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The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a
fundamental role in regulating the blood-to-brain influx of endogenous and exogenous
components and maintaining the homeostatic microenvironment of the central nervous
system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation
into the brain parenchyma, and the consequence of brain edema formation with
neurological impairment afterward. Caspase-1, one of the evolutionary conserved
families of cysteine proteases, which is upregulated in acute stroke, mainly mediates
pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory
cytokines release. Nowadays, targeting caspase-1 has been proven to be effective
in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating
brain edema and secondary damages during acute stroke. However, the underlying
interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this
review, we are concerned about the roles of caspase-1 activation and its associated
mechanisms in stroke-induced BBB damage, aiming at providing insights into the
significance of caspase-1 inhibition on stroke treatment in the near future.

Keywords: caspase-1, ischemic stroke, hemorrhagic stroke, blood-brain barrier, pyroptosis, cerebral edema,
hemorrhagic transformation

INTRODUCTION

Stroke is the second-leading cause of death and affects more than 13.7 million individuals per
year worldwide1. About 70% of incident strokes are ischemic (9.5 million) and the rest are
intracerebral hemorrhage (ICH) or subarachnoid hemorrhage (SAH) (Phipps and Cronin, 2020).
Specifically, in the United States, approximately 7.9 million individuals experience a stroke, of
which 87% (690,000) are ischemic, and approximately 2 million individuals experience a transient
ischemic attack each year (Kleindorfer et al., 2021). Although various animal experiments for novel
therapeutic drugs were promising yet, efforts were made to preserve the blood–brain barrier (BBB)
integrity and minimize unfavorable outcomes in acute stroke. BBB disruption in stroke, which

1http://world-stroke.org

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 March 2022 | Volume 15 | Article 856372

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2022.856372
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2022.856372
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2022.856372&domain=pdf&date_stamp=2022-03-18
https://www.frontiersin.org/articles/10.3389/fnmol.2022.856372/full
http://world-stroke.org
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-856372 March 14, 2022 Time: 14:45 # 2

Ye et al. Caspase-1 Disrupts BBB in Stroke

was critical in the pathophysiology underlying stroke and stroke-
related secondary damage, draws much attention nowadays.

The BBB, a structure of tightly sealed endothelial cells (ECs)
located at the luminal surface of cerebral vasculature (Sweeney
et al., 2019), is composed of ECs, pericyte, astrocyte, and
extracellular matrix (ECM) and is supported by neurons and
vessels. Importantly, that barrier guards the central nervous
system (CNS) homeostasis and regulates molecular movement
between blood and brain (Begley and Brightman, 2003; Abbott
et al., 2010). During acute stroke, BBB can be easily impaired
via mechanical stretch (Liu et al., 2016a), oxidative stress
(Yang et al., 2017), inflammation (Jansson et al., 2014), and
metabolites (Savage et al., 2012), permitting a large inflow of
hematogenous fluid containing blood-borne cells, chemicals, and
fluid extravasate into brain parenchyma, giving rise to brain
edema (Stokum et al., 2016; Xiao et al., 2020) and subsequent
neurological impairment (Sweeney et al., 2019). Unfavorable
events, such as hemorrhagic transformation (HT) (Terruso et al.,
2009) and hematoma expansion (Keep et al., 2014; Sawada et al.,
2017), can also be attributed to BBB dysfunction during the
ischemia and hemorrhagic stroke, respectively.

Caspases are an evolutionary conserved family of cysteine
proteases that are centrally involved in regulating multiple
patterns of programmed cell death (Van Opdenbosch and
Lamkanfi, 2019), among which apoptosis and pyroptosis
contribute to BBB dysfunction the most in stroke. In contrast
to the classical non-lytic apoptotic cell death, caspase-1 mainly
mediates the major lytic cell death mode, namely pyroptosis,
with pore formation on the cellular membrane and inflammatory
cytokines release (Van Opdenbosch and Lamkanfi, 2019).
Caspase-1 has been previously confirmed to mediate BBB
disruption in the CNS, specifically critical in ECs’ injury and
repair of the BBB (Israelov et al., 2020). As specific caspase-1
inhibitors have been confirmed to alleviate BBB deterioration
since 2010 (Wu et al., 2010), targeting caspase-1 in stroke
contributes to a promising end with a better functional outcome
(Wu et al., 2010; Lin et al., 2018; Liang et al., 2019, 2020;
Li et al., 2020b; Zhang et al., 2020), milder cerebral edema
(Wu et al., 2010; Lin et al., 2018; Liang et al., 2019; Li et al.,
2020b; Zhang et al., 2020), and lower occurrence of HT (Ismael
et al., 2018; Chen et al., 2021a). However, the mechanisms about
caspase-1 inhibition on stroke-induced BBB damage remain ill-
defined yet. Thus, we will review the roles of caspase-1 on BBB
in acute stroke through the priming, activation, and effects,
aiming at elucidating potential therapeutic targets via a better

Abbreviations: BBB, blood–brain barrier; ECs, endothelial cells; ECM,
extracellular matrix; CNS, central nervous system; HT, hemorrhagic
transformation; ASC, apoptosis-associated speck-like protein containing a
caspase recruitment domain; NLR, nucleotide-binding domain leucine-rich
repeat containing gene family; AIM2, absent in melanoma 2; PAMPs, pathogen-
associated molecular patterns; DAMPs, damage-associated molecular patterns;
TLRs, toll-like receptors; IL, interleukin; NF-κB, nuclear factor kappa B; GSDMD,
gasdermin D; GSDMDNT, N-terminal fragment of GSDMD; ROS, reactive oxygen
species; MCAO, middle cerebral artery occlusion; dsDNA, double-strain DNA;
TJs, tight junctions; ZO, zonula occludens; ROCK, Rho/Rho-associated protein
kinase; MMPs, matrix metalloproteases; ICH, intracerebral hemorrhage; SAH,
subarachnoid hemorrhage; TXNIP, thioredoxin-interacting protein; IL-1Ra, IL-1
receptor antagonist.

understanding of the function and regulation of caspase-1 during
the acute stroke.

