checkpoints on tumor-associated NK cells, thus facilitating tumor
immune escape.

PD-1 (CD279 or PDCD1) is a major checkpoint expressed by NK cells [82,83]. It binds to PD-L1
(CD274, B7-H1, or PDCD1LG1) or PD-L2 (CD273, B7-DC, or PDCD1LG2), with the highest affinity
for PD-L2. PD-L1 expression is usually low on healthy tissues [84], but is upregulated on various
tumor types upon exposure to inflammatory conditions (e.g., IFN-γ) or following activation of key
oncogenic pathways involving phosphoinositide 3-kinase (PI3K) or mitogen-activated protein kinase
(MAPK). On the other hand, PD-L2 is expressed by antigen presenting cells and by certain solid
tumors. The molecular mechanisms regulating the expression of PD-1 on human NK cells have not
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been defined so far. However, it is conceivable that signals delivered by cells and/or soluble factors
present in the tumor microenvironment may play an important role [85].

The TIGIT and CD96/Tactile immune checkpoints [86,87] compete with the activating receptor
DNAM-1 for binding to PVR and Nectin-2, molecules that are usually upregulated in tumor cells [75].
A recent report has suggested that TIGIT targeting with specific mAbs may unleash T and NK cell
antitumor activity and prevent NK cell exhaustion [88].

Other inhibitory checkpoints that may be expressed by NK cells are lymphocyte-activation gene
3 (LAG-3) and TIM-3. While blockade of TIM-3 has been shown to increase NK cell cytotoxicity in
preclinical models [89], the effect of LAG-3 on NK cell function is still unclear and requires further
investigation [90,91]. The main ligand of TIM-3 is galectin-9 [92], but other ligands have been identified,
such as phospatidyl serine (PtdSer) [93], HMGB1 [94], and carcinoembryonic antigen-related cell
adhesion molecule 1 (CEACAM1) [95].

NKRP1A (CD161), a C-type lectin-like inhibitory receptor that recognizes lectin-like transcript 1
(LLT1), can be considered a putative checkpoint receptor. Indeed, since LLT1 is expressed by different
tumors, including B-cell non-Hodgkin’s lymphomas (NHLs) [96], this receptor/ligand pair may play a
role in tumor escape from NK cell control. Moreover, blocking NKRP1A/LLT1 interaction increases NK
cell-mediated secretion of IFN-γ and killing of NHL cell lines. Thus, the use of anti-LLT1 blocking
mAbs may improve tumor immunosurveillance and also enhance the efficacy of anti-CD20-based
immunotherapy strategies [97]. Immunoregulatory cytokines in the microenvironment can modulate
NKRP1A expression and consequently NK cell function. IL-12 induces upregulation of NKRP1A in
NK cells, leading to a strong inhibition of the cytolytic activity mediated by CD16 or NKp46 [98].
Conversely, IL-2 reduces NKRP1A expression in NK cells, possibly contributing to enhanced killing
activity [99].

3. NK Cells in Haploidentical HSCT and Adoptive Immunotherapy

3.1. T Cell-Depleted and T Cell-Replete HSCT

Allogeneic HSCT is a life-saving treatment for patients affected by high-risk malignant hematologic
disorders. However, only 25% of patients who need an allograft have an HLA-identical sibling available
as donor. Thus, alternative donors and sources of hematopoietic stem cells (HSC) can be matched
to unrelated volunteers, unrelated umbilical cord blood (UCB), and HLA-haploidentical relatives
(i.e., a family member sharing one HLA-haplotype with the recipient) [100]. Haplo-HSCT offers an
immediate option to almost all patients in need of an allograft. However, because of multiple HLA
class I and II disparities between donor and recipient, bidirectional alloreactivity to incompatible HLA
molecules can cause important clinical complications, including graft failure and the incidence of
both acute and chronic graft-vs-host disease (GvHD). Donor-derived T cells are the most responsible
for the occurrence of severe GvHD, and different T-cell depletion strategies or pharmacological
immunosuppressive treatments have been employed [9–11].

Pioneering clinical studies by the Perugia group rendered successful haplo-HSCT, through the
use of intense conditioning regimen preventing graft rejection, and inoculum of “megadoses” of
highly purified CD34+ cells, thus avoiding GvHD [101]. Ruggeri et al. demonstrated, in adult
AML patients, an efficient post-transplant NK cell recovery and protective graft-vs-leukemia (GvL)
effects mediated by alloreactive NK cells, in the absence of GvHD. Indeed, transplantation from
donors characterized by alloreactive NK cells was associated with a lower incidence of relapse and an
improvement of the overall survival in AML adult patients [102–104]. The beneficial effect of donor NK
alloreactivity was also observed in children with high-risk acute lymphoid leukemia (ALL) showing
70% versus 35% survival rate in the presence versus absence of NK alloreactivity, respectively [11].
The first lymphocyte population that reconstitutes after HSCT is represented by NK cells displaying an
immature phenotype, and several months are necessary for their acquisition of full phenotypic and
functional maturation [105]. In pediatric leukemia patients undergoing T cell-depleted haplo-HSCT,
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donor-derived alloreactive NK cells displaying antileukemia activity were generated, appeared in PB
after 2–3 months, and could persist for years in the recipient. Moreover, a positive role of KIR2DS1+

NK cells derived from HLA-C1/C2 donors was also demonstrated in the recognition and killing of
HLA-C2/C2 leukemia cells [106]. However, a general problem occurring in T cell-depleted haplo-HSCT
is the delayed immune recovery, increasing the risk for patients of life-threatening opportunistic
infections [100,104].

In recent years, a T cell–replete haplo-HSCT was developed by the use of an unmanipulated
graft and post-transplant high-dose cyclophosphamide (PTCy) administration, followed by other
immunosuppressive drugs, to prevent GvHD. The use of PTCy aims to selectively eliminate
alloreactive T cells rapidly proliferating in response to the recipient alloantigens. Thus, in this
transplantation setting, an accelerate immune reconstitution by the maintenance of a broad repertoire
of nonalloreactive T lymphocytes, potentially active against post-transplant infections, might be
achieved [107]. Morever, Russo et al. reported that donor-derived NK cells, proliferating for the
high systemic levels of IL-15, become sensitive to Cy-mediated killing. Thus, early elimination of all
mature NK cells, including the alloreactive subset, has been documented. The delayed recovery of
mature NK cells through the differentiation from precursors might result in an impaired NK-mediated
antileukemic potential. Consequently, no evidence of a beneficial effect of donor NK alloreactivity on
the outcome of patients was observed [108]. In addition, in a retrospective multicenter analysis, KIR-L
mismatching was associated with a worse outcome in leukemia patients receiving haplo-HSCT and
PTCy when peripheral blood stem cells (PBSC) were used as graft cell source [109].

