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Abstract
The correct location of earthquake emergency shelters and their allocation to residents can

effectively reduce the number of casualties by providing safe havens and efficient evacua-

tion routes during the chaotic period of the unfolding disaster. However, diverse and strict

constraints and the discrete feasible domain of the required models make the problem of

shelter location and allocation more difficult. A number of models have been developed to

solve this problem, but there are still large differences between the models and the actual

situation because the characteristics of the evacuees and the construction costs of the shel-

ters have been excessively simplified. We report here the development of a multi-objective

model for the allocation of residents to earthquake shelters by considering these factors

using the Chaoyang district, Beijing, China as a case study. The two objectives of this

model were to minimize the total weighted evacuation time from residential areas to a speci-

fied shelter and to minimize the total area of all the shelters. The two constraints were the

shelter capacity and the service radius. Three scenarios were considered to estimate the

number of people who would need to be evacuated. The particle swarm optimization algo-

rithm was first modified by applying the von Neumann structure in former loops and global

structure in later loops, and then used to solve this problem. The results show that increas-

ing the shelter area can result in a large decrease in the total weighted evacuation time from

scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from

scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final

schemes of each scenario are the best solutions, otherwise the earlier schemes are more

reasonable. The modified model proved to be useful for the optimization of shelter alloca-

tion, and the result can be used as a scientific reference for planning shelters in the

Chaoyang district, Beijing.
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Introduction
Increasing attention is being paid to the impacts of natural disasters on humans as both society and
technology develop [1,2]. Numerous retroactive and proactive countermeasures have been intro-
duced to reduce the number of casualties and other impacts caused by natural hazards. The devel-
opment of emergency shelters has been proved to be one of the most effective methods to reduce
causalities, as they can provide safe havens for evacuees before, during and after a disaster [3].

The location and allocation of emergency shelters have long been critical and difficult issues.
Many models have been developed based on research into site selection problems, including
the p-median model [4], the p-center model [5] and covering models, such as the set covering
model [6] and the maximal covering location model [7]. In terms of objectives, disaster shelter
allocation models can be classified into two categories, namely, single-objective models and
multi-objective models. Compared with multi-objective models, single-objective models (e.g.
with the objective of minimizing travel distance or minimizing the construction cost) are easier
to formulate and are well developed. For example, Sherali et al. [8] proposed a shelter model
based on the p-median problem with the objective of minimizing the evacuation time to hurri-
cane/flood emergency shelters. Based on a set covering model, Dalal et al. [9] studied the selec-
tion of sites for typhoon shelters in the countryside by adding a capacity constraint and a
distance constraint. Their model was solved by applying a clustering analysis method. Based
on the capacitated-median model, and considering the different function of relief points in var-
ious levels and the connection between them, Widener [10] and Widener and Horner [11]
developed a hierarchical capacitated-median model and applied it to the location-allocation
problem of hurricane relief points in Leon county, Florida, USA. Considering the hierarchical
location problems of China, Chen and You [12] divided the facility system into two levels, a
basic level and an advanced level, and built a hierarchical location model.

However, single-objective models are too simple to cover the complexity of the actual situa-
tion in the shelter location problem, which makes the development of multi-objective models
necessary. Alçada Almeida et al. [13] built a shelter location model based on the p-median
model with four objectives (minimizing the total distance to the shelter, minimizing the total
risk of the primary path being impassable, minimizing the fire risk at the shelter and minimiz-
ing the total time from the shelter to the University Hospital) and solved this model within the
framework of a web-based decision support system. Doerner et al. [14] proposed a location
model for hurricane disaster facilities with the objectives of a weighted mean of a minimum
and a maximum coverage criterion, minimizing the risk of tsunami events and minimizing
costs. Adding the objectives of minimizing the construction cost of the facilities and the travel
cost into a maximal covering location model, Barzinpour and Esmaeili [15] developed a multi-
objective mixed-integer linear programming model by using a virtual zoning approach, achiev-
ing both the humanitarian and financial goals.