CASPASE-1 AND
CASPASE-1-DEPENDENT MAIN
EFFECTS

Caspase-1 was the first caspase reported as a protease in 1989
(Black et al., 1989) and encoded by the sequence of 11q22.1
in humans and 9A1 in mice (McIlwain et al., 2013), widely
expressed among multiple organs such as spleen, liver, intestine,
and brain (Stienstra et al., 2011; Kumaresan et al., 2016; Heneka
et al., 2018). Caspase-1 is generally situated in the cytosol as an
inactive zymogen procaspase-1 after translation and is activated
proteolytically via the protein complexes “inflammasomes” for
proteolytic activation (Lamkanfi and Dixit, 2009). Prototypical
inflammasome is a heterologous oligomeric protein complex
comprising of a sensor protein from some subfamilies of pattern
recognition receptors, a caspase-1 family protease, and mostly an
apoptosis speck-like protein (ASC), which couples the previous
two together. Various sensor proteins, comprising of several
members of the intracellular nucleotide-binding domain and
leucine-rich-repeat containing (NLR) family namely NLRP1b,
NLRP3, NLRC4, and NLRP6, the HIN200 family member absent
in melanoma 2 (AIM2), and the TRIM family member Pyrin (Van
Opdenbosch and Lamkanfi, 2019), were activated via diverse
signals and distinguished the inflammasomes from each other.
The most popular one NLRP3 (also termed as cryopyrin or
Nalp3) is highly expressed in astrocytes, ECs, neurons, and
microglia in CNS (Cassel and Sutterwala, 2010; Liu et al., 2013).
Procaspase-1 harbors an N-terminal caspase activation and
recruitment domain CARD, an internal large domain (p20), and
a short C-terminal domain (p10), with three domains separated
by linker sequences. After inflammasome activation, procaspase-
1 is transformed into caspase-1 with a tetramer linked by two
symmetrically arranged p20/p10 dimers (Figure 1).

Two steps, the priming and triggering processes, were
essential for caspase-1 activation, respectively. The priming
process indicates the expression of inflammasome composites
and inflammatory cytokines. Pathogen-associated molecular
patterns (PAMPs), damage-associated molecular patterns
(DAMPs), and inflammatory cytokines stimulate Toll-like
receptors (TLRs), and interleukin (IL)-1R evokes nuclear
factor kappa B (NF-κB) expression, along with the expression
of NLRP1-3, ASC, pro-caspase-1, gasdermin D (GSDMD),
pro-IL-1β, pro-IL-18, etc., subsequently (Van Opdenbosch
and Lamkanfi, 2019). PAMPs refer to pathogens and related
products such as lipopolysaccharide, while DAMPs refer to the
immunostimulatory molecular patterns in sterile injury (Chen
and Nunez, 2010). After the priming process, the assembly and
triggering processes of inflammasomes subsequently proceed
via specific cytoplasmic pattern recognition receptors, sensing
that the ligands are either the same or different as the previous
priming signal (Rathinam and Fitzgerald, 2016). For instance,
the commonly discussed NLRP3 can be triggered mainly
by mitochondrial reactive oxygen species (ROS), decreased
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FIGURE 1 | The priming process, triggering process, and executive effects of caspase-1. Acute stroke primarily leads to oxidative stress, disturbance of metabolites,
and mechanical stress. DAMPs, inflammatory cytokines together with PAMPs can stimulate the priming process with the transcription of inflammasomes’
constituents and executive components such as pro-IL-1β, pro-IL-18, and GSDMD. During acute stroke, decreased intracellular potassium concentration, oxidative
stress, and lysosomal disruption trigger NLRP3 inflammasome and caspase-1 activation, while dsDNA the form of cytosolic DNA activates caspase-1 via AIM2
inflammasome. Specifically, mechanical stress due to hematoma or edema compression can regulate ATP-gated ion channel P2X7R with potassium efflux.
Caspase-1 activation leads to the formation of GSDMDNT and IL-1β or IL-18, yielding pore formation and inflammatory responses ultimately. DAMPs indicate
damage-associated molecular patterns; PAMPs, pathogen associated molecular patterns; NLRP, NOD-like receptor family pyrin domain-containing; NLRC, NOD-like
receptor family CARD domain containing; mtROS, mitochondrial reactive oxygen species; AIM2, absent in melanoma 2; TLR, toll-like receptor; GSDMD, gasdermin
D; IL, interleukin; GSDMDNT, N-terminal fragment of gasdermin D.

intracellular potassium concentration, lysosomal destabilization,
and the release of lysosomal cathepsins (Kelley et al., 2019). AIM2
can be triggered by double-strain DNA (dsDNA) released from
dead cells (Li et al., 2020c). The triggering signals for NLRP1b,
NLRC4, and NLRP6 inflammasomes in sterile inflammation
during acute stroke were possible exogenous and endogenous
substances, which were not clearly defined (Abulafia et al., 2009;
Poh et al., 2019; Zhang et al., 2020). Apoptotic pathway can also
interact with caspase-1 as the apoptotic effector caspase-8 has
been found to associate with the NLRP3 inflammasome and
caspase-1 activation (Sarhan et al., 2018).

After inflammasomes and caspase-1 activation, caspase-
1-mediated pyroptosis ensues with abrupt cellular death

and inflammatory cytokines release. Pyroptosis occurs
mostly in phagocytes, such as microglial cells, but also in
neurons, astrocytes, and ECs in the CNS. Lytic cell death is
accomplished via the pore-forming N-terminal fragment of
GSDMD (GSDMDNT), which is usually linked to a carboxy-
terminal inhibitory domain (Liu et al., 2016b; Sborgi et al., 2016)
that is kept in an autoinhibitory state and released from GSDMD
via caspase-1-mediated cleavage (Ding et al., 2016). With the
size of cellular pore approximately 10–20 nm (Ding et al.,
2016; Sborgi et al., 2016), water is permeable and culminates
in cell swelling and lysis (Evavold et al., 2018). Unlike the
explosive rupture in necrosis, morphology underlying pyroptosis
manifests as cellular swelling, flattening of the cytoplasm due to
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plasma membrane leakage, and lots of bubble-like protrusions
appearing on the surface of the cellular membrane before its
rupture (Chen et al., 2016). Moreover, increased permeability
can contribute to the flux of ions with a decreased intracellular
potassium concentration, further triggering canonical NLRP3
inflammasome and caspase-1 activation (Ruhl and Broz, 2015).
Caspase-1 activation can increase the cleavage of multiple
enzymatic substrates, including not only the classical cytokines
IL-1β and IL-18, but also cytokines IL-1F7b and IL-33, a
plasma membrane Ca2+-ATPase (PMCA2), and calpastatin,
the endogenous calpain inhibitor (Winkler and Rosen-Wolff,
2015). As with other cytoplasmic molecules such as intracellular
potassium and DAMPs, especially HMGB1 and ATP (Sun et al.,
2020), the mature IL-1β and IL-18, which have a diameter of
4.5 nm (Ding et al., 2016) and secreted in glial cells as well as ECs,
are secreted into extracellular spaces depending upon GSDMD-
dependent membrane permeability and initiate inflammatory
process subsequently (Tapia et al., 2019). In particular, the release
of DAMPs can contribute to caspase-1 activation in a vicious
cycle (Savage et al., 2012). It is noteworthy to mention that non-
canonical inflammasome pathway can also be activated in the
stimulus of PAMPs, mediating GSDMD-dependent membrane
pore formation and intracellular potassium efflux via caspase-4/5
(caspase-11 in mice) without the cleavage of pro-IL-1β/pro-IL-18
(Van Opdenbosch and Lamkanfi, 2019). Moreover, IL-1β release
can also be facilitated via the absence of pyroptosis (Evavold
et al., 2018) independently of plasma membrane pore formation
(Karmakar et al., 2020).