3.2. Adoptive NK Cell Immunotherapy within Transplant Setting

In both CD34+ and PTCy haplo-HSCT, the delayed recovery of mature NK cells can impair their
GvL effect and protection against viral infections. To circumvent this problem, adoptive immunotherapy
approaches with highly purified donor-derived NK cells have been largely investigated in different
transplantation settings. Several clinical trials are currently active and ongoing. Although the efficacy
appeared limited to a minority of patients, NK-donor lymphocyte infusions (NK-DLI) prior to or
post-HSCT were shown to be feasible without severe side effects [110–112].

In a pilot study on AML patients, donor NK cells were infused after haplo-HSCT, to consolidate
incomplete engraftment [113]. Indeed, purified NK cells, preferentially recognizing hematopoietic
host cells, promoted engraftment without inducing GvHD. The safety and feasibility of the adoptive
transfer of allogeneic NK cells were further confirmed in a phase II study, but NK-DLI had no apparent
effect on graft failure or relapse incidence [114].

In a phase I/II trial, in which AML patients underwent haplo-HSCT in combination with early
transfer of NK cells, a two year overall survival rate of 37% was observed, suggesting that adoptively
transferred NK cells possibly contribute to long-term remission in patients with refractory AML [115].

The favorable cytokine environment, with high systemic levels of IL-15, in patients immediately
after haplo-HSCT with PTCy [108], provided the rationale for NK-DLI to reduce relapse incidence
and viral infections. Clinical trials based on the infusion of donor NK cells after haplo-HSCT and
PTCy have been started [116,117]. In a phase I study for high-risk myeloid malignancies, high doses of
ex-vivo expanded donor-derived NK cells infusions significantly improved NK cell function and may
be effective to prevent leukemia relapse with no major toxicity [117].

Notably, it should be considered that, in addition to the characteristics of the different
transplantation settings, several NK cell-related variables, including their preparation (either
unstimulated or ex-vivo activated/expanded), dose, timing of the infusion, and presence of NK
cell alloreactivity, may also influence clinical responses [118,119].
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3.3. Haploidentical HSCT after CD3/CD19 or TCRαβ/CD19 Depletion

New graft manipulations have been employed with the aim to infuse NK cells together with
HSC [120]. In haplo-HSCT, depletion of CD3+CD19+ cells, instead of CD34+ cell selection, leads to a
better engraftment and immune reconstitution [121,122]. This procedure allows the elimination of T cells,
responsible for GvHD, and CD19+ B cells, to prevent post-transplant EBV-related lymphoproliferative
disorders. This graft manipulation has been applied for both children and adult acute leukemia
patients. Although promising clinical results have been reported, GvHD incidence was quite high due
to different levels of T cell depletion, requiring the development of more efficient procedures. A further
improvement has been represented by the approach based on selective TCR αβ T and CD19 B cell
depletion from mobilized PBSC [123,124]. This refined procedure allows the accurate removal of αβT
cells, responsible for GvHD, and the infusion of a graft enriched for HSC and also containing other
cell types, including mature NK cells and γδT lymphocytes (NCT01810120). The presence of these
mature effectors can favor the engraftment and reduce the risk of infections and leukemia recurrence.
Thus, in αβT and B cell-depleted haplo-HSCT, high numbers (about 20–40 millions/kg of recipient body
weight) of donor mature NK cells, including alloreactive populations, are immediately available and can
fully display their activity because of the absence of pharmacological GvHD prophylaxis. NK cells may
promptly exert their antileukemia and GvHD-preventing effects in the 6–8 weeks after transplantation,
before the emergence of KIR+ NK cells differentiated from CD34+ precursors. Transplanted patients
also benefit from many γδT cells, which contribute to anti-infectious and possibly to antileukemia
activities [125]. Importantly, the clinical outcomes of pediatric leukemia patients receiving αβ T and
B cell-depleted haplo-HSCT were very good, showing high leukemia-free survival (LFS, 71% and
68% in high risk ALL and AML, respectively) and low risk of GvHD [126]. In this cohort, the donor
(either mother or father of the patient) was mainly chosen according to immunological criteria, giving
priority to NK alloreactivity, KIR B/x genotype, higher B-content score, and larger size of alloreactive
NK cell subset [106,127–129] (Figure 1). In addition, donor/recipient HCMV serology, donor age,
donor/recipient body weight, presence of KIR2DS1 in HLA-C1+ donor and HLA-C2+ recipients, higher
percentage of NK and γδT lymphocytes, higher expression of NKp46, and presence of NKG2C were
also evaluated [11,43,106,130]. Recently, the European Society for Blood and Marrow Transplantation
(EBMT) elaborated consensus recommendations for donor selection in haplo-HSCT [131].
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has alloreactive NK cells, namely “educated” NK cells expressing only KIR2DL1, the inhibitory KIR 
(iKIR) specific for HLA-C2 epitope, present in the donor and absent in the recipient. The alloreactive 
NK cell subset of donor A will be highly efficient in leukemia killing, indicating that donor A can be 
better than donor B. 
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KIR ligand mismatched donors were used. IL-15 could be a suitable alternative of IL-2 for adoptive 
NK cell therapy because it avoids Treg stimulation (see 4.1 paragraph). The results of the first phase 
I/II clinical trials with recombinant human IL-15 (rhIL-15), administered either by subcutaneous (sc) 
or intravenous (iv) injection, and haploidentical NK cell therapy after lymphodepletion in 

Figure 1. Donor selection in haploidentical-hematopoietic stem cell transplantation (haplo-HSCT).
(A) Alternative human leucocyte antigen (HLA)-haploidentical donors (e.g., both parents of a pediatric
patient) can be available for haplo-HSCT to cure leukemia patients. (B) Various analyses can be
performed to define the possible donor natural killer (NK) alloreactivity, killer immunoglobulin-like
receptor (KIR) genotype, and NK cell phenotypic repertoire to guide the choice for selecting the optimal
donor. (C) A schematic representation of donor A and donor B NK cell repertoires, characterized by
presence or absence of NK alloreactivity, respectively. Only donor A has alloreactive NK cells, namely
“educated” NK cells expressing only KIR2DL1, the inhibitory KIR (iKIR) specific for HLA-C2 epitope,
present in the donor and absent in the recipient. The alloreactive NK cell subset of donor A will be
highly efficient in leukemia killing, indicating that donor A can be better than donor B.

