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T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell 
antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates 
the fate of T cells during development, as well as during the immune response. Whereas 
development of new T cells in the thymus increases the available TCR repertoire, clonal 
selection during the immune response narrows TCR diversity through the outgrowth 
of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the 
antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the 
participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the 
evidence for the existence of such mechanisms that can prevent the loss of diversity. 
A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies 
set by TCR affinity for given antigen. Although not yet complete, understanding of these 
factors and their mechanism of action will be critical in interventional attempts to mold 
the antigen-selected TCR repertoire.
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introduction

Adaptive immunity provides formidable defense against an antigenically unpredictable array of 
infectious microbes and transformed cells. Recognition of diverse antigens relies on the generation 
and maintenance of a correspondingly diverse repertoire of antigen receptors, generated somatically 
and distributed clonally on lymphocytes (1).

Both chains of the heterodimeric αβ T cell receptor (TCRαβ, referred to here as TCR) are 
generated by a recombinatorial process of variable (V) and junctional (J), and in the case of 
the TCR β chain, also diversity (D), gene segment rearrangement. This process can create a 
conservatively estimated diversity of 1015 different TCRs (1), which recent studies suggest may 
be even higher (2–5). However, owing to the finite size of the T cell compartment, far fewer 
TCRs will ever be made in the life-time of an individual and even fewer will be successfully 
selected in the thymus. For example, TCR diversity in the mouse has been estimated in the order 
of 2 × 106, a number that may be considered relatively small (5, 6). Nevertheless, this “practical” 
or “realized” TCR diversity appears sufficient to ensure that most, if not all, individuals will 
respond to most, if not all, antigens, a response perhaps facilitated by the cross-reactive nature 
of the TCR. Indeed, the mouse TCR repertoire contains on average ~100 naïve CD4+ T cells that 
bind a given antigenic peptide-MHC II (pMHCII) tetramer, most of which represent distinct 
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clonotypes, each with a unique TCR (7–9). These different 
TCRs that share antigen reactivity are likely to recognize anti-
genic pMHCII complexes in different ways, receiving varying 
degrees of TCR signal strength.

The intrinsic ability of each TCR to recognize antigenic pMH-
CII complexes is largely responsible for the disparate behavior 
of distinct CD4+ T cell clonotypes during the immune response, 
both in terms of expansion (10–12) and T helper subset differ-
entiation (13). This disparity, in turn, underlies the enrichment 
of the TCR repertoire in clonotypes that display the optimum 
TCR signal strength under the specific conditions. Indeed, fast 
outgrowth of clonotypes receiving the strongest TCR signal has 
been observed during CD4+ T cell priming in various systems 
(9, 14–18).

In addition to its involvement during priming, the avail-
able evidence suggests that TCR signal strength contributes 
to clonotypic selection during memory formation and recall 
responses. Several studies have demonstrated selection for 
CD4+ T cell clonotypes with stronger pMHCII tetramer 
binding or functional avidity during memory formation in 
response to immunization or infection (14, 19–22). In con-
trast, increased amount or potency of a given immunizing 
antigen (23, 24) or different models of infection or immuniza-
tion (25–27) have been shown to favor lower-affinity CD4+ 
T cell clonotypes for entry into the memory pool. Moreover, 
individual CD4+ T cells transferred in separate hosts exhibit 
substantial variance in clonal expansion, even if they express 
identical TCRs (9). Thus, although these studies collectively 
support a role for TCR signal strength in clonotypic selec-
tion during both priming and memory formation, they also 
highlight the potential influence of factors other than TCR 
affinity.

Which parameters of immunization or infection can affect 
TCR clonotypic composition independently of TCR affinity, 
and indeed to what degree they can overcome TCR affinity-
based hierarchies, remains poorly understood. It is clear, 
however, that such parameters have the potential to reduce 
the gap in TCR signal strength between high- and low-affinity 
clonotypes. This property may be critical in ensuring the neces-
sary clonotypic diversity in the CD4+ T cell response. Here, we 
focus on CD4+ T cells (as the significant amount of knowledge 
on CD8+ T cells is reviewed elsewhere) and review the cur-
rent knowledge of the factors that can modify the response of 
distinct T cell clonotypes that would otherwise be set by TCR 
affinity.

