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INTRODUCTION 
 
The mammalian cell cycle is a highly structured and 
regulated process that ensures the duplication of the 
genetic material and cell division. Cell cycle regulation 
involves both mechanisms that govern growth regulation 

and genetic integrity. Cancer is characterized by 
abnormal cell cycle activity, possibly because of 
upstream signaling pathway gene mutations or mutations 
in the genes that encode cyclins. Genetic changes in 
several cell cycle regulators have a key influence on the 
pathogenetic process of gastric cancer (GC) [1]. Studies 
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ABSTRACT 
 
While genetic alterations in several regulators of the cell cycle have a significant impact on the gastric 
carcinogenesis process, the prognostic role of them remains to be further elucidated. The TCGA-STAD training set 
were downloaded and the mRNA expression matrix of cell cycle genes was extracted and corrected for further 
analysis after taking the intersection with GSE84437 dataset. Differentially expressed mRNAs were identified 
between tumor and normal tissue samples in TCGA-STAD. Univariate Cox regression analysis and lasso Cox 
regression model established a novel seven-gene cell cycle signature (including GADD45B, TFDP1, CDC6, CDC25A, 
CDC7, SMC1A and MCM3) for GC prognosis prediction. Patients in the high-risk group shown significantly poorer 
survival than patients in the low-risk group. The signature was found to be an independent prognostic factor for 
GC survival. Nomogram including the signature shown some clinical net benefit for overall survival prediction. The 
signature was further validated in the GSE84437 dataset. In tissue microarray, CDC6 and MCM3 protein 
expression were significant differences by the immunohistochemistry-based H-score between tumor tissues and 
adjacent tissues, and CDC6 is an independent prognostic factor for GC. Interestingly, our GSEA revealed that  
low-risk patients were more related to cell cycle pathways and might benefit more from therapies targeting cell 
cycle. Our study identified a novel robust seven-gene cell cycle signature for GC prognosis prediction that may 
serve as a beneficial complement to clinicopathological staging. The signature might provide potential biomarkers 
for the application of cell cycle regulators to therapies and treatment response prediction. 
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have shown that cell cycle regulators are potential GC 
prognosis biomarkers of great clinical value [2], and 
targeting cell cycle regulators in GC treatment has also 
increasingly attracted attention [3]. 
 
Among the five most common cancers worldwide, GC is 
the third major cause of cancer mortality [4]. Despite 
surgical and adjuvant therapies, the prognosis of GC 
patients remains poor, and patients’5-year overall 
survival rate is below 25% [5]. Until now, the prediction 
of prognosis has primarily depended on histopathologic 
diagnosis and neoplasm staging systems. However, 
many patients in the progressive stage who have similar 
clinicopathologic features show great differences in 
prognosis. 
 
Although much effort has been spent developing 
optimum tools for the prediction of GC prognosis, no 
consensus has been reached as to the best method. In 
most of the existing literature, clinical baseline 
characteristics (e.g., tumor size, lymphonodus count, and 
lymphatic vascular space invasion) and unimolecular 
biomarkers (e.g., CD44 [6], PPAR γ [7], IL-13Rα2 [8], 
HDAC6 [9]) are utilized to construct prognostic models. 
Nevertheless, the predictive power of monogenic 
biomarkers is insufficient. Based on recent development 
singenomic sequencing, the integration of prognosis-
related genetic markers with traditional parameters has 
huge potential for the prediction of GC prognosis [10, 11]. 
 
In this study, differentially expressed cell cycle genes 
were identified from tumors and normal tissue 
specimens from The Cancer Genome Atlas Stomach 
Adenocarcinoma (TCGA-STAD) dataset. Then, 
univariate Cox regression analysis and lasso regression 
analysis were conducted on survival data to identify cell 
cycle genes significantly correlated with the overall 
survival (OS) of GC patients. These genes were used to 
construct a prognostic model, which was further 
verified in the GSE84437 dataset from Gene Expression 
Omnibus (GEO). Additionally, tissue microarrays were 
used in Chinese patients with GC to explore the 
relationship between selected cell cycle genes and 
prognosis based on their protein expression levels. 
 