3.4. Adoptive NK Cell Immunotherapy in Nontransplant Setting

Antileukemia activity of the adoptive transfer of NK cells from haploidentical donors in
nontransplant settings has been also explored. In the first study by Miller et al., 19 adult AML patients,
undergoing different preparative regimens, were infused with overnight IL-2 activated haploidentical
NK cells followed by daily subcutaneous injection of IL-2 for 14 days [132]. Adoptively transferred
human NK cells were safe and could be expanded in vivo. Indeed, circulating haploidentical NK cells
were observed up to 28 days after infusion. The expansion was observed in patients with the more
intense Cy/Flu preparative regimen, which was associated with high serum concentrations of IL-15.
Notably, 5 of 19 poor prognosis AML patients achieved complete remission (CR) after haploidentical NK
cell therapy, with a significantly higher rate when KIR ligand mismatched donors were used. IL-15 could
be a suitable alternative of IL-2 for adoptive NK cell therapy because it avoids Treg stimulation (see
4.1 paragraph). The results of the first phase I/II clinical trials with recombinant human IL-15 (rhIL-15),
administered either by subcutaneous (sc) or intravenous (iv) injection, and haploidentical NK cell
therapy after lymphodepletion in relapsed/refractory AML patients have been recently published [133].
Beneficial clinical responses have been observed, and rhIL-15 induced in vivo NK cell expansion
and remission rates better than those observed in previous trials with IL-2. However, unexpectedly,
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after sc and not iv treatment with rhIL-15, high frequency of cytokine release syndrome (CRS) and
neurotoxicity was observed. Further studies of pharmacokinetics and pharmacodynamics will be
necessary to optimize the therapeutic benefits of IL-15 and minimize CRS.

Additional studies have shown the efficacy of the adoptive transfer of haploidentical KIR/KIR-L
mismatched NK cells in children, adults, and high-risk elderly patients with AML, not candidates
to receive HSCT. In the pilot study of haploidentical NK cell transplantation for AML (NKAML),
the safety and feasibility of low-dose immunosuppression followed by the infusion of highly purified
haploidentical NK cells in children with AML were assessed [134]. All patients showed safe engraftment,
with an expansion of donor-derived alloreactive NK cells during the first four weeks after infusion,
and remained in CR after a follow-up of approximately 32 months.

In high-risk elderly patients with AML infused with highly purified alloreactive NK cells
from haploidentical donors after Cy/Flu immunosuppressive chemotherapy followed by in-vivo
IL-2 administration, no NK cell-related toxicity, including GvHD, was observed [135]. The procedure
was beneficial for the outcome of patients treated in CR or very early in molecular relapse, or both.
Thus, the infusion of purified NK cells is feasible in elderly AML patients as a post-CR consolidation
strategy. This study also documented the kinetics of emergence and persistence over time of functional
donor-versus-recipient NK cell alloreactivity after NK cell infusion. In addition, the infusion of
high numbers of alloreactive NK cells can improve the clinical efficacy of adoptively transferred
haploidentical NK cells [136].

Therefore, the infusion of a defined number of functionally active NK cells could be of great
impact on the efficacy of NK cell-based treatment. The selection of haploidentical donors predictive of
patients response upon adoptive transfer of NK cells should be valorized, as well [137].

4. Strategies to Induce NK Cell Activation, Persistence, and Expansion

4.1. Cytokine-Mediated NK cell Activation and Expansion to Improve Tumor Killing

Antitumor NK cell functions can be modulated not only by the direct ligand–receptor interactions,
but also by several cytokines. In particular, IL-2, IL-12, IL-15, IL-18, and IL-21 can activate NK cells,
whereas suppressive cytokines, including TGF-β or IL-10, can inhibit them [138,139]. To improve
antitumor responses, cytokine therapies capable of supporting NK cell differentiation, activation,
persistence, and expansion have been tested in preclinical studies and clinical trials [140,141] (Figure 2).

The first cytokine shown to exert a relevant role in the treatment of tumors was IL-2 [142]. IL-2 can
mediate its effects by binding to a high-affinity receptor composed of IL-2Rα, IL-2Rβ, and the common
γ chain. In NK cells the engagement of the IL-2R complex by IL-2 leads to phosphorylation of STAT-1,
-3, and -5; activation of p38 MAPK [143]; and later, induction of NK cell proliferation and increment
of NK cell cytotoxicity [144]. However, the administration of high doses of IL-2 is associated with
an increased risk of severe adverse reactions, including vascular leakage and organ injury caused
by activation of the vascular endothelium (which is characterized by the expression of the IL-2 high
affinity receptor, IL-2Rαβγ), and also with poor therapeutic index [145–150]. Indeed, IL-2 can also
bind to the IL-2Rαβγ on Treg cells and, as a consequence, it can indirectly inhibit NK cell proliferation
and cytotoxicity through the action of TGFβ released by IL-2 activated Treg cells [151], and through
the deprivation of IL-2 by Treg cells [152,153]. On the other hand, it is important to remember that
the use of low doses of IL-2 to expand NK cells after autologous transplantation was shown to result
in efficient in vivo expansion of NK cells [154], but with limited antitumor efficacy, probably due
to inhibitory signals occurring upon KIR/NKG2A-mediated self-HLA class I engagement and the
stimulation of suppressive Treg cells by IL-2 [155,156]. Thus, high doses of IL-2 were necessary for an
efficient antitumor activity, but were also responsible for inducing severe toxicity. For these reasons,
strategies useful for the production of modified forms of IL-2, capable of immunoactivation and
avoiding immunosuppression, became necessary. Along this line, mutant forms of IL-2 with high
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affinity for IL-2Rβγ present on NK cells, but reduced affinity for IL-2Rα expressed on Treg cells, have
been generated [157–159] (Figure 2).
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cells to improve tumor killing. (A) Cytokines, such as interleukin (IL)-15, IL-12, and IL-18 to generate
cytokine induced memory-like NK cells (CIML-NK); (B) IL-15 superagonist ALT-803, an IL-15 mutant
(IL-15N72D) bound to a soluble, dimeric IL-15Rα Fc fusion protein (IL-15Rα-Fc); (C) IL-2 mutants with
high affinity for IL-2Rβγ present on NK cells, but reduced affinity for IL-2Rα expressed on Treg cells;
(D) activating NK cell receptor engagement by the use of bispecific or trispecific killer engagers (BiKE
or TriKE), capable of binding CD16 on NK cells and one/two tumor antigen(s) (e.g., CD19, CD22, CD33)
or CD16 and NKp46 on NK cells and one tumor antigen; (E) tumor-specific antibodies (IgG), capable of
inducing the NK-antibody dependent cell-mediated cytotoxicity(ADCC). TA, tumor antigen.