An optimum algorithm has been introduced to solve these models because the complexity
of the location problem, which involves multiple objectives, strict constraints and a discrete
feasible domain, makes it impossible to solve simply using GIS spatial analysis technology. For
example, Li et al. [16] modified an ant colony algorithm, combined it with GIS technology, and
applied it to a high-dimensional location problem. Hu et al. [17] modified the particle swarm
optimization (PSO) algorithm and used it to solve location models for earthquake shelters.
Yaghini et al. [18] developed a heuristic algorithm based on the local branching and relaxa-
tion-induced neighborhood search method and applied it to solving the capacitated p-median
problem. Hu et al. [19] used a non-dominated sorting genetic algorithm to solve the multi-
objective location model for earthquake shelters. Although there are various evolution algo-
rithms to solve these models, the PSO algorithm has been proved to be simpler and more
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robust than other algorithms. However, as an evolutionary algorithm, the PSO algorithm can-
not find the accurate solution in many problems and it is therefore necessary to modify this
algorithm to find a more optimum solution.

The final objective in the facility location and allocation problem is to obtain the maximum
profit with the lowest cost. For disaster emergency shelters, this final objective can be represented
as the shortest evacuation time with the lowest construction cost for the shelter. Although there
have been a number of studies on shelter planning, a more practical model is required as a result
of the gaps between existing shelter models and real evacuation situations. The work reported
here developed an earthquake shelter allocation model with the two objectives of minimizing the
total shelter area and minimizing the total weighted evacuation time; the two constraints were
the shelter capacity and the service area. The effects of hazards on the number of potential evacu-
ees, as estimated by the building collapse rate, were also considered in three different scenarios
using the Chaoyang district, Beijing, China as a case study. The evacuation speed of the residents
was calculated by weighting the percentage of the population of different ages. To solve this com-
plex problem, the PSO algorithm was modified by adding an outside loop and was combined
with the simulated annealing (SA) algorithm to obtain a more optimum solution.

Method

Model formulation
For simplicity, the residents in a community were assumed to be concentrated at its center. It
was also assumed that all the residents would evacuate to the same shelter at the same speed. It
was also assumed that the construction cost of a shelter is determined by its size or capacity
and therefore the objective of minimizing the construction cost could represented by minimiz-
ing the total capacity of the shelter.

Thus, a location model with two objectives of minimizing the total area of the shelters and
minimizing the total weighted evacuation time, and with the constraints of the capacity of the
shelters and the service distance, was proposed:

f1 ¼ min
XN
i¼1

Yi�Si ð1Þ

f2 ¼ min
X dij

vj
� Pj

Wji

ð2Þ

Subject to

XM
j¼1

PjLBji � SiYi � 0 ð3Þ

CjiBji � Dj � 0 ð8i ¼ 1; 2; . . .. . .;N 8j ¼ 1; 2; . . .. . .;MÞ ð4Þ
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XN
i¼1

BjiYi ¼ 1 ð8j ¼ 1; 2; . . .. . .;MÞ ð5Þ

Bji 2 ð0; 1Þ Yi 2 ð0; 1Þ ð6Þ

Yi ¼
1; the candidate shelter i is selected as earthquake emergency shelter

0; the candidate shelter i is not selected as earthquake emergency shelter
ð7Þ

(

The variables, sets and parameter in the model are as follows:

I is the set of candidate facilities: I = (1, 2, . . . i, . . . N)

J is the set of the community: J = (1,2, . . . j, . . . N)

