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Abstract

The recently growing interest in studying flight behaviours of fruit flies, Drosophila melano-
gaster, has highlighted the need for developing tools that acquire quantitative motion data.
Despite recent advance of video tracking systems, acquiring a flying fly’s orientation
remains a challenge for these tools. In this paper, we present a novel method for estimating
individual flying fly’s orientation using image cues. Thanks to the line reconstruction algo-
rithm in computer vision field, this work can thereby focus on the practical detail of imple-
mentation and evaluation of the orientation estimation algorithm. The orientation estimation
algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effec-
tiveness and accuracy of the proposed algorithm by running experiments both on simulation
data and on real-world data. This work complements methods for studying the fruit fly’s flight
behaviours in a three-dimensional environment.

Introduction

The recently increasing interest in studying flight behaviours of fruit flies, Drosophila melano-
gaster, has heightened the need for developing tools that obtain quantitative motion data [1].
Previous studies have made contributions on obtaining trajectories of individuals using images
from multiple cameras, such as fruit flies [2-9] and midges [10, 11]. Due to large number of
individuals, insect swarms usually spread across wide space. When imaged, each target only
takes up tens of pixels in the images since we have to film the entire swarms in the cameras’
field-of-view (FOV). That is, such images can only provide limited visual cues (or features) for
tracking algorithms to estimate motion data. On one hand, the state-of-the-art methods [5-11]
obtained the successive locations of each target, but neglected the orientation of targets. On the
other hand, biological studies have demonstrated that the orientation is a key source of infor-
mation on studying behaviours of fruit flies [12-17].

Due to lack of data, previous studies [18-20] usually represented a fruit fly’s orientation by
its motion direction. However, a fly’s orientation is not the same as its motion direction, such
as the elevation of a fly’s orientation tends to be 45° from horizontal [21]. Further, a fly’s orien-
tation may be entirely different to the motion direction when it takes maneuvers [12, 13, 22,
23], such as saccades.

In this paper, we present a novel method for estimating individual fruit fly’s orientation
when many flies are flying in a laboratory arena. Thanks to the line reconstruction algorithm
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in computer vision field [24], this work can thereby focus on the practical detail of implementa-
tion and evaluation of the orientation estimation algorithm. The orientation estimation algo-
rithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness
and accuracy of the algorithm by running experiments both on simulation data and on real-
world data. The presented method powerfully complements methods for studying flight behav-
iour in a three-dimensional (3D) environment. The source code is provided as the supporting
information (S1 File).

Methods

In order to obtain 3D motion data, multiple synchronized and geometrically calibrated cam-
eras are adopted. Although in principle, two cameras are sufficient for stereo imaging. Three or
more cameras are typically required to resolve the ambiguities between targets and to avoid
false identifications. Further, because of the perspective effect, three or more cameras are
required for estimating a fruit fly’s orientation accurately.

2.1 Orientation estimation problem

2.1.1 Modeling fruit flies. Given the location of a fruit fly X = (x, y, z)", the fly’s orienta-
tion is defined by two angles O = (6, ¢)" against the world coordinate system (see Fig 1b),
where 0 € [-180°,180°], ¢ € [-90°,90°]. These two angles are known as azimuth and elevation.
Concatenating the location (x, y, z) and the orientation (6, ¢), the tuple (x, y, z, 0, ¢) defines a
directed line-segment in 3D, the center-axis of the fly’s body. On the other hand, it is well
known that the flight attitude of a flight object is defined by three angles (yaw, pitch, and roll).
The angles azimuth and elevation correspond to yaw and pitch, respectively. Here we ignore
the roll angle since we do not have sufficient visual cues for estimating the roll angle. Previous

center-axis

Fig 1. Orientation of a fruit fly. (a) The frontimage of an adult fruit fly. (b) The fruit fly locates at (x, y, z). Its orientation is defined by two angles (6, ¢) against
the coordinate system. 6 is an angle from x-axis and ¢ is an angle from horizontal (the x-y plane). Concatenating the location (x, y, z) and orientation (6, ¢), it
defines a directed line-segment in 3D space, the center-axis of the target.

doi:10.1371/journal.pone.0132101.g001
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studies [25] have demonstrated that the roll angle can be determined by using the symmetrical
position of wings, if there are ample visual cues.