THE ACTIVATION OF CASPASE-1 IN
ACUTE STROKE

The blood–brain barrier can be impaired via mechanical
stretching (Liu et al., 2016a), oxidative stress (Yang et al., 2017),
inflammation (Jansson et al., 2014), and metabolites (Savage
et al., 2012) in both ischemic stroke (Wu et al., 2016; Hirsch
et al., 2021) and hemorrhagic stroke (Wu et al., 2010; Gan et al.,
2021). Interestingly, caspase-1 can mediate those processes to
some extent by driving detrimental effects on BBB in acute
stroke. Therefore, we will first review the priming and triggering
processes of caspase-1 during a stroke in this part.

The Activation of Caspase-1 in Ischemic
Stroke
Although various models have been developed for ischemic
stroke, such as transient middle cerebral artery occlusion
(MCAO; Li et al., 2019, 2020c), permanent MCAO (Dong et al.,
2013; Liang et al., 2020), embolic MCAO (Ishrat et al., 2015),
and photothrombotic stroke (Li et al., 2020b) etc., caspase-1
expression can be enhanced in the acute phase of all models
above. For 2-h transient MCAO in mice, NLRP3 and caspase-1
expression are significantly upregulated at 12 h, peaking at 24 h,
and remaining elevated for more than 48 h in a time-dependent
manner (Yang et al., 2014); while for permanent MCAO in
mice, NLRP3 and caspase-1 expression are detected in ischemic
penumbra within 24 h, peaking at 3 days and remaining elevated

for 7 days after stroke (Barrington et al., 2017; Liang et al., 2020).
Two successive phases, ischemia and reperfusion, probably occur
during ischemic stroke. In the ischemic phase, cerebral blood flow
is reduced, resulting in a deficient supply of glucose and oxygen
(Sandoval and Witt, 2008). As glucose and oxygen are essential to
maintain an adequate supply of ATP to guarantee physiological
cellular function and maintain normal ion gradients (Abdullahi
et al., 2018), oxidative phosphorylation is discontinued (Hata
et al., 2000), and ion transporters on ECs are unable to
function with maintaining Na+–K+–ATPase and Ca2+–ATPase
due to lack of energy. Thus, in the ischemic phase, decreased
intracellular K+ concentration together with calcium overload
(Abdullahi et al., 2018) mainly elicit the triggering process via
metabolites dysregulation. When the reperfusion phase follows,
blood flow starts to recover, potentially beneficial for neuronal
survival, but oxidative stress can ensue first with NLRP3 and
caspase-1 activation (Ishrat et al., 2015). DsDNA released from
dead cells can drive inflammasomes AIM2 activation (Li et al.,
2020c). Due to increased permeability, ECM degeneration, and
angiogenesis mediated by BBB dysfunction (Sandoval and Witt,
2008), vasogenic and inflammatory edema formed contribute to
mechanical strains and modulate triggering of NLRP3 via P2X7
receptors (Albalawi et al., 2017). Other inflammasomes such as
NLRP1 (Fann et al., 2013), NLRC4 (Poh et al., 2019), and NLRP6
(Zhang et al., 2020) have also been implicated in the response of
acute stroke with the triggering process shown in Figure 1.

The Activation of Caspase-1 in
Hemorrhagic Stroke
For hemorrhagic stroke, NLRP3 upregulation, caspase-1
activation, and IL-1β release occur as early as 3 h post-ICH and
intensify gradually in the area around the hematoma from 1 to
5 days (Cheng et al., 2017; Yao et al., 2017). Similarly, two phases
occur after a hemorrhagic stroke, as (1) the initial mechanical
compression damage induced by hematomas and (2) the
secondary injury characterized by excitotoxicity, inflammation,
and oxidative stress.

During the initial compression by hematoma, mechanical
strain-induced P2X7 receptors can activate NLRP3
inflammasomes and caspase-1 (Albalawi et al., 2017). Ischemic
events can also be prevalent among hemorrhagic stroke
(Prabhakaran et al., 2010; Topkoru et al., 2017), with a similar
caspase-1 activation process as described above. Moreover,
the breakdown of blood products was more unique in ICH.
A large amount of ATP released by RBC lysis also triggered
the P2X7R/NLRP3 inflammasome activation, as previously
discussed (Chen et al., 2013; Feng et al., 2015). Products of
hematoma, such as hemolysate degradation (hemoglobin,
iron, or heme), erythrocyte thrombin, and fibrinogen, enable
the priming and triggering pathways (Keep et al., 2014; Tso
and Macdonald, 2014). Hemoglobin activates the TLR2/TLR4
heterodimer and promotes oxidative stress (Urday et al., 2015).
Similarly, heme (Dutra et al., 2014) and iron (Mori et al., 2001)
can both generate mitochondrial ROS, activate NLRP3/caspase-1
pathway, and lead to BBB hyperpermeability and cerebral
edema, specifically on ECs, which can be alleviated by iron
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chelator deferoxamine (Lee et al., 2010). Other products, such as
fibrinogen as DAMPs (Rosin and Okusa, 2011) and thrombin
as the ROS contributor (Ye et al., 2017), also promote caspase-1
activation in hemorrhagic stroke.