Si is the area of the candidate shelter i

L is the smallest refuge area per capita (1 m2/person)

dji is the length of the shortest path between the community j and the candidate shelter i

vj is the evacuation speed of the population group in the jth community

Dj is the maximum evacuation distance for the people in community j

Wji is the mean width of the route from community j to candidate shelter i

Pj is the number of people who need to be evacuated in community j

Eq 1 represents the objective function f1 of minimizing the total area of the shelter and Eq 2
represents the objective function f2 of minimizing the total weighted evacuation time. The
physical characteristics of the evacuees are one of the major factors affecting the evacuation
speed. Assuming that the evacuation speed of the residents of a community depends on the age
structure of the population in the community, and that each child needs the assistance of an
adult during evacuation, then the evacuation speed vj can be calculated according to Eq 8:

vj ¼ ð2� pc � vc þ ðpa � pcÞ � va þ po � voÞ � r ð8Þ

where vc is the speed of the child, pc is the percentage of children in the community, va and pa
denote the speed and percentage of the adults in the community and vo and po are the speed
and percentage of elderly people in the community. The adjustment parameter ρ is set to 1.3 by
considering that the evacuation speed is 1.3 times that in normal situations without considering
the influence of collapsing buildings. The values of vc, va and vo were decided by referring to
the work of Gates et al. [20]. The population Pj in community j that needs to evacuate can be
calculated according to Eq 9:

Pj ¼ popj � R ð9Þ

where popj is the population of community j and R is the evacuation rate for different
scenarios.

Eq 3 denotes the capacity constraint that the area of the shelters should satisfy the demands
of the residents. Eq 4 denotes the distance constraint that the distance from community j to
shelter i is less than the maximum distance. Eq 5 ensures that one community can choose only
one shelter. Eq 6 ensures that decision variables Bij and Yi can only equal 0 or 1.
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PSO algorithm
The original PSO algorithm is attributed to Eberhart and Kennedy [21] and was intended for
use in simulating social behavior. It is characterized by a fast convergence, robustness and
effectiveness and has thus become an important tool in solving complex optimization prob-
lems. The PSO algorithm has been applied in the fields of engineering design [22, 23], medical
science [24], task allocation [25, 26] and social network [27].

In general, the standard PSO algorithm is used to solve continuous optimization problems
and may be suitable for discrete optimization problems after modification. Modification of the
PSO algorithm was essential in this work because the problem of the location and allocation of
earthquake shelters is a typical discrete problem. There have been many studies on the discrete
PSO (DPSO) algorithm, mainly on completing the discretion by discretizing in continuous
space or calculating in discrete space. The discretizing PSO in continuous space (DPSOCS)
algorithm has been developed more than the algorithm for calculating in discrete space
(DPSODS). Kennedy and Eberhart [28] proposed a binary version to discretize the PSO by
defining the position of a particle with binary 0–1 and by defining the velocity as the probabil-
ity of the particle’s value being equal to 1. Although many methods have been proposed to
modify this DPSO [29, 30], it is still very complex as a result of the process of encoding and
decoding. Rounding the number of positions of particles is another important method [31].
This method only converts the positions of particles from real number space into integer space
without changing any part of the standard equation for the calculation of the PSO. To use the
PSO in discrete space, the calculation mechanism is always redefined. Clerc [32] solved the
‘traveling salesman problem’ by a switching mechanism to replace the PSO calculation. Pan
et al. [33] and Hu et al. proposed [17] a new position update method by using a permutation
representation in the PSO rather than the standard PSO update method. Although these meth-
ods are all useful in given situations, the DPSOCS is simpler, faster and more mature. Therefore
in this work, we used the rounding method to handle position.

Location and allocation of shelter
To smoothly apply the PSO algorithm to the problem of the location and allocation of shelters,
we defined the position of the particle as PS = (ps1, ps2,. . ., psj, . . . psM), which represents the
site selection assignment of the shelter. psj is the number of dimensions of the jth community,
namely, the number of candidate shelters belonging to community j.M represents the total
number of dimensions, namely, the total number of communities. Originally, psj = (1, 2, . . .
i, . . . N); however, the jth community cannot select all the candidate shelters because of the dis-
tance constraint. Therefore, the candidate shelters of each community should be redefined; the
indexes of the candidate shelters are not consecutive as a result of the distance constraint.