A T Cell’s Behavior Altered By Other  
T Cells

The cell-autonomous effect of intrinsic TCR affinity on CD4+ 
T cell clonal expansion and selection is often taken to imply 
that CD4+ T cells responding to antigen are oblivious to 
other CD4+ T cells, including those with shared reactivity. 
However, the behavior of a given CD4+ T cell may be strongly 
affected by other CD4+ T cells, either through competition or 
regulation.

Competition Between Clonotypes with Shared 
Reactivity
The advent of TCR-transgenic T cells permitted the artificial 
increase of the precursor frequency of T cell clones reactive with 
a given antigen. At unphysiologically high precursor frequencies, 
memory development of antigen-specific monoclonal CD4+ T 
cells was found to be severely compromised due to intraclonal 
competition (28–31).

Starting at more physiological precursor frequencies, mono-
clonal CD4+ T cells responding with relatively low functional 
avidity to an H2-Ab-restricted epitope from the lymphocytic 
choriomeningitis virus (LCMV) glycoprotein (GP), failed to 
enter the memory pool when the GP epitope was expressed 
recombinantly in Listeria monocytogenes, but successfully com-
peted with the host response following LCMV infection (32). The 
results of this study indicate that the fate of low-avidity mono-
clonal LCMV-specific CD4+ T cells, and their ability to compete 
with other clonotypes, is not simply intrinsically determined, but 
context-dependent.

In another TCR-transgenic system, low-avidity CD4+ T cell 
clonotypes in a semipolyclonal TCRβ-transgenic population reac-
tive with an epitope from the surface glycoprotein (SU), encoded 
by the envelope (env) gene of Friend murine leukemia virus 
(F-MLV) were outcompeted by high-avidity clonotypes if they 
all were present even at low frequencies (18). However, removal of 
the high-avidity competitors permitted the full expansion of the 
low-avidity F-MLV-reactive CD4+ T cell clonotypes (18). Thus, 
the behavior of low-avidity CD4+ T cell clonotypes is modified by 
the relative composition of the antigenic pMHCII-reactive pool, 
and a given low-avidity CD4+ T cell will either clonally expand 
or not, depending on the absence or presence, respectively, of 
higher-avidity competitors.

Competition between clonotypes with shared antigen reactiv-
ity may drive even more extreme differences in outcome if we 
consider the composition of the antigen-naïve TCR repertoire. 
Although current estimates suggest that reactivity for a given 
antigenic pMHCII complex is shared by, on average, 100 CD4+ 
T cells in the preimmune repertoire, this number varies sub-
stantially for different antigenic pMHCII complexes in the same 
individual from a theoretical one to experimentally observed 
several hundred (8). Moreover, owing to the random nature 
of repertoire formation, the preimmune pool of CD4+ T cells 
reactive with a given antigenic pMHCII complex will also vary 
between individuals, both in terms of numbers and clonotypic 
composition. For, example, the same low-avidity CD4+ T cell may 
have to compete with only one other similarly low-avidity CD4+ T 
cells in one individual, but with five other higher-avidity CD4+ T 
cells in another individual, and therefore, its behavior is expected 
to vary accordingly (Figure 1).

Although CD4+ T cell clonotypes with shared ability to rec-
ognize a particular antigenic pMHCII complex will compete for 
access to it, there are a number of additional factors that have been 
proposed to determine the outcome of clonotypic competition. 
These include multiple costimulatory factors, such as members of 
the B7 or TNF families of cytokines and costimulatory molecules 
and their receptors (33–35). In principle, limiting availability of 
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costimulatory signals would render T cells more reliant on anti-
genic signals for their expansion, thus amplifying the advantage 
of those clonotypes that are more sensitive to antigen. Indeed, 
costimulation of virus-specific CD8+ T cells by CD27 was shown 
to permit the recruitment of lower-affinity clonotypes, promoting 
diversity in the response (36). A role for CD27 in maintaining 
clonotypic diversity in the CD4+ T cell response has not been 
directly demonstrated, but is supported by findings linking loss 
of CD27 expression in antigen-reactive effector CD4+ T cells 
with shortened half-life and inability to persist as memory (37). 
However, given the complex regulation of immune responses by 
both the B7 and TNF families, the overall effect of a particular 
costimulatory or inhibitory pathway on the clonotypic composi-
tion of a T cell response is often difficult to predict. For example, 
inclusion of multiple costimulatory pathways in the design of 
vaccine vectors was shown to favor higher affinity CD8+ T cells, 
rather than permitting recruitment of lower affinity CD8+ T cells 
(38). Moreover, engagement of the inhibitory molecule CTLA-4 
was shown to increase the breadth of the CD4+ T cell response 
to immunization, likely by increasing, rather than decreasing 
clonotypic diversity (39). Nevertheless, these studies further sup-
port the notion that the particular constellation of costimulatory 
or inhibitory pathways seen in infection or immunization help 
shape the clonotypic diversity of antigen-reactive T cells.