Another cytokine capable of activating NK cells is represented by IL-15, a soluble factor that shares
many activities with IL-2 (probably because these cytokines use common receptor subunits), but that,
differently from IL-2, does not induce Treg-mediated immune suppression [160]. IL-15 interacts
with a heterotrimeric receptor composed by the β and common γ chain of the IL-2R [161] and
the unique high affinity IL-15-binding subunit, called IL-15Rα [162,163]. Notably, cells expressing
IL-2Rβγ, but not IL-15Rα, can bind and respond to IL-15 only when high concentrations of this
cytokine are present. On the contrary, IL-15Rα binds to IL-15 with high affinity, also in the absence
of the IL-2Rβγ. Moreover, on the surface of dendritic cells or other myeloid cells, IL-15Rα can
present IL-15 in trans to IL-2Rβγ receptors expressed on NK and CD8+ T cells, without activating
Tregs [164]. However, the clinical use of IL-15 is impaired by its short half-life. Strategies to improve
IL-15 administration and dosing are still being studied to optimize its biological effects, reducing
toxicity [133]. Rubinstein and colleagues demonstrated that the combination of IL-15 with the IL-15Rα
subunit formed a soluble compound (termed IL-15 superagonist) with significantly longer half-life and
higher biological activity than native IL-15 [165].

In order to further increase the in vivo half-life of IL-15, the IL-15 superagonist ALT-803 has been
recently developed by binding an IL-15 mutant (IL-15N72D) to a soluble, dimeric IL-15Rα Fc fusion
protein (IL-15Rα-Fc) (Figure 2). This compound has a prolonged half-life and an increased ability
to bind IL-2Rβγ and mediate immunostimulatory functions as compared to IL-15 alone [166,167].
Preclinical studies have shown that ALT-803 can mobilize both innate and adaptive immune responses
by enhancing NK and T cell functions. Recently, in a phase I study, clinical benefits upon iv or
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sc ALT-803 administration have been observed in patients with hematologic malignancies who
had relapsed after allogeneic HSCT [168]. In these patients, ALT-803 was generally well-tolerated,
with no severe toxicities and GvHD. Moreover, ALT-803 has been used as a functional scaffold for
creating multispecific, targeted IL-15-based immunotherapeutic agents to enhance tumor clearance.
Indeed, ALT-803 has been fused to four single chains of Rituximab to generate the 2B8T2M molecule,
a compound displaying trispecific activity: recognition of CD20 on tumor cells, stimulation of IL-2Rβγ
on immune cells, and binding of FcγR on NK cells and macrophages [169]. Thus, NK cells can be
activated inducing the killing of B-lymphoma cells through ADCC.

A recent study has demonstrated that the IL-15-AKT-XBP1s signaling pathway contributes to
enhance antitumor effector functions and NK cell survival. In particular, the protein stability of
XBP1s, induced by the IL-15-mediated phosphorylation of AKT, positively regulates the expression of
granzyme B and the antileukemia activity of NK cells [170].

The short ex vivo treatment of NK cells with a combination of IL-15, IL-12, and IL-18 before NK
cell adoptive transfer is another promising cytokine-based approach for antitumor clinical applications
(Figure 2). Indeed, these cytokine-primed NK cells, called “cytokine induced memory-like NK
cells” (CIML-NK), have been shown to be long-lived and memory-like NK cells, characterized by
enhanced IFN-γ production and cytotoxicity against tumor cells [171–174]. Preactivation of NK cells
with IL-18/IL-15/IL-12 was also shown to increase the expression of CD25 and, as a consequence,
favor the survival of NK cells in patients, even without administration of exogenous IL-2 and any
toxicity. On the other hand, IL-18/IL-15/IL-12 treatment could also induce negative effects on NK
cells, for example the reduction of CD16 expression that, however, could be restored by removing
cytokine stimulation. Notably, this type of NK cell expansion allowed large-scale NK cell production,
useful for repeated therapeutic use, and the adoptive transfer of these cytokine-primed NK cells was
effective, as demonstrated in murine cancer models and in clinical trials [171,172]. CIML-NK cells
display enhanced IFN-γ production and cytotoxicity against leukemia cell lines or primary human
AML blasts in vitro, regardless of KIR/KIR-L interactions. Moreover, a first-in-human phase I clinical
trial demonstrated CIML-NK cell expansion and robust responses against AML blasts [175].

Another cytokine, which is known to be involved in development/proliferation of NK cells from
progenitor cells, induction of NK cell receptor expression, IFN-γ secretion, and cytotoxicity, is IL-21.
However, it is important to underline that the role of this cytokine on NK cell function is controversial;
indeed, it has also been reported to trigger apoptosis and diminish the positive effects of IL-15 [176].
According to the high potential of IL-15 in NK cell expansion and the effects of IL-21 on NK cell
maturation and function [177,178], a two-phase expansion protocol based on the use of IL-15 to induce
an early NK cell expansion, followed by short exposure to IL-21 to boost NK cell cytotoxicity against
tumor cells, has been developed [179].

Moreover, a method to expand NK cells ex-vivo using genetically modified K562 feeder cells
equipped with membrane-bound IL-21 (K562mb-IL-21) has been developed [180]. Recently, this
method, used in a phase I clinical trial for the ex vivo expansion of donor-derived NK cells in
haplo-HSCT, has been demonstrated to be safe and effective in controlling leukemia with no major
toxicity and to be associated with significantly improved NK cell number and function, lower viral
infections, and low post-transplant relapse rate [117].