The shortest distance from each community to the candidate shelters are calculated using
the Dijkstra algorithm. We assumed here that the people in a community behave as a group
when evacuating and that the speed of different groups is different due to the different propor-
tions of children and elderly people in the group. Thus, the maximum distance from the com-
munity to the shelter can be defined according to Eq 10:

Dj ¼ tj � vj ð10Þ

Assuming that each person will evacuate to the shelter within 60 min (tj = 3600 s), the maxi-
mum distance of each community from the shelter can be obtained according to Eq 10. Thus,

Scenario-Based MOOptimum Allocation Model Using a Modified PSO

PLOSONE | DOI:10.1371/journal.pone.0144455 December 7, 2015 5 / 16



the covered matrix of communities can also be calculated as follows:

Coveredði; jÞ ¼ 1 if distanceði; jÞ � DðjÞ
0 if distanceði; jÞ > DðjÞ ð11Þ

(

The final candidate shelters of all communities will be obtained by combining the covered
matrix and initial candidate shelters.

It is obvious that the number of final candidate shelters is consecutive and therefore needs
to be renumbered. Initially, assuming that the number of candidate shelters the jth community
can select is N, and that the serial number of candidate shelters the jth community can select
initially is defined as Number(j) = (1, 2, . . . i, . . . N) (j = 1, 2, . . .M), then Newnum(j) is the
final number of the jth community, Selenumber(j) is the serial number of shelters for commu-
nity j that satisfy the distance constraint, and Newnumber(j) = (1, 2, . . . t, . . . Newnum(j)) is the
new serial number of shelters under the distance constraint. The rule of renumbering is as
follows:

If
covered(i,j) = 1, then Newnum(j) = Newnum(j)+1
Newnumber(j) = (1, 2, . . ., t, . . . Newnum(j))
Thus, Newnumber(j) can correspond to a unique original serial number Nnumber(j). For

example, community 1 has five candidate shelters numbered 1, 2, 3, 4 and 5. People of commu-
nity 1 can arrive at shelters 2, 3 and 5 in 60 min, so the covered matrix of community 1 is cov-
ered (1, 5) = [0, 1, 1, 0, 1]. Newnum(1) = 3 and Newnumber(1) = [1,2,3]. The corresponding
relationship is showed in Fig 1.

Position update method
As the major part of the PSO, the update method is generally modified to improve the effi-
ciency of solving complex problems. Shi and Eberhart [34] introduced an inertia weight into
the original PSO algorithm to balance both the global search and the local search. Clerc and
Kennedy [35] added a constriction factor into the PSO algorithm to ensure the convergence of
the algorithm and to cancel the constraint of velocity. Besides that, the topology structure of
PSO algorithm also affects the solving process. In this work, to effectively solve the problem,
the constriction factor PSO with a rounding method is modified by applying the von Neumann
structure in the former loops to explore all space and adding global structure in the later loops
to exploit. The particle’s position can be updated as follows:

viðkþ 1Þ ¼ φ� ðviðkÞ þ c1rand1 � ðpbesti � piðkÞÞ þ c2rand2 � ðlbesti � piðkÞÞÞ ð12Þ

viðkþ 1Þ ¼ φ� ðviðkÞ þ c1rand1 � ðpbesti � piðkÞÞ þ c2rand2 � ðgbesti � piðkÞÞÞ ð13Þ

φ ¼ 2

j2 � c� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4c

p j ; c ¼ c1 þ c2; c > 4 ð14Þ

piðkþ 1Þ ¼ roundðpiðkÞ þ viðkþ 1ÞÞ ð15Þ

where p(k) = (p1(k), p2(k), . . . pi(k), . . . pI(k)) represents the particle’s position in the kth gener-
ation (k = 1, 2, . . . K), where K is the maximum index of iteration; v (k) = (v1(k),v2(k), . . .
vi(k) . . . vI(k)) is the velocity of the particle swarm; I is the dimension of a particle; pbesti
denotes individual optimum, lbesti and gbesti denote neighbor optimum and global optimum
by using the von Neumann structure and global structure respectively; c1and c2 are learning
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factors; rand1 and rand2 are random numbers between 0 and 1; and φ is the constriction factor
in the calculation mechanism in Eq 14.