Other Potential Factors Related to
Caspase-1 Activation Process
Meanwhile, despite the direct activation of caspase-1, several
comorbidities along with stroke can exacerbate caspase-1
activation toward unfavorable outcomes. Hyperglycemia or
diabetics has shown the most eminent effects on stroke so
far. Diabetes can amplify NLRP3 and caspase-1 activation in
rats after ischemia (Ward et al., 2019), which can mediate the
facilitation of tPA-induced BBB damage (Ismael et al., 2020, 2021;
Chen et al., 2021a) and the tendency of HT in ischemic stroke
(Ismael et al., 2020). Hyperglycemia induces superimposed effects
on caspase-1 in stroke, as specific NLRP3 inhibitor MCC950
showed stronger alleviation of BBB destructions in hyperglycemic
stroke than stroke without hyperglycemia (Hong et al., 2018).
Whether superimposed effects exist among caspase-1 and other
risk factors on BBB disruption in stroke, such as hypertension,
hyperlipidemia, as well as aging (Jiang et al., 2018), deserves
further research.

CASPASE-1-DEPENDENT EFFECTS ON
BBB DYSFUNCTION IN ACUTE STROKE

Accumulating evidence have shown caspase-1 activation plays
pivotal roles in exacerbating cerebral edema (Wu et al., 2010;
Lin et al., 2018; Liang et al., 2019; Li et al., 2020b; Zhang et al.,
2020) and increasing the occurrence of HT (Ismael et al., 2018;
Chen et al., 2021a) via loosening BBB integrity (Liang et al.,
2020). Caspase-1 mainly mediates effects on pyroptosis via pore
formation, inflammatory cytokines release and other routes such
as apoptosis as well. Considering that caspase-1 can be expressed
on BBB, in this part, we will focus on caspase-1-dependent
effects on BBB structures during a stroke. Meanwhile, since the
effects share resembling characteristics in various patterns of
ischemic and hemorrhagic stroke (Wu et al., 2010; Lin et al.,
2018; Li et al., 2019, 2020b; Liang et al., 2019, 2020), caspase-1-
dependent effects on BBB will be concerned with stroke events as
a whole (Figure 2).

Caspase-1-Dependent Cellular Death on
Blood–Brain Barrier in Acute Stroke
Caspase-1-dependent formation of plasma-membrane pores
mediating lytic cell death occur mostly in glial cells, pericytes,
ECs, and neurons (Zhang et al., 2016; Yang et al., 2017), as shown
in Figure 2.

Microvascular ECs, which possess adherens junctions and
tight junctions (TJs) proteins such as zonula occludens (ZO)-
1 and occludins, are crucial for blocking the recruitment
of peripheral leukocytes and preventing paracellular transport
of multiple hydrophilic compounds across the BBB (Yang
et al., 2013). Claudins (primarily claudin-5) and occludins

are major transmembrane TJ proteins, phosphoproteins with
four transmembrane domains spanning the intercellular cleft
homotypically binding to proteins on adjacent ECs, and with
cytoplasmic terminals binding to many cytoplasmic proteins
including ZO-1, ZO-2, ZO-3, and cingulin, which are linked to
actin cytoskeleton and maintain the structural and functional
integrity (Stamatovic et al., 2016). Adherens junctions also
have transmembrane proteins, cadherins, that bind to adjacent
ECs and cytoplasmic plaque proteins β- or γ-catenin on the
cytoplasmic domains forming the cadherin–catenin complex,
which is also linked to actin cytoskeleton (Stamatovic et al.,
2016). Pyroptosis in acute stroke can drive TJ proteins, adherens
junction proteins, and actin cytoskeleton dysfunction on ECs,
leading to their death eventually (Cao et al., 2016; Liang
et al., 2020). Apart from structure destruction, posttranslational
protein modification on TJs, namely, occludin, claudin-5, and
ZO-1 can further increase BBB permeability via different kinases
on distinct residues (Krizbai and Deli, 2003; Gonzalez-Mariscal
et al., 2008) potentially via the Rho/Rho-associated protein kinase
(Beckers et al., 2010), protein kinase C (Dorfel and Huber,
2012), and mitogen-activated protein kinase signaling pathways
(Fujibe et al., 2004). Furthermore, ECs can also produce matrix
metalloproteinases (MMPs), which potently degrade TJ and ECM
structures after the lysis of ECs (Reuter et al., 2013).

Astrocytes belong to the neuron–glia system, and are the
most abundant cell type in the CNS. Astrocytes provide
many fundamental functions, including BBB formation, BBB
structural support, the regulation of blood flow, etc. (Rossi,
2015), with water channel aquaporin 4 highly expressed on
astrocytic endfeet, critically regulating water flux between the
blood and brain (Nagelhus and Ottersen, 2013). In acute
stroke, astrocytes transformed into reactive emerging roles in
endogenous neuroprotection and repair (Koizumi et al., 2018).
However, astrocytes still undergo the pyroptosis process (Li et al.,
2020b; Zhang et al., 2020), with astrocytes swelling compressing
vessels exacerbating vascular hypoperfusion (Sykova, 2001).
The disruption of astrocytes together with aquaporin 4
unpolarization occurs in stroke subsequently, which can be
reversed via targeting caspase-1, especially among the diabetics
(Ward et al., 2019). Moreover, pyroptosis contributes to
unregulated patterns among astrocytes and potential detrimental
injury to CNS, as unregulated process induces brain edema,
forms a compact glial scar, aggravates inflammation, and
generates a toxic microenvironment for the components of CNS
(Choudhury and Ding, 2016).

Pericytes belong to a perivascular cell type that encapsulates
the microvasculature of the brain and spinal cord, forms lock
and socket junctions with ECs, and contributes significantly to
the maintenance of the BBB (Bennett and Kim, 2021). Pericytes
can be impaired in neurovascular pathology, particularly in
acute stroke (Bennett and Kim, 2021). The encapsulation
rate of pericytes, which is crucial for the maintenance of
microvasculature and is usually decreased during a stroke, can
be elevated via caspase-1 inhibition (Liang et al., 2020).