4.2. CD16-Mediated Tumor Cell Killing to Cure Hematological Malignancies

Besides the use of cytokines to drive NK cell activation and function against malignancies, other
immunotherapeutic strategies enhancing NK cell antitumor potential are based on the innate ability
of NK cells to kill target cells opsonized with antibodies via ADCC. This mechanism implies the
engagement of the activating receptor CD16 (FcγRIIIa), which recognizes and binds the immunoglobulin
Fc fragment with low affinity [30]. The first therapeutic interventions taking advantage of CD16 function
on NK cells were based on the administration of tumor-targeting chimeric monoclonal antibodies
(mAbs), such as rituximab, a mAb recognizing CD20 that still represents a first-line treatment in
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B-chronic lymphocytic leukemia (B-CLL) [181] (Figure 2). To increase mAbs’ affinity for CD16,
humanized mAbs, such as obinutuzimab (anti-CD20), have also been generated by engineering
the Fc fragment [182], possibly translating their higher affinity to a better clinical outcome [183].
Interestingly, these modifications were capable of augmenting CD16 affinity for IgG also in individuals
carrying the polymorphism that decreases CD16 Fc-binding capacity (i.e., bearing a CD16A-158F
allotype instead of the high affinity CD16A-158V allotype) [184–186]. Indeed, the low-affinity CD16 form
has been associated with inferior therapeutic effects of rituximab in lymphoma patients [187,188].
Along this line, a Fc-modified anti-CD133 with higher affinity for Fc was shown to elicit improved NK
cell responses in a xenograft model of human AML [189].

In view of the high clinical potential of CD16-mediated tumor cell killing to cure malignancies,
different approaches have been recently developed to further improve NK cell activation through
this receptor. Following the strategy applied to generate T cell engaging antibodies (BiTE), such as
blinatumomab, a CD19/CD3-bispecific single chain T-cell engager employed for relapsed/refractory
ALL [190,191], bispecific antibodies and BiKEs-triggering NK cells have been produced. While BiTEs
can show adverse side effects [192,193], BiKEs promise to be safer, more efficacious, and flexible.
These molecules couple immune cell engagement to tumor targeting by forming an immunological
synapse between NK and tumor cells. Indeed, BiKEs are composed of a single-chain variable fragment
(scFv) of an antibody specific for a given tumor antigen, connected through a short peptide linker to an
anti-CD16 scFv, which triggers stronger cytotoxic signals in NK cells as compared to those elicited by
Fc fragments binding to CD16 [194]. BiKEs engaging CD16 and recognizing CD19 [195] (Figure 2) or
CD33 [196] have been developed and tested also in combination with an inhibitor of the metalloprotease
ADAM17 [197] to avoid/limit CD16 shedding from NK cell surface. These novel immune engagers
offer high flexibility and can be tailored to better fit clinical needs, such as improvement of NK cell
survival and proliferation. To this end, a TriKE incorporating IL-15 has been designed. In particular,
the 16 × 15 × 33 TriKE (Figure 2) has shown enhanced NK-mediated killing of AML and MDS in
both in vitro and in vivo preclinical models [198,199]. Similarly, a novel CD19-targeting 16 × 15 ×
19 TriKE holds great potential to cure refractory B-CLL [200]. In addition, BiKEs and TriKEs can be also
engineered to contain two different tumor specificities permitting them to circumvent the complication
represented by the emergence of tumor cells lacking the selected tumor antigen. In this context, a TriKE
containing anti-CD19 and anti-CD22 has been designed [195] to overcome the possible appearance of
CD19− leukemic blasts that was observed upon blinatumomab treatment in around 20% of pediatric
B-ALL patients given the drug [201] (Figure 2). Alternatively, more selective tumor antigens have been
introduced in TriKE platforms such as C-type lectin domain family 12 member A (CLEC12A), which is
highly expressed also on CD33− AML cells and could better contribute to myeloid leukemia targeting
by NK cells [202].

Further improvements will be achieved by the use of novel platforms that are under development
by different groups and companies. For example, ROCK® (redirected optimized cell killing) is a
registered trademark multispecific platform that permits researchers to create tetravalent NK cell
engagers composed of a specific CD16A antibody linked to a bispecific anti-tumor antigen [203].
These molecules promise to be efficacious independently of CD16A allotype, to prevent NK cell
fratricide, and to avoid inhibition by serum IgG. Indeed, a tetravalent anti-CD30/CD16A tandem
diabody (AFM13) has been successfully tested in a phase I trial and a phase II study is planned for
relapsed/refractory Hodgkin’s lymphoma patients [204].

Remarkably, the use of immune engagers retargeting and potentiating ADCC could be particularly
efficient in patients characterized by the presence of HCMV-driven adaptive NK cells. This peculiar
NK cell subset is present at variable proportions in HCMV+ healthy donors [205,206] and can develop
in noticeable amounts in leukemic patients undergoing HCMV reactivation after HSCT [192,207–209].
Adaptive NK cells are usually characterized by a NKG2C+CD57+ surface signature, epigenetic
modifications, and altered signaling molecules expression that enhance their ADCC potential,
suggesting that these cells could provide optimal responses to CD16-engaging molecules [210,211].
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Besides enhanced ADCC, adaptive NK cells show strong cytotoxicity in response to NKG2C triggering.
Along this line, a novel TriKE composed of an anti-NKG2C combined with an anti-CD33 and IL-15 has
been successfully used in vitro to augment AML killing by iPSC-derived NK cells (see 5. paragraph)
engineered to express NKG2C [212].

Notably, CMV-induced adaptive NK cells could play an inherent role in preventing leukemia
relapse and promoting better clinical outcomes, as recently suggested in the HSCT setting [108,208,209].
Interestingly, a protocol aimed at expanding CMV-induced NKG2C+ NK cells for cell therapy has been
recently developed to treat pediatric T- and precursor B-ALL [213]. The optimization of expansion
protocols combined with the use of appropriate immune engagers will fully exploit the antileukemic
properties of adaptive NKG2C+ NK cells.

Along with CD16 triggering, the engagement of NCRs could be relevant to achieve optimal
NK cell activation against acute leukemia and other hematological malignancies. In a very recent
study, trifunctional natural killer cell engagers (NKCEs) targeting CD16 and NKp46 combined with an
antitumor antigen (e.g., CD20) (Figure 2) have been proven to induce full activation and enhanced target
cell killing, as compared to standard mAbs (e.g., rituximab), in both in vitro and mouse models [214].

NK cell-based immune engagers represent a very plastic tool that can be managed and adapted to
different patient needs more easily than other approaches (e.g., adoptive cell transfer, engineering).
Although clinical trials based on NK cell immune engagers are at the beginning and novel molecules
are in early developmental stages, NK cell engagers hold great potential to transform future
antileukemic therapies, especially in combination with both conventional chemotherapy or allo-HSCT
and other innovative immunotherapeutic strategies, such as cytokine-based stimulation and immune
checkpoint inhibitors.