Eq 12 and Eq 13 of the velocity update include three parts as follows:

1. vi(k) is the current velocity inherited from the previous velocity

2. c1 × rand1 × (pbesti − pi(k)) is ‘thinking by itself’, the particle’s cognition

3. in Eq 12, c2 × rand2 × (lbesti − pi(k)): collaboration and information sharing among the
neighbor particles; in Eq 13, c2 × rand2 × (gbesti − pi(k)): collaboration and information
sharing among the global particles

Eq 15 denotes the particle’s update mechanism with a rounding method. Although the con-
striction factor PSO can control the fly speed of the particle efficiently and enhance the local
searching ability, it is easily trapped in the local optimum. SA can find the best solution by imi-
tating the solids’ annealing procedure, thus avoiding trapping in the individual optimum and
local optimum by accepting the worse solutions in certain probability [36, 37]. Combining
PSO and SA, which can improve the ability of the algorithm to find better solutions, has been
used as a local search for each particle’s individual optimum and local optimum [17].

Multi-objective problems with constraints
To solve the problem of multi-objectives with constraints, a Pareto strategy and feasibility-
based rule [22] were introduced to the PSO. Instead of calculating the average side-length of
cuboid of ith solution in NSGA-II [38], the area which can present the dense of ith solution is
calculated to obtain the local optimum and global optimum in this study. The solution with the
largest area, namely, the least dense part in local non-inferior solutions and global non-domi-
nated solutions, are selected as the local optimum and global optimum respectively.

Fig 1. Conversion process from original serial number to new original serial number and search
space for every particle.

doi:10.1371/journal.pone.0144455.g001
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Considering the randomness of the PSO and the priority of objectives in selecting non-dom-
inated solutions, an outside loop was set in this study. By comparing the solution of every
inside loop with the solution of the last loop, the solution of the new loop was obtained until
the maximum outside loop. The flow of the modified PSO algorithm is shown in Fig 2.

Case study

Study area
Located in a zone with a high risk of earthquakes, Beijing was the first city in China to build
disaster emergency shelters. Chaoyang district, a central district in Beijing with a population of
3,500,000, has built six earthquake disaster shelters with the capacity to accommodate 500,000
evacuees [39].

Data
Candidate shelter data. Open spaces, such as green spaces, playgrounds and parks, with

slopes<20° and more than 500 m from earthquake faults were selected as shelters. The data

Fig 2. Flow diagram of modified PSO algorithm.

doi:10.1371/journal.pone.0144455.g002
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can be digitized according to the Beijing municipality map. This assumes that the capacity of
each evacuee in a shelter should be at least 1 m2.

Number of evacuees. The intensity of an earthquake and the damage to buildings greatly
affects the number of evacuees. To make the research more practical, three scenarios were con-
sidered in this study: (1) scenario A (SA)–all people need to evacuate; (2) scenario B (SB)–earth-
quake of magnitude 8.0 in Sanhe-Pinggu; and (3) scenario C (SC)–magnitude 6.75 earthquake
of magnitude 6.75 in Juyongguan.

According to the empirical equation of the seismic intensity attenuation model [40] and the
fragility curve, the collapse rates of buildings for SB and SC were calculated to be 33.83% and
14.76%, respectively. Thus, the number of evacuees in each community was calculated accord-
ing to Eq 9.

Evacuation route. The best route for each community to the shelter was calculated using
the Dijkstra algorithm with the objective of maximizing the mean width of the road and mini-
mizing the total length of the route and the total number of nodes in the route.