Competition at the level of costimulation operates among T 
cell clonotypes with shared antigen reactivity, but may not be 
restricted to them. Expression of the receptors for many costimu-
latory or inhibitory molecules is typically induced on effector 
CD4+ T cells (33–35), and it is possible that through modulation 
of these pathways, T cells responding to a particular antigen affect 
other T cells concurrently responding to an unrelated antigen. 
Examples include depletion of costimulatory ligands on APCs by 
CTLA-4 on effector CD4+ T cells, thus depriving other effector 
CD4+ T cells of essential costimulation through CD28, the shared 
receptor for these ligands (40). Competition among CD4+ T cells 
irrespective of antigen specificity is akin to “quorum sensing,” a 
density-dependent mechanism that can adjust T cell numbers 
and maintain T cell homeostasis (41, 42). Although some evi-
dence for “quorum sensing” operating at the T cell population 
level has been provided (41, 42), to what degree it determines the 

Pre-immune

Antigen-selected

Host 1 Host 2

FiGURe 1 | A T cell’s behavior depends on the preimmune repertoire 
composition. A given clonotype (depicted in gray) with relatively low TCR 
affinity for the immunizing antigen will either fail to expand (in the presence of 
higher affinity competitors, Host 1), or participate in the response (when 
competition is weaker, Host 2).

clonotypic hierarchy in the response to a particular antigen is not 
currently known.

Clonotypic Molding by Regulatory T (Treg) Cells
The preimmune CD4+ T cell pool also contains a significant pro-
portion of regulatory T (Treg) cells, characterized by the expres-
sion of the transcription factor Foxp3, and naturally endowed 
with suppressive activity (43). Although originally thought to 
suppress autoimmune T cells, their suppressive activity against 
T cell responses to foreign antigens in now well established (43).

A generally suppressive environment created by Treg cell 
action would raise the activation threshold for all clonotypes 
indiscriminately. However, the effect of Treg cells would block 
the activation of lower avidity clonotypes preferentially, as their 
threshold may fall below that for effective participation in the 
response. Indeed, Treg cell activation by IL-2 secreted by the first 
few effector T cell clonotypes may, in principle, prevent further 
recruitment of other clonotypes (42). Studies of the CD8+ T 
cell response to L. monocytogenes demonstrated that Treg cells 
inhibit priming selectively of low-avidity CD8+ T cell clonotypes, 
thus improving the overall avidity of the response (44). Studies 
of the effect of Treg cells on CD4+ T cell clonotypes are limited. 
However, vaccination of a small number of ovarian cancer 
patients with a peptide from the germ cell protein NY-ESO-1 was 
shown to induce low-avidity CD4+ T cell clonotypes that were 
insensitive to Treg cell-mediated suppression, suggesting that 
Treg cells act mostly against high-avidity CD4+ T cell clonotypes 
(45). Although, together these studies highlight the potential of 
Treg cells to affect the clonotypic composition of an antigen-
specific T cell response, additional studies will be required before 
a consensus emerges.

Another layer of complexity regarding Treg cell-mediated 
modulation of clonotypic diversity is shared antigen reactivity 
between Treg cells and effector CD4+ T cells. Although high-
avidity effector CD4+ T cell clonotypes can be efficiently sup-
pressed by Treg cell that do not share antigen reactivity (46), the 
concomitant presence of Treg cells and effector T cells with the 
same pMHCII reactivity can often occur (47, 48). It is conceiv-
able that Treg cells have a stronger effect of clonotypic diversity of 
effector CD4+ T cells when their pMHCII reactivity is identical, 
thus including Treg cells in intra-clonotypic competition.