Other cells, especially microglia and neurons, may also
undergo pyroptosis and modulate BBB dysfunction. Microglia
are mononuclear phagocytes, the main resident immune
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FIGURE 2 | An illustration of the pathophysiology underlying caspase-1-mediated blood–brain barrier injuries and potential drugs targeting caspase-1-associated
pathways in acute stroke. After caspase-1 activation, not only BBB components such as endothelial cells and astrocytes undergo lytic cellular death, but BBB
supporting structures such as neurons and microglia are subject to pyroptosis likewise. In particular, the phosphorylation of tight junction proteins, particularly
occludins and claudins, contribute to BBB hyperpermeability. GSDMDNT-mediated pore formation brings about the exchange of ions and water molecules together
with inflammatory cytokines, cumulating in cellular swelling and lysis. Caspase-1-related neutrophils and lymphocytes transmigration also drive BBB disintegration to
some extent. Alternatively, selective inhibitors of caspase-1-associated pathways such as Vx-765, Ac-YVAD-CMK, MCC950, etc., are promising in alleviating BBB
injuries during acute stroke. ECM indicates extracellular matrix; RBCs, red blood cells; ECs, endothelial cells; IL, interleukin; DAMPs, damage-associated molecular
patterns; MMPs, matrix metalloproteinases; GSDMDNT, N-terminal fragment of gasdermin D.

cells within the CNS, representing up to 10% of the total
cell amount of the brain (Soulet and Rivest, 2008), which
respond to sharp change in brain homeostasis and remove
damaged cells via phagocytosis the first. Two distinct phenotypes
of microglia have been documented (1) M1 microglia, the
classically activated one, is considered to play a proinflammatory
role in releasing inflammatory cytokines, including tumor
necrosis factor-α, IL-1β, IL-6, IL-18, IL-23, inducible nitric
oxide synthase, MMP-9, and MMP-3 (Yenari et al., 2010;
Ransohoff and Brown, 2012), and (2) M2 microglia, the
alternatively activated phenotype, is critical for neurogenesis,

angiogenesis, and anti-inflammation by producing IL-10, growth
factor including transforming growth factor β, brain-derived
neurotrophic factor, and vascular endothelial growth factor
(Ponomarev et al., 2013). In acute stroke, microglia show
functionally distinct phenotypes according to the location
and the different phases of stroke (Faustino et al., 2011).
Caspase-1 activation contributes to increased classically-
activated (proinflammatory) M1-type microglia polarization
and reduced the number of (anti-inflammatory) M2-type
cells surrounding the hematoma (Franco and Fernandez-
Suarez, 2015; Hu et al., 2015; Lin et al., 2018), with a huge
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amount of M1 polarization induced by an increase in IL-1β

secretion after hemorrhagic stroke (Zhang et al., 2017b).
Similar phenomena of shifting microglia polarization can
also be observed in transient ischemic mice (Li et al., 2019).
Pore formation on the membrane facilitates the release of
intracellular inflammatory factors from microglia, along
with robust inflammation in the acute phase of ischemic
stroke, leading to irreversible injury. Neurons, a crucial
part in neurovascular unit supporting the BBB function,
were highly susceptible to cause scattered dead neurons in
the core of ischemic area (Lipton, 1999). Other than the
necrotic process, pyroptosis still leads to neurons death
to some degree, thereby contributing to the denervation
of BBB and poor recovery of BBB (Kaplan et al., 2020).
Conversely, the release cytosolic dsDNA induced by neurons
leads to the triggering of AIM2 in a vicious cycle and drives a
secondary immune response, including glial activation, release
of cytokines and chemokines (Guruswamy and ElAli, 2017), and
recruitment of peripheral immune cells (Kleinschnitz et al., 2013;
Mracsko et al., 2014).

Caspase-1-Dependent Release of
Proinflammatory Cytokines on
Blood–Brain Barrier in Acute Stroke
IL-1β, commonly produced by astrocytes and microglia in CNS,
is one of the most extensively explored cytokines in pyroptosis
during stroke (Blamire et al., 2000). Brain- and blood-derived IL-
1 are both able to culminate in BBB disintegration in a transient
model of focal cerebral ischemia (Denes et al., 2013) via the
protein kinase C-theta in human brain microvascular ECs (Rigor
et al., 2012). Treatment with IL-1 receptor antagonist (IL-1Ra)
or overexpression of IL-1Ra using an adenoviral approach has
shown a dramatical reduction of BBB injury following ischemic
stroke in rodents (Betz et al., 1995; Garcia et al., 1995; Pradillo
et al., 2012, 2017). The underlying pathophysiology of IL-1β on
caspase-1-mediated BBB dysfunction can be as follows: (1) IL-1β

directly interacts with IL-1R in microglia (Holmes et al., 2003)
and upregulates the priming process; (2) IL-1 affects astrocytes
and microglial functions via promoting the proliferation (Herx
and Yong, 2001) and release of cytokines and chemokines (Parker
et al., 2002; Andre et al., 2005), as well as the activation of
MMP-9 (Thornton et al., 2008); (3) IL-1β can induce chemokines
CXCL1 (KC), CXCL2 (MIP-2), CXCL12 (SDF-1), and adhesion
molecules (Israelov et al., 2020) from astrocytes and ECs along
with the release of inflammatory factors, the infiltration of
leukocytes and T-cells (Blamire et al., 2000; Fogal and Hewett,
2008; Sobowale et al., 2016), and the excretion neutrophil-derived
MMPs (McColl et al., 2007, 2008) to the injury site (Sedgwick
et al., 2000) in Figure 2.

IL-18, originally discovered as an IFN-inducing factor,
modulates IFN-production from IL-18R expressing Th1 and NK
cells in the periphery (Nakanishi et al., 2001; Nakanishi, 2018).
In CNS, IL-18 can be upregulated by neurons, astrocytes, and
microglia following lipopolysaccharide stimulation or treatment
with IFN-γ (Alboni et al., 2010). Although IL-18 was shown to
mediate inflammatory response resulting in loss of appetite, sleep

dysregulation, and several neurodegenerative diseases (Alboni
et al., 2010), caspase-1 mediated IL-18 on BBB in stroke deserves
further exploration.

Interaction of Caspase-1 With Other
Programmed Cell Death Pathways on
Blood–Brain Barrier in Acute Stroke
The apoptotic pathway, which is functionally mediated by
initiator (caspases 8, 9, and 10) (Behrouzifar et al., 2018; Israelov
et al., 2020) and effector (caspases 3, 6, and 7) (Liu et al.,
2017) caspases, can also mediate BBB dysfunction with increased
hyperpermeability. Interestingly, the apoptotic pathway can
partially interact with caspase-1. To some extent, caspase-8
can regulate the priming and activation of the canonical and
non-canonical inflammasome pathways and modulate proIL-1β

maturation (Van Opdenbosch and Lamkanfi, 2019). Caspase-
1 activation has also shown the ability to induce apoptosis
in GSDMD-deficient macrophages by engaging Bid-caspase-9-
caspase-3 axis through the intrinsic apoptosis pathway (Tsuchiya
et al., 2019). It is noteworthy mentioning that NLRP3 and
AIM2 agonists can also induce caspase-8-mediated apoptosis
(Pierini et al., 2012; Sagulenko et al., 2013) in caspase-1-deficient
macrophages. However, fewer protective effects on BBB were
found via caspase-8 or caspase-9 inhibition than caspase-1
inhibition (Israelov et al., 2020). Thus, targeting caspase-1 and
related pathway has been suggested to be more effective in
maintaining the integrity of BBB.