Results and Analysis
The huge number of community and candidate shelter in Chaoyang District makes it difficult
and time consuming to find the optimal solution with the developed model. Therefore, the
solution that is near to the optimum and can be quickly obtained is generally regarded as the
optimal solution. In this study, to find the solution, the maximum number of generation in
every outside loop is set as 20,000 by considering the effectiveness and timeliness.

Learning factors c1 and c2 greatly influence the result, c1 = 2.05, c2 = 2.05 and c1 = 2.8, c2 =
1.3 are often used in current researches. This study selects learning factors of c1 = 2.8, c2 = 1.3
by analyzing the results of these two different learning factor groups without outside loop.

As a result of the complexity of this problem, and the influence of the sorting principle of
variables (time and area), increasing numbers of generations might not give a better solution
and therefore, to increase the diversity of particles and the effectiveness of the algorithm, and
satisfy the demand of all variables, the outside loops were introduced. The candidate shelters of
each community are sorted by evacuation time in the first two loops, are sorted by candidate
shelter areas in the third and fourth loops, and are kept the initial positions in the last two
loops. The global optimum of each outside loop was compared with the result of the last loop
and the new result of the current outside loop was obtained. To obtain better solution, the final
solutions are improved by combining the evacuation time.

The initial temperature and annealing rate were set to 1,000,000 and 0.96, respectively,
according to the research of Hu et al. [17] and the parameters in the algorithm were set as in
Table 1.

Table 1. Values of parameters used.

Parameter Value (with outside loop)

Maximal outside loop 6

Maximal number of generation 20,000

Population size 100 (10*10)

Learning factor c1 2.8

Learning factor c2 1.3

Initial temperature 100,000

Annealing rate 0.96

Minimal temperature 0.01

doi:10.1371/journal.pone.0144455.t001
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Fig 3. Results of different scenarios. (A) is the result of pareto-optimum solutions for SA, (B) is the result of
pareto-optimum solutions for SB, and (C) is the result of pareto-optimum solutions for SC.

doi:10.1371/journal.pone.0144455.g003
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Fig 3 illustrates the final results and Figs 4–6 show pareto-optimum solutions for SA, SB and
SC, respectively. There are 34 schemes, 33 schemes and 40 schemes for SA, SB, and SC respec-
tively. Total weighted evacuation time was negatively related to the total shelter area. The total
weighted evacuation time decreased with increasing total shelter area. This suggests that the
government should invest more in building shelters if a lower loss of life is desired. Decision-
makers could select an appropriate scheme based on the financial conditions, the probabilities
of different earthquakes and their own preferences.

For each scenario, there are three schemes of earthquake shelter location and allocation
planning which are displayed in Fig 7, which are selected from the Pareto-optimal solutions
with minimal, median and maximal shelter areas. The communities and its shelter are con-
nected with the red line. Some lines intersect because of route width’s influence on evacuation

Fig 4. Pareto-optimal solutions for SA in the last generation of the last outside loop.

doi:10.1371/journal.pone.0144455.g004

Fig 5. Pareto-optimal solutions for SB in the last generation of the last outside loop.

doi:10.1371/journal.pone.0144455.g005
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time. Shorter linear distance but narrower route makes evacuation time longer. Thus, the com-
munity will select the route with longer linear distance but shorter evacuation time. However,
shorter evacuation time means more shelters, namely, the construction cost will also be
increased. It is obvious that the number of shelters need to be opened vary in different scenar-
ios. It is at least to open 43, 28 and 19 shelters in SA, SB, and SC respectively. To obtain the
shortest evacuation time, the three scenarios need 65 numbers of shelters. The minimum aver-
age weighted evacuation time of these three scenarios is 25.65. The maximum average weighted
evacuation time of SA, SB and SC are 33.16, 39.50 and 42.61 respectively. The evacuation popu-
lation is 100%, 33.83% and 14.76% of the total population in SA, SB and SC respectively. A shel-
ter can serve more than one community, and the people in a community can only evacuate to
one shelter, thus, people in some communities should be allocated to the shelter that need
more evacuation time to obtain the smallest area of shelters. It is shown in Table 2 that the
maximum weighted average evacuation time of SA, SB, SC is 33.16, 39.50 and 42.61 respectively.
In the reality, the government must consider both people’s benefit (evacuation time) and their
own capacity and resource (to build more shelters) when making the disaster shelter evacua-
tion plan.