RESULTS 
 
Prognostic model building and validation based on 
cell cycle genes in TCGA-STAD 
 
The expression levels of 55 cell cycle genes in 334 
patients with OS longer than 30 days (Table 1) from 
TCGA-STAD were used to train a prognostic model. 
Based on a univariate Cox regression model, seven genes 
(i.e., GADD45B, TFDP1, CDC6, CDC25A, CDC7, 
SMC1A and MCM3) were correlated with survival. Lasso 

regression analysis, including GADD45B, TFDP1, 
CDC6, CDC25A, CDC7, SMC1A and MCM3, was 
conducted to construct the prognostic model. The 
resulting risk score is calculated by 0.0090×expression 
level of GADD45B −0.0116×expression level of TFDP1 
+0.0053×expression level of CDC6 −0.0177×expression 
level of CDC25A −0.0127×expression level of CDC7 
−0.0157×expression level of SMC1A −0.0018×expression 
level of MCM3. All patients were classified into either 
the high-or low-risk groups on the basis of the optimum 
cutoff value of the risk score, which was set at −0.474. 
 
Then, 431 patients with OS longer than 30 days (Table 1) 
were selected from the GSE84437 dataset to validate 
the model. These patients were also divided into high- 
and low-risk groups on the basis of the optimum cutoff 
value of 1.087. Next, the Kaplan–Meier method was 
used to determine the survival curves of the two groups. 
As can be seen in Figure 1, the survival curves of the 
high-risk patients are different from those of the low-
risk patients; in addition, this difference was statistically 
significant. 
 
Prognostic model and prognostic value of 
clinicopathologic features 
 
Clinical information (age, sex, T-staging, and N-staging) 
found in both the TCGA and GEO datasets were tested 
for their impact on prognosis. Through univariate and 
multivariate Cox regression analyses, we found that age, 
T-staging, and N-staging were associated with prognosis. 
Additionally, the lasso-derived prognostic model (risk 
score) was an independent prognostic factor for OS. 
 
Next, we assessed the sensitivity and specificity of the 
prognostic model with receiver operator characteristic 
(ROC) curves (Figure 2). The areas under the curve 
(AUCs) were 0.656 and 0.629, respectively. This 
indicates that the proposed model performs well, 
showing medium sensitivity and specificity. 
 
Nomogram building and validation based on the 
genetic model and clinical data of patients 
 
A nomogram was constructed on the basis of age,  
T-staging, and N-staging, as well as the proposed 
prognostic model. As indicated by the calibration chart 
(Figure 3), the nomogram performed best for predicting 
1 year OS. The consistency indices (C-indices) of the 
clinical model (involving age, T-staging, and N-staging), 
the prognostic model, and the nomogram model were 
0.636, 0.622, and 0.677, respectively. The clinical model 
had a lower C-index than the nomogram model (P < 
0.001). Combining the prognostic model and the clinical 
model, the AUCs of 1, 2, and 3 year OS were improved 
to 0.708, 0.727, and 0.657, respectively. According to 
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Table 1. Clinical features n (%) of GC patients with OS longer than 30 days. 

Parameters 
TCGA-STAD patients with 

mRNA expression data  
(n =334) 

GSE84437 patients with 
mRNA expression data  

(n = 431) 

Chinese GC patients with 
immunohistochemical data  

(n=232) 
Gender    

Male 216(64.67) 294(68.21) 161(69.40) 
Female 118(35.33) 137(31.79) 71(30.60) 
Age (mean ± s.d.) 65.17 ±10.22 60.02 ± 11.58 58.09±12.18 

pTMN    
I 44(13.17) - 32(13.79) 
II 106(31.74) - 80(34.48) 
III 137(41.02) - 98(42.24) 
IV 33(9.88) - 22(9.48) 
unknow 14(4.19) - - 

T_stage    
1 14(4.19) 11(2.55) 26(11.21) 
2 72(21.56) 38(8.82) 27(11.64) 
3 156(46.71) 92(21.35) 79(34.05) 
4 88(26.35) 290(67.29) 100(43.10) 
X 4(1.20) -  

N_stage    
0 98(29.34) 80(18.56) 76(32.76) 
1 90(26.95) 187(43.39) 49(21.12) 
2 68(20.36) 132(30.63) 47(20.26) 
3 67(20.06) 32(7.42) 60(25.86) 
X 11(3.29) - - 