4.3. Restoration of NK-Mediated Antitumor Responses by the Use of Antibodies Blocking Immune Checkpoints

A promising therapeutic approach to cure leukemia patients is represented by the use of monoclonal
antibodies capable of both disrupting the interactions between the immune checkpoints (expressed on
NK cells) and their ligands (expressed on tumor cells), and restoring efficient NK-mediated antitumor
responses. For example, the fully human IgG4 mAb lirilumab, directed against a common epitope
shared by KIR2D, has been shown to block the KIR/KIR-L interaction and increase NK cell-mediated
killing of AML blasts both in vitro and in vivo [215]. Lirilumab showed acceptable safety without
significant toxicity in AML and CLL patients [216]. Moreover, although a single-agent phase I trial with
lirilumab has not shown significant efficacy in relapsed/refractory MM [217], the lirilumab/lenalidomide
combined therapy has displayed a good response in a following phase I clinical trial in patients affected
by the same malignancy [218], confirming that combined blockade of different immune checkpoints
is a promising therapeutic strategy. Along this line, analyses evaluating the efficacy of lirilumab in
combination with other therapeutics are ongoing. For example, there are: (1) a phase II study evaluating
the combination of lirilumab with rituximab (anti-CD20 mAb) for relapsed, refractory, or high-risk
untreated patients with CLL (NCT02481297); (2) a phase II study evaluating lirilumab in combination
with 5-azacytidine for the treatment of patients with refractory/relapsed AML (NCT02399917); (3) a
phase II study analyzing the combined use of lirilumab and nivolumab with 5-azacitidine in patients
with myelodysplastic syndromes (MDS) (NCT02599649).

Another mAb used in immunotherapy to potentiate NK cell function is represented by the
humanized anti-NKG2A monalizumab (IPH2201), which is capable of blocking the NKG2A/HLA-E
interaction [219]. Various clinical trials are evaluating the efficacy of monalizumab in different types
of tumors. Regarding the treatment of hematological malignancies, a phase I clinical trial based on
the use of monalizumab as monotherapy is ongoing to determine the safety of monalizumab after
HLA-matched allogenic HSCT (NCT02921685). Moreover, a phase I/II clinical trial evaluating the
combined use of monalizumab with the Bruton’s tyrosine kinase inhibitor ibrutinib in patients with
relapsed, refractory, or previously untreated CLL is ongoing (NCT02557516).
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5. Adoptive Cell Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells

In lymphoid B-cell neoplasia, adoptive cell therapy based on the use of T cells engineered with
a chimeric antigen receptor (CAR)-T has achieved exciting results [220–222]. Two anti-CD19 CAR-T
therapies have been approved by the Food and Drug Administration (FDA) first, and then by the
European Medicine Agency, for treatment of relapsed B-cell ALL and refractory/relapsed large B-cell
non-Hodgkin’s lymphoma (NHL). However, the application of CAR-T cells is hampered by several
obstacles, limiting a widespread clinical use; they include: (i) high cost associated with the drug
product, since it requires a single manufacturing for each patient; (ii) significant delay between patient
enrollment and treatment, this being associated with the need to define salvage therapy between
apheresis and CAR-T cell infusion; (iii) the lack of possibility to reinfusing the drug product in patients
experiencing low CAR-T cell persistence or disease relapse; (iv) the majority of patients experience
high rate of toxicity, due to the production of IFN-γ and the consequent induction of the CRS and/or
neurotoxicity; (v) difficulties in the management of the industrial chain for the autologous drug
product’s worldwide distribution.

In this scenario, the development of an allogeneic platform based on NK cells could represent an
appealing solution for almost all the above-mentioned hurdles. Indeed, CAR-NK cells do not require
HLA matching to be cytotoxic and can be used in allogeneic settings without causing GvHD, thus
representing a valid system for the generation of “off-the-shelf” products for clinical use [79,102,223,224].
NK cells express activating receptors, such as NCRs, NKG2D, and DNAM-1, that may be engaged
synergistically and independently from CAR, triggering NK killing capability and potentially bypassing
loss of targeted antigens as a tumor escape mechanism. Moreover, the ADCC ability of NK cells
mediated by CD16 expression is an additional tumor-killing strategy [45,225] that could be used in
synergy with the CAR antitumor activity (Figure 3). Nowadays, several different sources of NK
cells have been considered for the generation of CAR-NK cells, at both preclinical and clinical levels,
including NK cell lines (NK-92 [226], KHYG-1 [227], NKL, NKG, YT, etc.), and NK cells from UCB, PB,
and, more recently, induced pluripotent stem cells (iPSCs) [228,229] (Figure 3).

The human NK cell line, NK-92 [226], derived from PB of a patient with aggressive non-Hodgkin’s
lymphoma carrying several cytogenetic alterations and the integration of EBV DNA, was chosen
from different groups as the NK platform since it can be easily expanded under good manufacturing
practice (GMP) standards for clinical applications [230] and provides a homogenous NK cell population.
Indeed, the unmodified NK-92 line has been approved by the US FDA for use in clinical trials, after
its irradiation and before adoptive transfer, to prevent propagation in patients [231], proving its
safety in a phase I/II trial [231–233]. To date, CAR-NK-92 cells have been extensively investigated
preclinically in several models, including arming the cell line with CARs that recognize HER2 [234],
CD19 [233,235], CD20 [236], CD38 [237], CD7 [238], CD3 [239], CD5 [240], GD2 [241], EBNA [242],
EGFR and EGFRvIII [243], EpCAM [244], mesothelin [228], and CS1 [245]. The clinical application of
CAR-NK-92 cells has been restricted. In particular, data are available of only one first-in-men trial
based on CAR.CD33 NK-92 cell infusion in three patients with relapsed and refractory AML [246].
This study showed that at doses up to 5 × 109 irradiated cells per patient, no significant adverse
effects were observed, along with marginal and transient patient response. To date, the attempt to
optimize CAR-NK-92 approaches is currently under evaluation in several clinical trials that include
CAR-modified NK-92 for HER-2 targeting in glioblastoma (NCT03383978), BCMA targeting in multiple
myeloma (NCT03940833), and CD19 targeting in CD19+ leukemia and lymphoma (NCT02892695).
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Figure 3. Benefits of chimeric antigen receptor-natural killer (CAR-NK) cells. NK cells of different
origin can be genetically modified through the use of CAR constructs able to redirect their specificity
against antigens expressed on tumor cells. These NK cells can be further expanded ex vivo to reach
clinically meaningful numbers, and further optimized by the activation of their native receptors,
including CD16 for the antibody dependent cell-mediated cytotoxicity (ADCC) mechanism. CB,
cord blood; iPSC, induced pluripotent stem cells; PBMC, peripheral blood mononuclear cells; FAS-L,
FAS-ligand; IL2, interleukin-2; IL15, interleukin-15; TRAIL, tumor necrosis factor (TNF)–related
apoptosis-inducing ligand.