2.1.2 Line reconstruction algorithm. According to the aforementioned model of fruit
flies, a fly’s motion state at a certain moment can be defined by (x, , z, 8, ¢) which includes
both the fly’s location and its orientation. Since we ignored the roll angle of a fruit fly’s body, a
fly’s orientation is defined by a line-segment in 3D (given the center-axis of a fruit fly, we have
developed the generative shape model to represent its body, see S2 Fig). In computer vision
field, there is a line reconstruction algorithm for multi-camera systems [24]. Suppose a line I
in 3D space is projected to lines in two views as [, and [,. The line /; can be reconstructed by
back-projecting each image line (/, and [}) to give a plane in 3D space, and intersecting the
planes:

PTl2
I, = , (1)
P Tl’2

where P and P/ denotes the projection matrix of two cameras; and the planes defined by the
back-projecting of image lines are P™ I, and P'"I. This equation can be theoretically general-
ized into more cameras. But it needs to evaluate the Maximum Likelihood to estimate the solu-
tion while the equation is generalized for three or more cameras [24].

In order to recover a fly’s orientation, which is defined by its center-axis (a line-segment),
we have to detect image lines in camera views, in which each image line is the projection of the
center-axis. According to the line reconstruction algorithm and considering the efficiency,
using two image lines in two camera views is preferable.

2.2 Body detection

Previous studies [8, 10] have demonstrated that the illumination was usually provided by
front-lighting. The front-lighting means lights and cameras are placed at the same side of the
targets. It has the advantage of showing the rich texture of targets and background. The rich
texture however makes target detection and separating pixels corresponding to a target’s body
very difficult. The back-lighting is the opposite, i.e. the targets are imaged as silhouettes against
plain white background. In our problem, we moved the lights to the side of targets opposite the
cameras, meaning that targets were back-lit in camera views (see S1 Fig, which shows the
experimental system). Fig 2a shows an image in which fruit flies were back-lit in a camera view.

Fig 2. Body detection. (a) The image at the left was filmed by a back-lit camera and the patch marked by the green rectangle was zoomed at the right. (b)
The patch was overlaid with red blobs which were detected using background subtraction. (c) The patch ass overlaid with refined blobs in which the pixels of
wings were removed. (d) Each refined blob is fitted by an ellipse.

doi:10.1371/journal.pone.0132101.9002
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We present a simple and efficient detecting approach in this paper. It makes full use of the dif-
ferent levels of transparency between the wings and body of a fruit fly, in which the pixels of
wings have higher intensities than pixels of body. The detecting approach segments an image
into blobs. Each blob is an image area with pixels’ locations and intensities. To simplify nota-
tion, all definitions in this section ignore the subscripts for cameras and moments.

2.2.1 Segmenting blobs. In the first step, we subtract a Gaussian background model from
an acquired image. Given a pixel i which denotes the location of a certain pixel in a certain
camera view, let y(i) denote its mean intensity and o(i) denote its standard deviation of intensi-
ties through time. We compute p(i) and o(i) according to a sequence of consecutively acquired
images in the camera view. That is, g and o define the Gaussian background model in the cam-
era view.

The pixel i in a certain image is segmented as a foreground pixel if its intensity satisfies the
constraint:

< —C (2)

where I denotes the acquired image at a certain moment. Connected foreground pixels are clus-
tered as blobs b € {1, . . ., b,}. We chose the constant value C; = 1.5 which guarantees that each
blob including pixels of a fly’s wings and body. Fig 2b shows the segmented blobs of the image
patch.

2.2.2 Removing wings pixels. In the second step, we use local Gaussian models to remove
the pixels of wings from blobs. Given a blob b, let y;, denote its mean intensity and o;, denote its
standard deviation of intensities. These variables, y;, and o, are computed using the pixels in
the blob b. The local Gaussian model of the blob b is thereby defined by y;, and ;. This second
step is a refinement step and is computed as

blob(b, i) = Ty (3)

0 otherwise

where b € {1, .., b} denotes the blobs and i € {i; 1, . . ., i, ,} denotes the pixels of the blob b. If
blob(b, i) is equals to 0, the pixel i is removed from the blob b. We choose the constant value C,
= 1.5 which guarantees most of pixels of a fly’s body being preserved after refinement. Fig 2c
shows the image patch overlaid with the refined blobs. This step makes full use of the different
levels of transparency between a fruit fly’s wings and its body (i.e. the pixels of wings have
higher intensities than those of body). This is achieved thanks to the fruit flies were back-lit in
camera views.