M_stage    
0 300(89.82) - 210(90.52) 
1 22(6.59) - 22(9.48) 
X 12(3.59) - - 

Grade    
G1 9(2.69) - 2(0.86) 
G2 117(35.03) - 53(22.84) 
G3 199(59.58) - 177(76.29) 
GX 9(2.69)   

Vessel carcinoma embolus    
Yes - - 30(12.93) 
No - - 202(87.07) 

Vital status    
Alive 220(65.87) 224(51.97) 137(59.05) 
Dead 124(37.13) 207(48.03) 95(40.95) 

GC, gastric cancer; mRNA, messenger RNA; OS, overall survival; TCGA, the Cancer Genome Atlas. 
 

our results, the nomogram model better predicted 
survival prognosis than the clinical model for GC. 
 
External immunohistochemical validation based on 
protein levels 
 
Protein levels of CDC6 and MCM3 from 234  
Chinese patients with GC were obtained using 

immunohistochemistry. We found that the expression in 
tumor tissues of these proteins was significantly higher 
than that in nontumor tissues (P < 0.01). Among the 
patients, data from 232 Chinese GC patients with OS 
longer than 30 days (Table 1) were included in univariate 
and multivariate Cox regression analyses. The results 
showed that TNM staging were associated with prognosis 
(Table 1). Furthermore, CDC6 was an independent 
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prognostic factor in GC patients with T1-3N1-2M0 staging 
and no vascular tumor thrombus as presented in the 7th 
version of the ACJJ (P<0.05) (Figure 4). 
 
Gene set enrichment analysis 
 
Through gene set enrichment analysis (GSEA) of the 
differentially expressed genes from the TCGA-STAD 
dataset, we found that KEGG cell cycle pathways were 
enriched in the low-risk group (P<0.001 and false 
discovery rate (FDR)<0.001) (Figure 5). 
 
DISCUSSION 
 
In this study, we included cell cycle-related genes 
associated with GC to explore their potential as prognostic 
factors for GC. We identified seven prognosis-related cell 
cycle genes and established a risk prediction model. For 
GC patients with high- and low-risk scores, we observed 
different survival rates. Additionally, a nomogram created 

by combining clinical factors with our prognostic model 
performed even better in predicting the survival prognosis 
of GC patients, with verification in a second dataset. 
 
As a heterogeneous disease, the development of GC is a 
long and multistep process. Because of the gradual 
accumulation of genetic mutations, carcinogenesis and 
anti-cancer pathway imbalances eventually give rise to 
GC [12]. With progress in medical technology, the 
morbidity and mortality of GC have both declined. 
However, the current prognosis of GC patients is not 
optimistic [13]. 
 
In cancer, abnormal activity of various cyclins leads to 
uncontrollable tumor cell proliferation. In the literature, 
it has been reported that cell cycle regulators are related 
to the prognosis of GC patients. For instance, in gastric 
adenocarcinoma tissues, downregulated expression of 
the protein p27 is correlated with advanced tumors [14]. 
Among poorly differentiated tumors, the expression 

 

 
 

Figure 1. Risk score analysis and Kaplan–Meier survival analysis for seven differentially expressed genes in GC. (A, B) The 
distribution of risk score and patient’s survival time, as well as status for TCGA-STAD (A) and GSE84437 (B). (C, D) Heatmap of the autophagy-
associated gene expression profiles in prognostic signature for TCGA-STAD (C) and GSE84437 (D). (E, F) Kaplan-Meier curves of seven 
differentially expressed genes from TCGA-STAD (E) and GSE84437 (F). 
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levels of p27 and CCND1 were elevated and were 
shown to be negative prognostic factors for patient 
survival [15]. Overexpression of the proteins CCND1 
and CCND2 is associated with the short OS of GC 

patients [16]. Furthermore, binding of cyclin E and 
cyclin-dependent kinase 2 promotes the transition of the 
cell cycle from stage G1 to stage S. The prognosis of GC 
patients positive for cyclin E is poor; combining cyclin E 

 

 
 

Figure 2. Cell cycle-associated genes significantly correlated with survival rates of GC patients. (A–D) Forrest plots of univariate 
and multivariate Cox regression analysis (E, F) OS sensitivity and specificity analysis for the risk score determined by the expression of seven 
genes in TCGA-STAD (E) and GSE84437 (F) based on ROC analysis. 
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overexpression with p53 expression was able to 
differentiate patients with poor prognosis [17, 18]. 
Recently, bioinformatics methods were used to confirm 
that five G2/M checkpoint-related genes (i.e., MARCKS, 
CCNF, MAPK14, INSENP, and CHAF1A) were related 
to the OS of GC patients [19]. Nevertheless, these 
studies have not established a prognostic model for GC 
prediction based on the genetic characterization of genes 
associated with the cell cycle. 
 