THERAPEUTIC TARGETS OF CASPASE-1
AND ITS ASSOCIATED PATHWAYS

Targeting caspase-1 and its associated pathways has been
suggested as an efficient method to alleviate BBB damage
throughout acute stroke. We will review potentially effective
drugs that target caspase-1 and promote protective effects on BBB
in acute stroke in the following part, as listed in Table 1.

Caspase-1 Inhibitors
VX-740 (Pralnacasan) and VX-765 (Belnacasan), two analog
peptidomimetic inhibitors of caspase-1 are converted rapidly
to their active forms, VRT-18858 and VRT-043198 respectively,
under the action of plasma and liver esterases (Rudolphi et al.,
2003; Wannamaker et al., 2007). Ac-YVAD-CMK, as another
specific and irreversible inhibitor of caspase-1, is a tetrapeptide
sequence based on the target sequence of caspase-1 in pro-
IL-1β (Garcia-Calvo et al., 1998). Except for specific caspase-1
inhibitors, pan-caspase inhibitors such as Z-VAD-FMK (Iseda
et al., 2007; Lin et al., 2016) and Q-VD-OPh (Caserta et al., 2003),
which inhibit the activation of some but not all caspases, have
been applied to cell death researches, including pyroptosis and
apoptosis. Vx-765 (Liang et al., 2020) and Ac-YVAD-CMK (Wu
et al., 2010) have been commonly used in the protection of BBB in
acute stroke. Liang et al. (2020) reported that Vx-765 ameliorated
the BBB leakage during acute stroke with increased expression
of ZO-1, occludin, and claudin-5; enhanced encapsulation rate
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TABLE 1 | The drugs preserving blood-brain barrier integrity via direct caspase-1 inhibition in acute stroke.

Stroke category Animals/cells Outcomes in vivo Inhibitors Target of
inhibitors

Protective mechanisms on BBB References

Ischemic-HT In vivo (mice) ↓ HT and edema, ↑

neurological function
MCC950, Ac-YVAD-CMK,
diacerein

NLRP3,
Caspase-1, IL-1β

↓ Inflammatory cytokines. Chen et al., 2021a

Ischemia In vivo (rats) ↓ Infarction volume, edema
and neurodeficits

Vx-765 Caspase-1 (1) ↑ CD31, ZO-1, occludin and
claudin-5 expression.

(2) ↑ Encapsulation coverage of
pericytes.

(3) ↓ BBB permeability and ↑

BBB integrity: ↓ Evans Blue
leakage, ↑ GLUT-1 and
osteopontin expression.

(4) ↓ MMPs and ↑ TIMPs

Liang et al., 2020

Ischemia In vitro (astrocytes,
OGD/R, NLRP6
overexpression)

NA Ac-YVAD-CMK Caspase-1 (1) ↓ NLRP6
overexpression-induced
pyroptosis.

(2) ↓ Inflammatory cytokines.

Zhang et al., 2020

Ischemia In vivo (mice) ↓ Infarction volume and
neurodeficits

Vx-765 Caspase-1 ↓ Pyroptosis of astrocytes
and other BBB supporting
structures neurons and
microglia.

Li et al., 2020b

Ischemia In vivo (mice) ↓ Infarction volume and
neurodeficits

Vx-765 Caspase-1 (1). ↑ Microglia polarization from
M1 phenotype toward M2
phenotype.

(2) ↓ Inflammatory cytokines
IL-1β.

Li et al., 2019

ICH In vivo (mice) ↓ Brain edema and ↑

neurological functions
Ac-YVAD-CMK Caspase-1 (1) ↓ ZO-1 degradation.

(2) ↓ MMP9.

(3) ↓ Inflammatory cytokines.

Wu et al., 2010

ICH In vivo (rats)/In vitro
(microglia,
thrombin)

↓ Brain edema and ↑

neurological functions
Ac-YVAD-CMK Caspase-1 (1) ↓ Microglia activation and

infiltration.

(2) ↓ Inflammatory cytokines.

Liang et al., 2019

ICH In vivo (mice) ↑ Neurological functions Ac-YVAD-CMK Caspase-1 (1) ↓ M1-type microglia activation
and ↑ M2-type activation.

(2) ↓ Inflammatory cytokines.

Lin et al., 2018

SAH In vivo (rabbits) ↓ Vasoconstriction Z-VAD-FMK Pan-caspase (1) ↓ Infiltrating leukocytes.

(2) ↓ ECs secreting endothelin-1
induced by IL-1β.

Iseda et al., 2007

BBB, blood–brain barrier; MMPs, matrix metalloproteinases; TIMPs, tissue inhibitors of metalloproteinases; HT, hemorrhagic transformation; GLUT-1, glucose transporter type 1; ICH, intracerebral hemorrhage; SAH,
subarachnoid hemorrhage; ECs, endothelial cells; OGD/R, oxygen glucose deprivation/reperfusion; NLRP, NOD-like receptor family pyrin domain-containing; IL, interleukin; ZO, zonula occludens.
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of pericytes; downregulated proinflammatory mediators MMPs;
and upregulated tissue inhibitors of metalloproteinases. Similarly,
in ICH, Ac-YVAD-CMK showed similar protective effects on
TJs with ZO-1 maintenance and inflammatory pathways with
decreased IL-1β and MMP-9 (Wu et al., 2010). Less edema
formation (Wu et al., 2010; Lin et al., 2018; Liang et al., 2019)
and less occurrence of HT (Chen et al., 2021a) were common in
the application of Vx-765 and Ac-YVAD-CMK (Wu et al., 2010),
while upregulating the levels of endothelial markers CD31 and
TJs (Liang et al., 2020) and reducing the phosphorylation of tight
junction (Liang et al., 2020) were prominent with the usage of Vx-
765. Lin et al. (2018) also suggested the potential role of microglia
in mediating BBB dysfunction as Ac-YVAD-CMK reduces M1-
type microglia polarization and increases the number of M2-type
cells surrounding the hematoma.