2.2.3 Fitting blob with ellipse. In order to fit a blob with an ellipse accurately, it is usually
that fitting a 2D Gaussian to the locations of all pixels in the blob. Given the parameters of the
best-fitting Gaussian, the parameters of the ellipse can be computed. Instead of just computing
the mean and covariance of all pixels in the blob, we compute a weighted mean and covariance.
Let w(i) denote the weight of pixel i, the weight w(i) is defined as the normalized distance of
the pixel /’s intensity to the background model defined by y and o:

PLOS ONE | DOI:10.1371/journal.pone.0132101  July 14,2015 4/13



el e
@ ) PLOS ‘ ONE Estimating Fruit Flies’ Orientation

Therefore, the weighted mean and covariance of the pixels of a blob b are computed as:
1 N .
Y, = WZiW(l) i, 1€ {iyy, iy, )

(5)
S, = S i) G ) ) € (i)
where W =%; w(i), i € {ip.1, - - -, ip, »} defines the weight’s normalization constant, and i € {i, ;,
.., ip, o} denotes the pixels of the blob b. The weighted mean and covariance not only improve
the robustness on non-uniform illumination (e.g. a single threshold for all images), but also
provide us with the sub-pixel accuracy on fitting ellipses. The mean g, defines the center of the
ellipse, and the covariance X, defines the axis and the direction of the ellipse. Fig 2d shows the
results of fitting each blob with an ellipse.
2.2.4 Measurements definition. To simplify notation, we refer to a blob and the ellipse fit-
ted to it as a measurement. Let y denote a measurement, each measurement includes two com-
ponents:

1 = {b,elp(b)} (6)

where b denotes the blob with both pixels” locations and intensities, and elp(b) defines the
ellipse fitted to the blob. We use 3 cameras in our experiments, and thereby the set of all avail-
able measurements at a certain moment was defined as {y; | v € {1,2,3}, i € {1,...,i,,} }.

2.3 Orientation estimation

Given the measurement of a certain fruit fly in a certain camera view, measurements of the fly
in other camera views can be matched according to several constraints, e.g. the epipolar con-
straint [24]. We name a pair of matched measurements across views as matched measurement
pair (MMP for short). An MMP includes just one measurement in each camera view. The ellip-
ses of the MMP are employed to estimate the fly’s orientation according to the pinhole camera
model in Euclid geometry. According to Eq (1), it uses two lines as infinite, and does not use
the endpoints [24]. In practice, we prefer to use the major-axis’s endpoints of the ellipses in an
MMP. The algorithm for estimating orientation is presented as Algorithm 1. The interpretation
is sketched in Fig 3a.

Algorithm1l The algorithm for estimatinga fly’ sorientation.

Input: The parameters of camera l: pt= ( (Kl) 3x37r (Tl) 3x1) ; The parameters of
camera 2: P> = ( (K2) 3x37r (TZ) 3x1) 7 Themeasurements from camera 1 and camera 2:
X" (b, elp(b)) and x° (b, elp(b));
Output: The orientation (6, ¢)
1: Get end-points of themajor-axisof ellipse x' (elp (b)) : x!(i,j) and x}(i,/);
2: Compute the directionof the projection ray of each end-point:

3 -1 . T 7 -1 .. T
3: dy=(K') x(x(i,j),1) anddy = (K') " x (x,(i,), 1) 7
4: Get end-points of themajor-axis of ellipse x* (elp (b)) : x2(i,j) and x2(i,j);
5: Compute the direction of the projection rayof eachend-point:
3 -1 P T 3 -1 YR T
6: di=(K) *(x(i,j),1) andd;=(K*)" = (x3(i,j),1) ;
7: Compute the normal of plane &': #' = dy x dy;
8: Compute the normal of plane ®°: ii> = d2 x d2;

9: Compute the direction of the cross line between &' and °: d =i x i?;

10: Compute the azimuth 6 and the elevation ¢ of 3;
11: if < 0 then
12: d=—d;
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Error (g)

I S P =
() Ratio (1)