Clonotypic Composition According to 
Antigen Presentation

The overall strength of TCR signal a T cell receives is determined 
by the TCR affinity for a given pMHCII complex, but it is also 
affected by the amount or nature of the pMHCII complex itself. 
Increasing amounts of antigenic pMHCII complexes will prime 
an increasing number of clonotypes as the activation threshold 
of lower avidity clonotypes is progressively reached (23, 49). 
Excessive amounts of antigenic pMHCII complexes or use of 
higher potency antigenic peptides can lead to the elimination of 
high-avidity clonotypes, likely through activation-induced cell 
death (24). Similarly, changes in pMHCII complex as a result 
of escape mutations in the antigenic peptide will also alter the 
clonotypic composition of the ensuing T cell response (50). These 
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FiGURe 2 | Antigen-selected repertoire composition according to 
response kinetics. The high-affinity clonotype (depicted in red) will begin 
clonal expansion earlier than the low-affinity one (depicted in blue) as it is 
more sensitive to initially low antigen concentration during an infection. Clonal 
expansion will cease when eight antigen-reactive cells are produced (race 
finish). (A) When the lag-time between recruitment of the high- and 
low-affinity clonotypes is longer than time to expansion of high-affinity 
clonotype to eight cells, the response will comprise entirely of high-affinity 
progeny. This may arise when antigenic pMHCII is distributed over many 
APCs, each presenting at low density. Even though the threshold for 
activation of the low-affinity clonotype is eventually crossed, its expansion is 
actively suppressed (race is finished). (B) When the lag-time in recruitment is 
shorter than the time is takes to complete the race (in the case low precursor 
frequency or when antigen is sharply introduced and highly concentrated on 
few APCs), the final eight cells will contain a proportion of low-affinity 
progeny.
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observations emphasize the potential effect on T cell clonotypic 
composition of antigen dose and mutability, which in turn affect 
the relative TCR signal strength each clonotype receives. There 
are, however, observations where antigen delivery or presentation 
has been shown to affect the clonotypic composition in ways that 
are either not fully understood or do not seem to follow simple 
models of TCR affinity.

An effect of Antigen Delivery Mode on 
Clonotypic Diversity
Early work by Malherbe et  al. first demonstrated the powerful 
effect of the co-administered adjuvant on the overall avidity and 
clonotypic composition of the CD4+ T cell response to immu-
nization with a fixed amount of purified pigeon cytochrome c 
(PCC) protein (51). The capacity of adjuvants to induce a high-
avidity CD4+ T cell response was associated with their ability to 
disperse from the site of injection (51). In addition to different 
adjuvants in protein immunization, different viral or bacterial 
vectors used for vaccination of mice against the HIV-1 env were 
found to induce distinct fine antigen specificities and TCR usage 
in vaccine-elicited CD8+ T cells (52). More recently, the F-MLV 
env was shown to induce fundamentally different outcomes 
upon immunization with either the retrovirus or vectors based 
on recombinant human adenovirus 5 (Ad5) (18). In this study, 
higher-avidity CD4+ T cell responses were linked with faster 
overall kinetics of the response (18).

Although the choice of adjuvant or vaccine vector can have a 
profound effect on the clonotypic composition of the elicited T cell 
response, the underlying mechanisms remain unclear and thus 
the outcome is not always predictable. Nevertheless, some shared 
properties of vaccines that induce high-avidity CD4+ T cells can 
be postulated (53). These will undoubtedly include the amount 
and conformation of antigenic pMHCII complexes produced, the 
cell type that is presenting them and the inflammatory setting 
that is generated (53). A common feature of vaccine adjuvants or 
vectors that elicit higher-avidity CD4+ T cell responses seems to 
be that they also elicit numerically larger responses. Indeed, in the 
PCC protein immunization system, the adjuvants that induced 
the highest response magnitude also induced the highest propor-
tion of high-avidity CD4+ T cells (51). The same correlation was 
also observed in the F-MLV env system encoded by either F-MLV 
or Ad5, and when the vaccine doses were adjusted to ultimately 
induce a comparable numerical peak in the CD4+ T cell response, 
the response that was faster to reach the peak also contained the 
highest proportion of high-avidity CD4+ T cells (18).

If we consider the speed and numerical size of the response as 
an indicator of the efficiency of antigenic pMHCII presentation, 
the results of these studies would suggest that fast and strong 
antigen presentation kinetics result in preferentially high-avidity 
CD4+ T cell responses. This observation would be consistent with 
a model where the outcome of competition between clonotypes 
is determined by at least two parameters: first, timing of recruit-
ment, with the higher-avidity clonotypes starting their response 
earlier; and second; the duration of the response as a whole 
(Figure 2). The magnitude of the response, counting high- and 
low-avidity clonotypes collectively, is restricted to a maximum, 
set by additional T cell-extrinsic parameters. These parameters 