Despite direct inhibition of caspase-1, thalidomide is an
effective anti-inflammatory drug that significantly inhibits the
activity of caspase-1, but its application is limited because of
its strong teratogenic activity (Keller et al., 2009). Ritonavir,
once a protease inhibitor used to treat HIV, was later found to
effectively reduce the level of IL-18 in mouse pancreatic cancer by
suppressing caspase-1 activation (Kast, 2008) with the potential
application in stroke.

Caspase-1 Upstream Pathways
Inhibition
Inhibitors of the Priming Process
After the addition of a specific inhibitor of NF-κB (Bay 11-7082),
the priming of NLRP3 inflammasome and caspase-1 was dose-
dependently reduced (Bauernfeind et al., 2009). Dong et al. (2013)
reported that parthenolide, via the downregulation NF-κB,
phospho-p38 mitogen-activated protein kinase, and caspase-1
expressions, has shown the amelioration of BBB permeability and
brain damage from infarction in rats with permanent MCAO.
A20/tumor necrosis factor-α-induced protein 3 is a key molecule
that inhibits NF-κB pathway activation by ubiquitination and
exhibits significant anti-inflammatory effects (Wertz et al., 2004),
and D-series of resolve in can upregulate A20 expression and
inhibit NF-κB activation to produce anti-inflammatory effects
and minimize the effects of NLRP3 (Voet et al., 2018; Wei
et al., 2020). Dexmedetomidine, a highly selective adrenergic α2
receptor agonist through suppressing the TLR4/NF-κB pathway,
can downregulate the expression levels of NLRP3, ASC, caspase-
1, and IL-1β in ICH (Song and Zhang, 2019), and upregulate
the expression of TJ proteins in SAH mice (Yin et al., 2018).
Theaflavin has also shown anti-inflammatory effects targeting
TLR4/NF-κB p65 signaling pathway to protect BBB integrity in
rat ICH model (Fu et al., 2018). Moreover, directly attenuating
the stability and expression levels of NLRP3 mRNA via conserved
microRNA-223 (Yang et al., 2015), microRNA-668 inhibitors (He
and Zhang, 2020), or small interfering RNA (Yao et al., 2017) can
also acquire similar effects on decreasing NLRP3 expression.

Inhibitors of the Triggering Process
Although the inhibition of NLRP3 (Chen et al., 2021a), NLRC4
(Gan et al., 2021), AIM2 (Li et al., 2020c), or NLRP6 (Meng
et al., 2019) inflammasomes could all show the protective roles

on BBB in acute stroke, multiple evidence have focused on
NLRP3 due to its association with endogenous stimulus (Cao
et al., 2016; Ward et al., 2019; Palomino-Antolin et al., 2021).
MCC950 (also known as CP-456773 and CRID3) is the selective
inhibitor of NLRP3 inflammasome by blocking ATP hydrolysis
of NLRP3 by directly binding to the NACHT domain (Ren
et al., 2018; Coll et al., 2019). Ward et al. (2019) confirmed
that MCC950 maintained the vascular integrity, attenuated brain
edema, improved neurological outcome and cognitive function
after stroke. Blockade of NLRP3 via MCC950 in both early-phase
and post-reperfusion phase among transient ischemic models
protects the mice from I/R injury by mitigating inflammation
and stabilizing the BBB, particularly in a dose-dependent manner
(Franke et al., 2021; Palomino-Antolin et al., 2021). Similar
protective effects of MCC950 on BBB have also been documented
by Ren et al. (2018) in ICH.

As discussed previously, targeting NLRP3 inflammasomes
that activate the process via decreased K+, mitochondrial ROS,
and lysosomal disruption can also be effective in maintaining
BBB structure. In ICH rats, blocking P2X7R via small interfering
RNA, which can be a promising therapeutic method, can
minimize the efflux of potassium concentration, attenuate
inflammatory progression and brain damage via downregulating
mechanical effects on NLRP3 (Feng et al., 2015). Thioredoxin-
interacting protein (TXNIP), which is required for the activation
of NLRP3 inflammasome (Zhou et al., 2010; Ishrat et al., 2015),
is an endogenous inhibitor of the thioredoxin system, a major
cellular thiol-reducing and antioxidant system (Watanabe et al.,
2010). Umbelliferone (Wang et al., 2015), ruscogenin (Cao et al.,
2016), ketogenic diets (Guo et al., 2018), and EGb761 (Du
et al., 2020) treatment also suppressed NLRP3 inflammasome
activation via attenuating the TXNIP/NLRP3 pathway and
potentially upregulating the expression of TJ proteins (Cao
et al., 2016). Through suppressing the endoplasmic reticulum
AMPK/TXNIP/NLRP3 signaling pathway, Xu et al. (2019b)
reported that exogenous apelin-13 significantly preserved BBB
integrity, attenuated brain edema, and improved long-term
spatial learning and memory abilities after SAH. The activation of
peroxisome proliferator-activated γ receptor, such as pioglitazone
(Xia et al., 2018) and medioresinol (Wang et al., 2021b), has
less mitochondrial ROS production on brain microvascular
ECs (Wang et al., 2021b). Other antioxidants which inhibit
oxidative stress-induced NLRP3 via NADPH are NOX inhibitor
apocynin (Qin et al., 2017), mPTP inhibitor (TRO19622) and
mitochondrial ROS scavenger (Mito-TEMPO)(Ma et al., 2014),
Nrf2 pathway promotor isoliquiritigenin (Zeng et al., 2017), and
hydrogen inhalation (Zhuang et al., 2019) or hydrogen-rich saline
(Shao et al., 2016), all preserve BBB function, in particular ECs
(Zhuang et al., 2019) during acute stroke. As spleen tyrosine
kinase-dependent ROS production can similarly activate NLRP3
inflammasomes, the facts that TREM-1 facilitates the recruitment
of spleen tyrosine kinase and microglial pyroptosis can be
blocked by specific TREM-1 inhibitor LP17 in experimental SAH
(Xu et al., 2021a). Meanwhile, NEK7 was an essential protein
that acts downstream of potassium efflux to mediate NLRP3
inflammasome assembly and activation (He et al., 2016), and
NEK7 small interfering RNA injection also reversed BBB opening
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and microglia accumulation in SAH mice (Li et al., 2020a). Other
non-specific drugs such as minocycline (Li et al., 2016; Lu
et al., 2016), melatonin (Dong et al., 2016), resveratrol (Zhang
et al., 2017a), chrysophanol (Zhang et al., 2014), glibenclamide
(Xu et al., 2019a), and sinomenine (Qiu et al., 2016) have
been reported to alleviate cerebral edema or early brain
injury upon modulating the NLRP3 inflammasomes. Moreover,
Zhang et al. (2019) reported that as a lysosomal stabilizing
agent, dexamethasone and TAK1 inhibitor 5Z-7-oxozeaenol (Xu
et al., 2021b), can prevent lysosomal membrane permeability
and caspase-1 activation in ECs during nicotine-induced ECs
disruption, despite not validated on the cerebral vasculature yet.