Fig 3. Orientation estimation. (a) The illustration of Algorithm 1. Here /' and /? denote the image plane of Camera 7 (blue) and Camera 2 (red) respectively.
The line-segment (x!, x!) (blue) denotes the ellipse’s major axis in I'. And the line-segment (x2, x2) (red) denotes the ellipse’s major axis in /2. The projection
rays of those end-points define two plane ®' and ®? respectively, e.g. two blue rays define ®'. The orientation O is computed from the direction of the cross
line (the longer green line) between two planes ®' and ®2. Here all definitions are defined in the world coordinate system. (b) The orientation is problematic.
The measurement is drawn in red, and red dashed lines are the major-axis and minor-axis of its ellipse. A generative shape according to the fly’s location X
and orientation O is re-projected into the camera view (see S2 Fig for the generative shape model.). The green pixels are re-projected pixels. Yellow pixels
are identical pixels. (c) The error € as a function of the ratio y. Here y defines the length ratio between the major-axis and the minor-axis of an ellipse.

doi:10.1371/journal.pone.0132101.g003

13: Compute the azimuth 6and theelevation¢of 3;
14: endif
15: return (6, ¢)

2.3.1 Determining the abdomen to head direction. Algorithm 1 presented the orienta-
tion estimation algorithm. The computing phase (step 1 to step 10) of Algorithm 1 can also be
written as an equation, given the algorithm’s input (two ellipses from different camera views).
At step 10 of Algorithm 1, a fly’s orientation is computed. However, the result may be an
inverse direction to the real one, since we have no cues to determine the direction of abdomen
to head. Fortunately, the characteristics of the flight patterns of fruit flies provide us with cues
for determining the abdomen to head direction. In order to determine the direction of abdo-
men to head for a fruit fly’s orientation, we follow the rules:

1. The elevation ¢ of a fruit fly’s orientation O(6, ¢) tends to be 45° from horizontal.
2. A fruit fly’s head usually points towards the sky.

That is, the estimated orientation is an inverse direction to the real one if the elevation ¢ <
0 (see step 11 to step 14 of Algorithm 1, the rectifying phase). These rules are derived from pre-
vious studies [15, 21]. Previous studies have demonstrated the aerodynamics of flight
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maneuvers of fruit flies, in which the fruit fly tends to preserve the pitch angle of its flight atti-
tude at ~ 45°. Besides, the fruit fly probably had to head sky polarization for navigating itself
[15].

2.3.2 Choosing two ellipses. Fig 3a illustrates the proposed algorithm. It shows the fly’s
orientation O(6, ¢) is computed from the direction of the cross line between two planes ®' and
®*. However, the orientation may become problematic while measurements are close to circu-
lar. If the measurements of an MMP are close to circular, the major-axis of ellipses might have
nothing to do with the plane in which the center-axis of a fruit fly’s body lies (as shown in Fig
3b). Let y define the ratio between the major-axis and the minor-axis of an ellipse, i.e. y mea-
sures the level of circular for a measurement. Let ¢ define the angle between the estimated ori-
entation and the ground truth, we compute the error € = 1 — cos(x). Fig 3¢ shows the error € as
a function of ratio y. It suggests that the error € is less than 0.01 if y satisfies y > 1.3. In our
problem, we can easily choose two ellipses from an MMP (it includes 3 measurements from 3
camera views), which all satisfy y > 1.3. That is, the orientation O can be estimated accurately.

2.4 Incorporating into a tracking algorithm

We have developed a tracking algorithm based on the Bayesian inference framework (particle
filtering [26]). The orientation estimation algorithm was incorporated into the tracking
algorithm.

The location of a target at moment ¢ is predicted N times using the dynamic model and the
target’s location at moment ¢ — 1. Each prediction is included in a particle with another compo-
nent, orientation. Each particle needs to be assigned at least one measurement in each camera
view; and then the orientation component is computed using those associated measurements.
Then, the probability of each particle is evaluated using the temporal consistency on appear-
ance and orientation. The target’s motion state is the expectation of these N particles weighted
by their probability. Therefore, the motion state of each target includes two components, loca-
tion (x, y, z) and orientation (6, ¢). Fig 4 shows the overview of the tracking algorithm.

Experiments and Results

The proposed method was implemented in the MATLAB™ environment. The source code was
provided as supporting information (S1 File). We have done the performance evaluation both
on simulation data and on real-world data.

3.1 Evaluation on simulation data

3.1.1 Simulation data. The first step of simulation is to create the ground truth. Firstly,
the 3D trajectory of each target could be generated by using a motion model, e.g. boids [27].
Secondly, given a certain target, we computed its motion direction at each moment, M(6, ¢).
Lastly, the target’s orientation O(0, ¢) was computed at each moment as
M(6)

T
4

0= +n,n~N(0,%) (7)

where #n denotes a small white noise. Targets’ trajectories, their motion direction, and their ori-
entation formed the ground truth.