An important question is whether gene-modified NK cell lines represent better CAR effector
cells than primary human donor CAR-NK (CAR-dNK) cells, in terms of reproducibility, viability,
effectiveness, risk of side effects, and clinical practicality/applicability. Although the formal comparison
of the functional activities of sorted CAR-NK cells generated using the NK-92 cell line with those
generated from CAR-dNK cells was recently conducted in an vitro model, demonstrating that
CAR-NK-92 cells had stronger cytotoxic in vitro activity against leukemia cells compared to CAR-dNK
cells [247], various evidence suggests that NK-92 cells could not be the best NK recipient for
CAR-engineering. Indeed, irradiated NK-92 cells have no possibility to expand in vivo after the
infusion, the lack of CD16 strongly impairs ADCC, and the lack of NKp44 expression [248,249]
compromises the natural cytotoxicity in comparison to activated primary NK cells.

UCB-derived primary NK cells have been explored as a possible platform for CAR approaches for
several reasons, including low risk of viral transmission from donor to recipient, rapid availability
of UCB units serving as an immediate “off-the-shelf” product, less stringent requirements for
HLA matching, and lower risk of GvHD [250]. In vitro models have been developed to optimize
the GMP expansion of large-scale UCB-NK cells, using artificial antigen-presenting cells (aAPCs)
expressing several costimulatory molecules in association to either membrane-bound IL-21 [180,251] or
membrane-bound IL-15 [252]. This last approach has been considered to generate CAR.CD19 NK cells
that also produce soluble IL-15 to boost in vivo expansion and persistence, as already demonstrated
in a preclinical model [253], and is now under clinical evaluation at M.D. Anderson Cancer Center
(recruiting trial NCT03056339 and not yet recruiting trial NCT03579927). Early data on the clinical
efficacy of CAR-NK therapy suggest that UCB-derived NK cells transduced with CD19 CARs can
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be used safely and effectively as off-the-shelf products in patients with B-cell malignancies (oral
communication at IACH 2018 meeting. link: http://cme-utilities.com/mailshotcme/IACH/Summaries/
Rezvani%20Innate%20Killer%20meeting_2018.pdf). Beside the great advantages in the use of UCB as
a source for NK cells, the major limitation is represented by the fact that UCB contains between 10-
and 100-fold fewer nucleated cells than other sources of NK cells [250], limiting the amount of cells
of interest that can be retrieved from one UCB unit for the generation of off-the-shelf CAR-NK cell
banks. This is the reason why we, and other groups, are currently investigating the feasibility and
efficacy of CAR-NK cells derived from PB of healthy donors. Several attempts have been conducted
in order to obtain large numbers of NK cells from PB sources [132,254–259], whereas few of them
were associated with the generation of CAR-NK cells. In particular, the feeder expanded approach
based on the K562 cell line modified to express membrane-bound IL-15 and 41BB ligand [260] was
considered for the manufacturing of PB-derived CAR-NK cells in at least two pilot clinical trials
(NCT01974479 in Singapore and NCT00995137 in Memphis USA). Recently, an innovative strategy
to generate CAR-NK cells without the use of a feeder layer has been described. In particular, this
last approach has been tested in the model of CAR.CD19 NK cells by our group and represents a
great advantage in terms of GMP manufacturing as well as safety requirements [261]. The feeder-free,
bovine serum-free protocol is based on the ex vivo stimulation of NK cells by monoclonal Ab directed
against NCRs to generate high-purity, functional, and expandable PB-NK and PB-CAR-NK cells from
widely available donor-derived leukapheresis products or PBMCs. The CAR-NK cells express a broad
number of relevant NK cell markers and receptors, indicating that the established method is able
to genetically modify and expand heterogeneous NK cells, regardless of their maturation stage and
cytokine-induced activation [261].

Stem cells (i.e., CD34+ hematopoietic progenitors from peripheral blood and UCB, as well as iPSC)
offer another renewable source of CAR-NK cells that can be standardized as an off-the-shelf therapy.
While the generation of NK cells from CD34+, human embryonic stem cells (hESCs), or iPSC has
been largely investigated by different approaches, the ex vivo expansion of CAR-NK cells from these
sources has been limited to few reports. In particular, CAR-NK cells have been generated from HSC
derived from UCB by using an optimized protocol based on the ex vivo expansion of nonirradiated
murine OP9-DL1 stroma in the presence of IL-7 and IL-15 [262]. This approach was feasible, although
no scalability proof has been conducted so far to prove its applicability in the generation of CAR-NK
off-the-shelf cellular banks. This latter approach, indeed, was carried out by groups working on
CAR-NK derived from iPSC [228,229]. The use of iPSC-derived NK cells is currently under early
clinical evaluation for safety and feasibility (NCT03841110), paving the way to the iPSC-CAR-NK
approach in the near feature.

Of notice, it is also relevant to consider that up to now, most CARs were not optimized for NK
cells, saving the CD3ζ domain. One attempt to completely substitute this region, if of any advantage,
is represented by the construction of a chimeric molecule between the extracellular region of the
inhibitory receptor PD-1 and the transmembrane domain of the activating receptor NKG2D to reverse
the immune escape mediated by PD-1 ligands in solid tumors [263]. The authors identified a chimeric
PD1-NKG2D receptor containing a NKG2D hinge region and 4-1BB costimulatory domain to obtain
stable surface expression and to mediate in vitro cytotoxicity of NK92 cells against various tumor
cells [263]. A second approach was to exploit DAP12, a signaling adaptor molecule involved in signal
transduction of activating NK cell receptors, fused to the anti-prostate stem cell Ag (PSCA) scFv(AM1)
to confer improved cytotoxicity to the NK cell line, YTS, against PSCA-positive tumor cells [264],
or fused to the extracellular domain of NKG2D itself [265]. This approach is of particular interest, since
it was tested in a pilot clinical trial in three patients with chemotherapy-refractory metastatic colorectal
cancer to evaluate the safety and feasibility of adoptive cell therapy with primary feeder-expanded NK
cells modified by mRNA electroporation. Patients received multiple infusions of autologous engineered
CAR-NK cells (first patient) or allogeneic CAR-NK cells from HLA-haploidentical family donors
(second and third patients) with no dose-limiting toxicities or serious adverse effects. Importantly, only
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grade 1 CRS was reported, associated with fever, fatigue, and anorexia, whereas GvHD was not
observed in the two patients treated with haploidentical NK cells [265].