are not entirely delineated and may include finite availability of 
growth factors and other factors, collectively described as niche 
space (54–56). Indeed, comparisons of acute and chronic LCMV 
or retroviral infection have indicated that virus-specific CD4+ T 
cell numbers achieve comparable magnitudes, following which 
contraction is initiated, irrespective of viral persistence (57, 58). 
T cell responses where niche space is filled, and therefore clonal 
expansion ceases, before low-avidity clonotypes are recruited, 
will consist entirely of high-avidity clonotypes. In contrast, slower 
T cell responses, where despite their delayed recruitment, low-
avidity clonotypes are allowed time to expand before the total 
response peaks, will be more diverse (Figure  2). Experimental 
evidence supporting this notion has been provided in a murine 
system of CD4+ T cell priming to retroviral envelope (18).

The Contribution of APC Type to T Cell 
Clonotypic Composition
Any effect of antigen delivery, production, and presentation 
will inevitably also depend on the type of APC. The potential of 
distinct APC types to instruct fundamentally different fates in 
T cells is perhaps best exemplified by thymic selection, where 
developing T cells interact with diverse subsets of thymic APCs 
in discrete thymic microenvironments, resulting in positive and 
negative selection (59). It is therefore conceivable, that antigen 
presentation to mature T cells in the periphery may heavily influ-
ence the clonotypic composition, according to the particular APC 
type (53).
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Professional APCs, including dendritic cells (DCs), mac-
rophages, and B cells, differ wildly in terms of absolute numbers, 
anatomical location as well as the way they capture and process 
exogenous antigen (60–63). In addition to receptors shared with 
other APCs, B cells can also concentrate limiting amounts of 
available antigen by virtue of their antigen-specific BCR (64, 65). 
Nevertheless, antigen can also be captured by non-specific B cells 
by complement-mediated mechanisms (66–69).

In addition to capturing antigen administered as a vaccine or 
produced in other cell types, professional APCs may also syn-
thesize antigenic proteins for loading onto MHC II molecules, 
particularly in the setting of infection. Numerous infectious 
microbes have been documented to infect professional APCs, 
including the notable examples of LCMV infection of mouse 
DCs, Epstein–Barr virus (EBV) infection of human B cells, 
and Mycobacterium tuberculosis infection of mouse and human 
macrophages (70–72). Importantly, direct infection of profes-
sional APCs has, in many cases, been linked to a certain degree 
of immune subversion or suppression (70–75). Thus, the outcome 
of presentation by a given APC type may vary depending on 
whether or not the APC is directly infected.

As well as professional APCs, a variety of hematopoietic and 
non-hematopoietic cell types are increasingly implicated in 
MHC II-mediated antigen presentation (76). The overall effect 
of such atypical APCs on the composition of the CD4+ T cell 
response is not currently understood, but they may favor expan-
sion of unusual clonotypes. Of note, a rhesus cytomegalovirus 
(RhCMV) vector that was adapted in vitro to fibroblast cells and 
was engineered to express simian immunodeficiency virus (SIV) 
proteins induced highly unusual SIV-specific CD8+ T cells that 
also reacted with epitopes presented by MHC II molecules (77).

These studies collectively support a role for the type of APC in 
shaping the clonotypic composition of the CD4+ T cell response. 
However, given the large number of variables potentially dictat-
ing the quantity and quality of antigen presentation by different 
APC types, it is perhaps unsurprising that a clear correlation with 
the clonotypic composition of the induced T cell response has not 
yet been made.

TCR Levels and Signaling Capacity

Besides the affinity of the TCR for pMHCII complexes, the total 
amount of TCR signaling a CD4+ T cell will receive will vary 
according to the amount of TCR molecules expressed on the T 
cell surface, as well as the relative capacity of the TCR signaling 
complex to initiate the signaling cascade. Both of these param-
eters can change during the course of the immune response and 
may therefore affect the clonotypic hierarchy.

Antigen-induced TCR Downregulation and 
Clonotypic Composition
At steady-state, numbers of surface TCR molecules are main-
tained at constant levels by balancing production, recycling, and 
degradation of individual components of the TCR-CD3 signaling 
complex (78). Upon engagement, surface TCR-CD3 complexes 
are internalized and recycled or degraded, largely depending on 
the quality of pMHCII complexes presented by APCs (79, 80). 

Although antigen-induced TCR internalization may prolong or 
even amplify TCR signaling from triggered TCR in the immu-
nological synapse, the relative loss of surface TCR reduces new 
triggering events (79, 80).