The second step is to simulate the multi-camera system and to generate video datasets.
Given a target’s location and orientation, a shape which represents the target was generated
(see S2 Fig, the generative shape model). At each moment, all targets represented by shapes
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Fig 4. Overview of the tracking algorithm. The fruit fly is flying in 3D space. By exploiting the particle filtering solution, there are N (we set in our
experiments N = 200) particles sampling the posterior distribution of the location of a target at moment t. Each particle includes the location’s prediction at
moment t. The tracking algorithm computes the orientation and weight of each particle using the MMP associated with the particle at moment t. If there are
more than one MMP (e.g. since the particle is associated with two measurements in Camera 1, the algorithm thereby generates two MMPS (y1 1, ¥2.2, ¥3,3)
and (y1,2, ¥2,2, ¥3,3)), the algorithm choose the MMP having highest weight (e.g. (v1,1, 2,2, x3,3)) and the orientation computed by the MMP.

doi:10.1371/journal.pone.0132101.9004

were filmed by simulated cameras. Images which were filmed by simulated cameras through
time formed the dataset. Fig 5 shows the arrangement of cameras and the snapshot from each
camera. The arrangements of cameras are different: orthogonally placed cameras (see Fig 5a)
and non-orthogonally placed cameras (see Fig 5b). We applied the “Machine Vision Toolbox”
[28] to simulate the three-camera system, and generated two image datasets. These two data-
sets were provided with source code (S1 File).

3.1.2 Evaluation results. We evaluate the performance of the orientation estimation algo-
rithm using the angle between the estimated orientation and the ground truth as metric. This
metric measures accuracy of the estimated orientation. Given a certain target at moment ¢, we
computed the angle between its estimated orientation and the ground truth. We repeated the
computation for all targets through moments and collected all the angles. By evaluating the
probability distribution of these angles, Fig 6a shows the cumulative distribution function
(CDF) of the angles distribution. As expected, there is a large difference between a target’s ori-
entation and its motion direction. If all target’s orientation were represented by their motion
direction, Fig 6a shows that 98% angles belong to the interval [0°,124°], which is obviously a
large error interval. It is known that vectors’ direction are inverse to each other if the angle
between two vectors is > 90°. Fig 6a shows that 20% angles are > 90°, in which each is the
angle between a target’s orientation and its motion direction. Therefore, data may be severely
noised when we represented a target’s orientation by its motion direction.

Despite the arrangement of cameras, the estimated orientation is much more accurate.
Moreover, the result on orthogonally placed cameras is slightly more accurate than the result
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Fig 5. Cameras arrangement and snapshots. (a) Three cameras are orthogonally placed. (b) Three cameras are non-orthogonally placed.
doi:10.1371/journal.pone.0132101.g005
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Fig 6. Performance evaluation on simulation data. (a) CDFs of angles distributions. Asterisks denote the 98% accuracy threshold, 2° (green), 5° (blue),
and 124° (red). (b) The red dashed-line is the center-axis of a target. The solid red line connects the camera’s center and endpoint of the center-axis. The

projection section is an intersection between the target’s body and a plane which is perpendicular to the plane determined by the two red lines. The projection
section is drawn in blue. The blue dashed-line is the center axis of the projection section.

doi:10.1371/journal.pone.0132101.9g006

on non-orthogonally placed cameras. Fig 6a shows that the former has an error interval [0°,2°]
while the latter has an error interval [0°,5°], in order to achieve 98% accuracy. The reason, why
the former is better, can be reasoned from the perspective effect.

Because of the perspective effect, there exists a projection section when a target was filmed
by cameras (pinhole model, central cameras). Pixels of the target in an image are just the part
of its body between the section and a certain camera. The projection section is illustrated in Fig
6b as a blue ellipse outline. The estimated orientation is indeed the orientation of the center
axis of the projection section (see Fig 6b, the blue dashed-line). There is a slight difference