Independently from the applied source for CAR-NK cells and the CAR design itself, the level of
CAR expression has been one of the major issues associated with the clinical translation of the approach.
Retroviral and lentiviral transductions are the two major platforms used for the stable expression
of CAR in NK cells, whereas RNA electroporation approach, providing transient CAR expression,
was adopted as a risk mitigation strategy by several groups [266,267]. Moreover, the comparison
between lentiviral and mRNA electroporation of CAR in NK cells has been formally conducted, with
the great advantage of mRNA electroporation only in the NK-92 cell line, whereas primary NK cells
could be efficiently transduced only upon high title lentiviral exposure [268].

Besides all the preclinical achievements in the field of CAR-NK cells, further research, as well
as pilot clinical trials (Table 1), are needed to investigate efficacy and feasibility of this novel and
intriguing approach, in an attempt to build a novel concept of tailored therapy, in which allogenic
effector cells could be used to maximize CAR cell therapy.

Table 1. Active clinical CAR NK cell trials with a known status (source: ClinicalTrails.gov).

Identifier NK
Type/Source CAR Target Conditions Phase Status Last

Up-Date Location

NCT03415100
Autologous or

allogeneic
NK cells

NKG2D-Ligand Metastatic Solid
Tumours I Recruiting August, 2018 China

NCT03056339
NCT03579927

Primary
NK/CB CD19-IL15 B Lymphoid

Malignancies
I/II
I/II

Recruiting
Not yet
recruiting

July,
2019/October,

2019
USA

NCT03692767 ND CD22
Relapsed

Refractory
B cell Lymphoma

I Not yet
recruiting January, 2019 ND

NCT03690310 ND CD19 Refractory
B Cell Lymphoma I Not yet

recruiting January, 2019 ND

NCT03692663 ND PSMA Castration-Resistant
Prostate Cancer I Not yet

recruiting October, 2018 ND

NCT03824964 ND CD19/CD22
Relapsed and

Refractory
B Cell Lymphoma

I Not yet
recruiting January, 2019 ND

NCT03692637 ND Mesothelin Epithelial Ovarian
Cancer I Not yet

recruiting January, 2019 ND

NCT03940833 NK-92 BCMA Relapsed/Refractory
MM I Recruiting May, 2019 China

NCT03940820
NCT03931720 ND ROBO1

Metastatic Solid
Tumours/Malignant

Tumors

I
I/II Recruiting May, 2019 China

NCT03941457 ND ROBO1 Pancreatic Cancer I/II Recruiting May, 2019 China

NCT03383978 NK-92 HER-2 Glioblastoma I Recruiting May, 2019 Germany

ND: Not Defined.

6. Concluding Remarks

The improved knowledge on the NK cell biology has led to increased interest in the development
of different immunotherapeutic approaches based on the use of these cells, and numerous studies have
been conducted to exploit their powerful antitumor activity. In particular, the potent cytotoxicity of
NK cells has been employed to treat hematological malignancies using two different approaches: (1)
adoptive transfer of mature NK cells; and (2) haplo-HSCT, where mature donor NK cells are generated
in vivo from HSCs and/or transferred with the graft (Figure 4).
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Figure 4. Different therapeutic approaches based on the use of natural killer (NK) cells. Adoptive 
transfer: infusion of unmodified allogeneic NK cells (directly or in combination with different types 
of immune stimulants) or chimeric antigen receptor (CAR)-modified allogeneic NK cells. Different 
strategies of haploidentical-HSCT: graft inoculum of “megadoses” of highly purified CD34+ cells; 
infusion of a αβT- and CD19 B cell-depleted graft enriched for hematopoietic stem cells (HSC) and 
also containing other cell types, including mature (possibly alloreactive) NK cells and γδT 
lymphocytes; infusion of unmanipulated peripheral blood stem cells (PBSC)/bone marrow (BM) and 
early (+3 +5 day) post-transplant high-dose cyclophosphamide (PTCy) administration that 
eliminates donor-derived proliferating cells, including all mature NK cells. Graft versus host disease 
(GvHD) prophylaxis is given only in the third type of transplant. NK cell reconstitution in the three 
haploidentical-hematopoietic stem cell transplantation (haplo-HSCT) platforms is depicted, 
differentiating different stages of maturation. Only in αβT and CD19 B cell-depleted graft are 
mature NK cells infused and persist in the recipient. BiKE, bispecific killer engagers; TriKE, 
trispecific killer engagers. 
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Figure 4. Different therapeutic approaches based on the use of natural killer (NK) cells.
Adoptive transfer: infusion of unmodified allogeneic NK cells (directly or in combination with
different types of immune stimulants) or chimeric antigen receptor (CAR)-modified allogeneic NK cells.
Different strategies of haploidentical-HSCT: graft inoculum of “megadoses” of highly purified CD34+

cells; infusion of a αβT- and CD19 B cell-depleted graft enriched for hematopoietic stem cells (HSC) and
also containing other cell types, including mature (possibly alloreactive) NK cells and γδT lymphocytes;
infusion of unmanipulated peripheral blood stem cells (PBSC)/bone marrow (BM) and early (+3 +5 day)
post-transplant high-dose cyclophosphamide (PTCy) administration that eliminates donor-derived
proliferating cells, including all mature NK cells. Graft versus host disease (GvHD) prophylaxis is given
only in the third type of transplant. NK cell reconstitution in the three haploidentical-hematopoietic stem
cell transplantation (haplo-HSCT) platforms is depicted, differentiating different stages of maturation.
Only in αβT and CD19 B cell-depleted graft are mature NK cells infused and persist in the recipient.
BiKE, bispecific killer engagers; TriKE, trispecific killer engagers.

Moreover, the in vitro or in vivo activation of NK cells with immune stimulants (including
cytokines, BiKE, and TriKE) or the genetic modification of NK cells with CAR constructs specific for
tumor antigens are promising strategies for potentiating and redirecting NK cell response against
tumor cells. A combined use of some of these approaches may represent a novel strategy for cancer
immunotherapy against hematological malignancies (Figure 4).

New perspectives can be represented by nanosized extracellular vesicles (EVs) that can be naturally
secreted by several cell types including NK cells. The NK EVs contain lytic proteins, showing cytotoxic
effects on different malignant cell lines, including ALL. They can also transfer bioactive molecules,
easily passing through biological barriers. Thus, NK EVs have been recently proposed as a new cell-free
immunotherapeutic tool [141,269].
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