The molecular details of TCR downregulation have been 
elucidated using short in  vitro assays. However, several infec-
tions can cause dramatic downregulation of surface TCR, which 
can persist for weeks (17, 81–83). In these longer term settings, 
persistent TCR-CD3 downregulation is thought to render T cells 
refractory to further antigenic stimulation, thereby contributing 
to pathogen persistence and the prevention of excessive immune 
pathology (84).

To what extend TCR downregulation reduces the ability of 
a T cell to receive further antigenic stimulation, particularly in 
chronic in  vivo responses, is not entirely clear. Relative loss of 
surface TCR levels per se may not necessarily compromise TCR 
signaling capacity. This is due to organization of the surface TCR 
into oligomers of different sizes prior to antigenic stimulation, 
which in turn affect sensitivity to antigen (85). Although memory 
CD4+ T cells generally express lower TCR levels than naïve CD4+ 
T cells, TCR signaling is more efficient in memory CD4+ T cells 
as a result of organization of the TCR into larger oligomers in 
these cells, than in naïve CD4+ T cells (86). Moreover, the density 
of antigenic pMHCII complexes on individual APCs will also 
modify the degree of TCR downregulation experienced by CD4+ 
T cells, with higher density pMHCII complexes inducing greater 
loss of surface TCR. Thus, the combined effect of TCR downregu-
lation and TCR oligomerization could either reduce or magnify 
differences in overall TCR signal strength between clonotypes 
with high- or low-affinity TCRs.

TCR Signaling Settings imprinted Prior to 
Antigen encounter
Other than changes in levels and organization of the surface 
TCR-CD3 complex, accumulating evidence suggests that the 
TCR signaling capacity in response to antigenic stimulation 
is modified by the strength of TCR signaling received prior to 
antigenic encounter. Such signaling originates from recognition 
of self pMHCII complexes, but may also include environmental 
antigens from ubiquitous sources or unrelated infections, and has 
the ability to tune the TCR signal strength (87).

A major function of self pMHCII interaction is to desensitize 
or eliminate, through negative selection, strongly autoreac-
tive CD4+ T cells (87). However, self pMHCII interaction also 
ensures that CD4+ T cells have a fully functional TCR. The latter 
function is not restricted to passive selection for thymocytes with 
successfully rearranged TCR; self pMHCII recognition appears 
to play an active role in setting and maintaining CD4+ T cell 
functionality. Indeed, continuous self pMHCII interaction is 
necessary for peripheral CD4+ T cells to retain full functional-
ity and reactivity with antigenic pMHCII complexes (88, 89). 
Higher than average affinity for self pMHCII complexes during 
successful selection of thymocytes establishes in mature T cells a 
modified naïve phenotype characterized by elevated expression 
of CD5 and reduced expression of Ly6C (90, 91). Recent studies 
have highlighted the importance of self pMHCII interaction 
during thymocyte development and later in the periphery in 
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determining the relative success of mature CD4+ and CD8+ T 
clonotypes during subsequent responses to antigenic stimulation 
(92–94).

The precise relationship between affinity for self or antigenic 
pMHCII complexes and clonal expansion in response to antigen is 
not fully delineated and may depend on additional parameters. In 
a simple model, clonotypes with the strongest reactivity with self 
pMHCII complexes will also display the strongest reactivity with 
antigenic pMHCII complexes, likely as a result of stronger TCR 
binding to the latter complexes (93). Alternatively, clonotypes 
with stronger reactivity with self pMHCII complexes will react 
stronger with antigenic pMHCII, not due to increased affinity of 
the selected TCR for antigenic pMHCII, but due to more efficient 
TCR signaling in these cells (92). Moreover, reactivity with self 
pMHCII complexes does not always predict which clonotype will 
dominate the CD4+ T cell response (82, 92, 93).

The proposed dominant effect of self-reactivity on CD4+ T 
cell responsiveness to antigenic stimulation (92, 93) seemingly 
contrasts the evidence supporting a role for affinity to antigenic 
pMHCII driving clonotypic competition. The relative importance 
of either self or antigenic pMHCII complexes in determining the 
clonotypic composition of the CD4+ T cell response will depend 
on multiple factors. These will include the relative abundance of 
self and antigenic pMHCII complexes at various stages of the 
response. For example, whereas self pMHCII complexes shape T 
cell repertoires and TCR responsiveness already in the thymus and 
they are assumed constitutively present in the periphery, antigenic 
pMHCII complexes will exhibit dramatic changes in abundance 
in the course of an infection. At the peak of infection, the effect of 
antigenic pMHCII complexes may be stronger and overshadow 
that of self pMHCII complexes. In contrast, as infection is con-
trolled and antigenic pMHCII complexes become limiting, the role 
of self pMHCII complexes may become increasingly dominant.