Inhibition of other canonical inflammasomes such as AIM2
(Li et al., 2020c), NLRP6 (Meng et al., 2019), or NLRC4 (Gan
et al., 2021), can potentially preserve BBB in acute stroke as well.
The reduction of AIM2 inflammasome and caspase-1 expression
via cyclic GMP–AMP synthase antagonist A151 (Li et al., 2020c),
NLRP6 reduction via NLRP6 siRNA (Meng et al., 2019), and
restraining NLRC4 activation via RGS2 (Gan et al., 2021) all show
the attenuation of cerebral edema.

Caspase-1 Downstream Pathways
Inhibition
Gasdermin D Inhibitors
Necrosulfonamide has also been identified as a chemical
inhibitor of GSDMD, which directly bonds with GSDMD and
inhibits GSDMDNT oligomerization (Rathkey et al., 2018).
Bay 11-7082, a previously identified NF-κB inhibitor, has been
reported to potently inhibit pyroptosis through interfering
GSDMD pore formation and IL-1β secretion, with its extensive
suppression of inflammasomes priming, specks formation as well
as inflammatory caspases activation (Wang et al., 2021a). Due
to the lack of specificity, the toxicity of Bay 11-7082 in cells
and tissue causes its restricted application (Nandhu et al., 2017).
Disulfiram is also a GSDMD inhibitor, covalently modifying
cysteine 191/192 in GSDMD while not interfering with other
members of gasdermin family, which abrogates the process of
pore formation with normal intervening IL-1β and GSDMD
processing (Hu et al., 2020). Nevertheless, little evidence was
about its protective effects on BBB.

Proinflammatory Biomarkers Inhibitors
The specific inhibitors of IL-1β, such as diacerein, have also
been proven to alleviate brain edema, minimize HT, and
improve neurological outcome in ischemic stroke rats (Chen
et al., 2021a). Anakinra, a recombinant IL-1Ra, prevents IL-1
signaling with the validation of its role in chronic inflammatory
disease (Cavalli and Dinarello, 2018) and the risk of serious
infection (Galloway et al., 2011). Canakinumab is also a fully
human monoclonal anti-IL-1β antibody directed against
human IL-1β. Alternatively, GSK1070806, a neutralizing
humanized monoclonal antibody, and Tadekinig alfa, a
recombinant human IL-18 binding protein, are both involved
in capturing bioactive IL-18 away from its receptor. The roles
of monoclonal antibodies so far mainly focused on neutralizing
proinflammatory cytokines in autoinflammatory diseases or
potentially life-threatening infections (Van Opdenbosch and

Lamkanfi, 2019); however, the values of monoclonal antibodies
for cytokines on BBB protection in acute stroke also deserve
further evaluation.

Non-specific Therapeutic Targets
Moreover, there were some therapeutic methods with less specific
target but can interfere with caspase-1 in BBB protection.
Hypothermia could reverse the expression NLRP3, cleaved
caspase-1, and GSDMDNT together with increased autophagy
in diabetic rats with permanent MCAO (Tu et al., 2019), and
rescue the BBB biomarkers such as the increment of ZO-1 and
claudin-5 (Tu et al., 2019). Chen et al. (2021b) reported that
atorvastatin markedly increased survival rate, attenuated brain
water content, downregulated the protein expression of NLRP1,
cleaved caspase-1, IL-1β, and IL-18 with less early brain injury in
SAH. Other promising drugs, such as HSYA together with Lex
(Tan et al., 2020), etc., are also capable of decreasing cerebral
edema via suppressing pyroptosis process to some degree.

PROSPECTIVES AND CONCLUSION

Caspase-1 can be primed, triggered, and activated during acute
stroke, and can participate in BBB dysfunction due to stroke-
related oxidative stress, metabolic dysfunction, and mechanical
stress. Targeting caspase-1 is effective in maintaining BBB
integrity as less brain swelling, fewer occurrences of HT, and
better functional recovery. Considering the caspase-1 activation
to be a hub, which is converged by various triggering pathways to
promote diverse programmed death patterns, namely, pyroptosis
and apoptosis, it should be notably indispensable and potent
during a stroke. In detail, the underlying pathophysiology about
BBB impairment in stroke such as protein phosphorylation,
breakdown of tight junction proteins, lytic cellular death upon
BBB, and supporting structures as well as neutrophils and
lymphocytes transcytosis, all can be reversed by selective caspase-
1 inhibition in some extent. Our review sheds light on caspase-1
as a promising and crucial target throughout stroke intervention
in the coming future.

So far, caspase-1 knock-out mice appear fertile and healthy
(Kuida et al., 1995). In the clinical trials, Vx-765 is also safe
in resistant-epilepsy treatment, but less effective in resistant-
epilepsy treatment during a Phase IIb study, while Vx-740 is
safe and significantly reducing joint symptoms and inflammation
in patients with rheumatoid arthritis in Phase I/IIa studies but
confirmed potential liver toxicity after long-term administration
in animal studies (Kudelova et al., 2015). Thus, targeting caspase-
1 should be safe and practical in humans. Although stroke
and stroke-related comorbidities can lead to enhanced caspase-1
activity, there is little clinical evidence about targeting caspase-
1 in stroke or stroke-associated comorbidities nowadays. Future
researches about caspase-1 on BBB dysfunction in stroke will
progress on, including (1) the interactions of caspase-1 with
other programmed death pathways such as ferroptosis potentially
linked by oxidative stress, (2) more prompt targets along the
pathways of caspase-1-mediated BBB dysfunction, (3) the roles of
targeting caspase-1 in hematoma expansion given that hematoma
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expansion may associate with BBB dysfunction, (4) clinical
application of caspase-1 as biomarkers in predicting adverse
events such as HT, and (5) the time-window, effectiveness, and
dosage of drugs targeting caspase-1 in clinical practice.
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