Conclusion
This study has introduced a multi-objective earthquake shelter allocation model by considering
different evacuation scenarios using the Chaoyang district of Beijing as a case study. The PSO
optimum algorithm was first modified by adding an outside loop and combing it with the SA
algorithm and then used to solve the problem.

The results showed that the PSO algorithm with an outside loop was efficient in avoiding
premature solutions and in finding more optimum solutions. It also showed that increasing the
cost of construction can increase the profit according to the ratio of decreased evacuation time
to increased shelter area. Increasing the shelter area can induce a large decrease in the total
weighted evacuation time from scheme 1 to scheme 9 in SA, from scheme 1 to scheme 9 in SB,
and from scheme 1 to scheme 19 in SC while the effectiveness become less from scheme 10 in
SA and SB and scheme 20 in SC, especially for the last 19 schemes of SA, the last 17 schemes of

Fig 6. Pareto-optimal solutions for SC in the last generation of the last outside loop.

doi:10.1371/journal.pone.0144455.g006
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SB and the last 18 schemes of SC, the evacuation time changes rarely. If funding were not a limi-
tation, then the final schemes of each scenario were the best solutions; if funding was a limita-
tion, then the earlier schemes were more reasonable.

The developed model, with its objectives of minimizing the area of shelters and the travel
time, combining the capacity constraint and the distance constraint, is more practical than
existing shelter location models. In this model, the speed parameter, which was obtained using
the population weight of people of different ages, was considered in calculating the total
weighted evacuation time, which makes the model more realistic. Three evacuation scenarios
were considered to estimate the number of people who needed evacuate. Rounding the DPSO
in continuous space was used in this study due to its simplicity. The outside loop was intro-
duced to find a more optimum solution by solving the issues of the randomness of optimum
algorithm and the complexity of the multi-objective model.

However, there is still scope to improve the model and to make it more practical. For exam-
ple, as a result of the different unit costs of land, a unit cost can be added into the model for the
land parameter to minimize the construction cost of the shelters. The evacuation speed could
be optimized by integrating the evacuation behavior of residents and the condition of road col-
lapse. PSO algorithm should be improved to solve the problem with the abundance data. Com-
pared with the DPSOCS model, DPSODS can save more calculation space, but there are still
many problems with it. Most DPSODS models are proposed by altering the PSO update mech-
anism according to the particular problem, so it is not applicable to other problems. Therefore,
an effective DPSODS still needs be developed and applied in the location and allocation
problem.
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Fig 7. Schemes of earthquake shelter location and districting planning in three scenarios. (SA1), (SB1), and (SC1) are schemes with the minimal
shelter area in scenarios SA, SB, and SC respectively; (SA2), (SB2), and (SC2) are schemes with the median shelter area in scenarios SA, SB, and SC

respectively; (SA3), (SB3), and (SC3) are schemes with the maximal shelter area in scenarios SA, SB, and SC respectively.

doi:10.1371/journal.pone.0144455.g007

Table 2. Analysis of the results in scenario SA, SB and SC.

Minimum number of
shelter

Maximum number of
shelter

Minimum weighted average
evacuation time (s)

Maximum weighted average
evacuation time (s)

Scenario
SA

43 65 25.65 33.16

Scenario
SB

28 65 25.65 39.50

Scenario
SC

19 65 25.65 42.61

doi:10.1371/journal.pone.0144455.t002
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