In the same way, relative importance of either self or antigenic 
pMHCII complexes will also depend on the affinity of individual 
clonotypes for either type of TCR stimulation (Figure 3). When 
the affinity of two distinct clonotypes for the same antigenic pMH-
CII complex is comparable, the difference in clonal expansion 
will derive from differences in self-reactivity, thus emphasizing 
the contribution of the latter. Conversely, when self-reactivity of 
two distinct clonotypes is comparable, then differences in clonal 
expansion will depend on affinity for antigenic pMHCII com-
plexes. In a polyclonal repertoire, where clonotypes with equally 
high affinity for a foreign antigen can be drawn from CD4+ T 
cell pools with either low or high self-reactivity, the fraction 
with higher self-reactivity may win the competition. The use of 
CD5 as a marker for self-reactivity has provided strong evidence 
that self-reactivity optimizes reactivity to foreign antigen (93). 
However, if as a result of self-tolerance, the fraction with high 
self-reactivity contained clonotypes with only low affinity for a 
particular antigenic pMHCII complex, then clonotypes with high 
affinity for that antigen in the fraction with low self-reactivity 
may win the competition (Figure 3). Antigens with significant 
similarity to self proteins may fall in the second category. Indeed, 
the presence of endogenous retroviruses in the germ-line has 
been shown to create partial tolerance to exogenous retrovi-
ral proteins, resulting in a repertoire where clonotypes with 

higher reactivity with endogenous retroviral antigens display 
lower reactivity with exogenous antigen and are outcompeted 
during retroviral infection (95).

TCR Signals During Priming Affecting  
T Cell Maintenance

An overwhelming amount of data supports a role for strong 
TCR signaling in CD4+ T cell expansion and differentiation 
during priming. Continuous TCR signals also contribute to 
successful CD4+ T cell memory formation (22, 96–98) and 
homeostatic competition between memory CD4+ T cell clo-
notypes (99). However, settings can also be considered where 
the same strong TCR signals that promote CD4+ T cell expan-
sion during the early phases of the response compromise the 
ability of T cells to maintain their presence. In analogy to the 
antagonistic pleiotropy hypothesis, first proposed to explain 
how a given gene product can increase fitness early in life, 
but cause aging later in life (100), what drives early fitness 
of a particular CD4+ T cell clonotype may lead to its demise 
later in the response.

Negative Feedback Pathways Tuning the T Cell 
Response
Central to the ability of the host to mount a strong T cell response 
is also the ability to regulate potential over-reactivity and 
many cell-autonomous layers of negative regulators have been 
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described. The most extreme form of negative regulation is death 
of T cells as a direct result of strong or persistent TCR signal-
ing (101), a mechanism that has been incriminated in the loss 
of high-affinity CD4+ T cell clonotypes following immunization 
with high potency agonists (24). However, there are less extreme 
negative feedback pathways that may not lead to the complete 
elimination of the highest affinity clonotypes, but rather curtail 
their dominance. CTLA-4 can regulate T cell responses both 
cell-intrinsically and -extrinsically (40, 102). Notably, CTLA-4 
accumulation at the immunological synapse is proportional to 
the strength of TCR signaling and, by extension, to TCR affinity 
(103). As a result, cell-intrinsic T cell inhibition by CTLA-4 is 
expected to affect higher affinity CD4+ T cell clonotypes more 
than lower-affinity ones. Similarly, strong TCR activation also 
induces PD-1 expression, which in turn inhibits TCR signal-
ing (104). Thus, a direct link between TCR signal strength and 
expression of inhibitory receptors such as CTLA-4 and PD-1 
can be considered as a negative feedback mechanism preserving 
clonotypic diversity by limiting the expansion of higher affinity 
CD4+ T cell clonotypes.

Clonotypic Composition According to 
Clonotypic Th Subset Differentiation
TCR signal strength can heavily skew Th differentiation to or 
away from particular Th subsets (13). Strong and weak TCR 
signals are generally inducing Th1 and Th2 differentiation, 
respectively (105–108). Strong TCR signals can also promote T 
follicular helper (Tfh) cells in certain responses (9, 109), although 
efficient Tfh differentiation of clonotypes receiving weak TCR 
stimulation has also been observed in other responses (17, 110, 
111). Moreover, clonotypes with higher self-reactivity show a bias 
in Treg cell conversion (90).