PLOS ONE | DOI:10.1371/journal.pone.0132101  July 14,2015 9/13
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Fig 7. Performance evaluation on real data. (a) The snapshots of a fruit fly through time, in which shapes generated using the fly’s location X(x, y, z) and
orientation O(6, ¢) are projected into the camera view and overlaid the zoomed image patches. (b) The distribution of angular direction of flies’ orientation with
respect to their motion direction. The PDF represented by the 2D histogram is normalized. The inset is the PDF of the distribution of all angles between a fly’s
orientation and its motion direction through time. (c) The snapshots of a fruit fly’s maneuver in twelve consecutive frames. Shapes are projected into the
camera view and overlaid the zoomed image patches. (d) Three-dimensional comparison between the fly’s orientation and its motion direction during those
twelve consecutive frames. Red arrows denote the fly’s orientation and blue arrows denote the motion direction.

doi:10.1371/journal.pone.0132101.g007

between the center axis of the projection section and the center-axis of the target (see Fig 6b,
the red dashed-line). Fig 6a shows that errors caused by perspective effect are slightly reduced
if cameras were orthogonally placed.

3.2 Evaluation on real data

We housed fruit flies in a cubic transparent flight arena of side length 360 mm. The fruit flies
were back-lit by planar lights. Three monochrome CMOS cameras were placed approximately
900 mm away from the arena (see S1 Fig, the experimental system). These cameras were geo-
metrically calibrated and hardware synchronized. All cameras were set to 100 fps and the reso-
lution of each camera was 2040v x 2048h. The supplements S1 Video, S2 Video, and S3 Video
demonstrate the evaluation results.

Fig 7a shows the snapshots of a fruit fly through time. It shows the fruit fly often changed its
orientation. The difference between a fly’s orientation and its motion direction can be mea-
sured by the angular direction of a fly’s orientation with respect to its motion direction. The
angular direction is also defined by two angles, azimuth 6 and elevation ¢. Given a fruit fly i,
we computed the angular direction of a fly’s orientation O, with respect to its motion direction
(velocity ¥,). That is, we measured the angular direction of a fly’s orientation against the coordi-
nate system defined by rotating the x-axis of the world coordinate system to ¥, The angular
direction (0°,0°) always denotes the motion direction of a fruit fly through time. Fig 7b shows
the probability density function (PDF) of the distribution of angular directions, in which the

PLOS ONE | DOI:10.1371/journal.pone.0132101  July 14,2015 10/13
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PDF is represented by the normalized 2D histogram. Each bin is of size 6° x 6°. The central bin
which locates at point (0°,0°) denotes a fly’s orientation is the same as it motion direction. Fig
7b shows that events represented by the central bin happened under a very small probability.

On the other hand, though this probability distribution shows an obvious cluster, it dis-
perses across a wide area. The fluctuation of elevation A¢ between flies’ orientation and their
motion direction is mainly A¢ € [-20°,60°]; and the fluctuation of azimuth A8 is mainly A6 €
[-30°,50°]. That is, angles between flies” orientation and their motion direction should also dis-
perse across a large interval. The angle between a fly’s orientation and its motion direction can
also measure the difference between them. The inset of Fig 7b shows the PDF of the angle dis-
tribution, in which each angle is the angle between a fly’s orientation and its motion direction.
The PDF is widely dispersive. It suggests that the difference between a fly’s orientation and its
motion direction is too large to represent a fly’s orientation by its motion direction at
moments.

Moreover, previous studies [18, 29] have demonstrated the flight trajectories of many fly
species consist of straight flight sequences interspersed with rapid changes in heading termed
saccades. Fig 7c shows a fruit fly’s maneuvers in twelve consecutive frames, in which the fruit
fly probably took a saccade. And Fig 7d shows the variation of the fly’s orientation and its
motion direction during the course of the saccade. It shows clearly that the angle between a
fly’s orientation and its motion direction is large in the period. That is, data may be severely
noised when representing a fly’s orientation by its motion direction.

Conclusions

In this paper, we proposed a method to estimate a fruit fly’s orientation using image cues. The
orientation estimation algorithm can be incorporated into tracking algorithms. The computing
phase (step 1 to step 10 of Algorithm 1) of the orientation estimation algorithm can be written
as one equation and is consistent with the line reconstruction algorithm in computer vision
field [24]. Computing a fly’s orientation needs in practice only dozens of microseconds, if the
the input of the algorithm is provided. Because of the perspective effect, the estimated orienta-
tion is slightly different to the real one. Though the orthogonally placed cameras produced the
best result, our experiments demonstrate that the arrangement of cameras has little influence
on the performance of accuracy. Further, the orientation estimation algorithm is suitable for
any targets if their body can be represented by ellipsoids.
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