The relative ability of different Th subsets to form a stable 
memory population has not been systematically compared 
and may vary according to the infection or immunization. For 
example, maintenance of Tfh cells is thought to require persistent 
antigen and germinal center B cells (112), and consequently Tfh 
cell numbers would be expected to decline when the germinal 
center reaction ceases. Nevertheless, Tfh cell numbers have also 
been reported to increase in the chronic phase of LCMV infec-
tion (113, 114) or to stably persist as memory in other settings 
(115–118). Th1, Th2, Th17, and Treg cells can also display vari-
able kinetics, stability, or plasticity depending on infection and 
antigen parameters (54, 119–122).

Thus, CD4+ T cell clonotypes will, to a certain degree, assort 
into distinct Th functional subsets, each of which may exhibit 
differential capacity to persist into memory, in turn shifting the 
clonotypic composition of the CD4+ T cell response over time. For 
instance, a low-affinity clonotype may be preferentially enriched 
in a chronic response due to its skewed differentiation into a Th 
subset with increased numerical stability.

The relative stability of Th subsets, and by extension of the 
clonotypes that preferentially differentiate into those subsets, 
can additionally be affected by extrinsic infection-related factors. 
CD4+ T cells clonotypes with the highest affinity for antigenic 
pMHCII complexes will outcompete other lower-affinity clono-
types, but may be lost due to preferential infection in the case of 

T cell-tropic viruses (123, 124). Similarly, high-affinity CD4+ T 
cell clonotypes skewed to Th1 differentiation will preferentially 
migrate to the inflamed tissue in the case of granulomatous bacte-
rial infections, where they are more likely to die than clonotypes 
that do not show this behavior (125).

Concluding Remarks

The energetically costly generation of a diverse TCR and BCR 
repertoire underpins the evolutionary success of adaptive 
immunity as it is critical for its function (5, 126). The obvious 
advantage of TCR repertoire diversity is to allow the selection 
of at least one T cell clonotype, best fit to respond to a particular 
antigen. Clonal expansion of such a T cell clonotype ensures 
effective immunity and contributes to immunological memory. 
However, the potential advantage of TCR repertoire diversity 
in the response to a particular antigen may be more difficult 
to quantify. In principle, sufficient numbers of a single T cell 
clonotype with the optimal TCR affinity could competently 
provide immune protection. However, there may be distinct 
advantages of preserving diversity in the antigen-selected TCR 
repertoire.

Although a single naïve T cell can give progeny that differenti-
ates into multiple functional subsets (9, 127), distinct CD4+ T cell 
clonotypes will generate different Th subset ratios (9). Thus, the 
maximum Th subset diversity can only be achieved by sufficiently 
large TCR diversity.

As the number of available TCRs is finite and relatively small 
in comparison to the number of potential antigens, TCR cross-
reactivity is essential to broaden immune coverage by the naïve 
repertoire (5). This property will remain essential in the antigen-
selected TCR repertoire. As different TCR that share reactivity 
with a given antigen display varying amounts of cross-reactivity 
with altered variants of this antigen, TCR diversity in the antigen-
specific response will expand the number of antigenic variants 
that can be recognized by antigen-selected T cells. This will be 
particularly important in infections where the speed of escape 
mutations present a challenge to the adaptability of the immune 
response (128).

Another potential advantage of diversity in the CD4+ T cell 
response to a particular antigen relates to the clonal nature of 
TCR distribution. Even if sufficient for protective immunity, a 
single clonal T cell family may inherit the characteristics of the 
single thymic selection event imprinted onto the founder cell 
of that family. A polyclonal response will comprise clones from 
separate thymic selection events, life-histories and likely differ-
ent patterns of TCR responsiveness, self-reactivity, and survival 
potential.

The emerging picture is of numerous factors that maximize 
diversity in the CD4+ T cell response, by alleviating any disad-
vantage of lower-affinity clonotypes. Some of these factors are 
extrinsic to T cells and can be manipulated in our attempts to 
induce protective CD4+ T cell immunity or prevent autoimmun-
ity. However, any intervention toward TCR repertoire “engineer-
ing” will necessitate deeper understanding of the type of TCR 
diversity that best fits a particular response, and this should be 
the focus of future investigation.
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