In recent years, mRNA expression has been investigated 
on the basis of whole-genome sequencing data [20]. 
Using these data, studies have investigated TP53 
mutations and mutations in autophagy-related genes to 
construct prognostic models, showing that these models 
can successfully predict GC prognosis [10, 11]. In this 

study, CDC6 and MCM3 showed the greatest 
differences and were most strongly correlated with 
prognosis in the TCGA dataset. MCM3 falls into a 
family of six highly conserved minichromosomal 
maintenance proteins, MCM2–MCM7. These proteins 
are critical for ensuring that eucaryon DNA replication 
takes place only once in each cell cycle. Additionally, 
MCM3 also serves as a helicase to facilitate replication 
extension. At an advanced stage of M1, CDT1 and 
CDC6 recruit iso-hexamer MCM2–MCM7 complexes 
and load them onto an origin of replication, producing 
prereplication complexes [21]. Additionally, CDC6 is 
an important cell cycle regulator [22]. By assembling 
prereplication complexes, it plays an essential role in 
maintaining chromosome integrity [23, 24]. Moreover, 
CDC6 is also closely related to tumorigenesis. Besides 

 

 
 

Figure 3. Building and validation of the nomogram predicting the OS of GC patients in TCGA-STAD and GSE84437 datasets. 
(A, B) Nomogram based on four independent prognostic factors of GC. (C, D) Calibration map for internal validation of the nomogram.  
(E–J) Time-dependent ROC curves of the nomogram for comparing the 1, 2, and 3 year OS of GC patients. Data in Figures (E, G, I) are derived 
from TCGA data, whereas those in Figures (F, H, J) are from the GSE84437 array. 
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Figure 4. Protein expression levels of CDC6 and MCM3 in Chinese GC patients by immunohistochemistry (IHC). CDC6 
significantly correlated with survival rates of GC patients with stratified analysis. HE-stained sections (A) and IHC staining of CDC6 in 
nontumor tissues: H-SCORE 181.1 (B); HE-stained sections (C) and IHC staining of CDC6 in tumor tissues: H-SCORE 169.8 (D); HE-stained 
sections (E) and IHC staining of MCM3 in nontumor tissues: H-SCORE 52.7 (F); HE-stained sections (G) and IHC staining of MCM3 in tumor 
tissues: H-SCORE 156.1 (H); Magnification: 400×. (I–L) Forrest plots of univariate and multivariate Cox regression analysis. 
 

 
 

Figure 5. KEGG pathways in GSEA significantly enriched among differentially expressed genes from the TCGA data. 
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playing a role in cancer-related pathways by regulating 
the expression of certain oncogenes and cancer 
suppressor genes such as KRAS [25], CDC6 promotes 
cancer progression as it is positively regulated by 
associated noncoding RNAs (e.g., lncRNA-CDC6) [26]. 
Furthermore, the expression of CDC6 is upregulated in 
multiple tumor types [27, 28]; CDC6 serves as a 
prognostic biomarker of breast carcinoma [29], 
colorectal cancer [30], pancreatic cancer [31], and other 
cancers. CDC6 knockdown has been shown to inhibit 
the growth and invasion of GC cells. Transfection of 
pS-CDC6 knocked down CDC6 expression in the GC 
cell lines BGC823 and SGC7901. MTT assay showed 
that transfection of pS-CDC6 markedly inhibited cell 
proliferation in BGC823 and SGC7901 cells. Transwell 
assay revealed that pS-CDC6 transfection inhibited the 
invasive capacities of BGC823 and SGC7901 cells. 
This likely be due to CDC6 knockdown promoting the 
apoptosis of these cells [32]. Among 232 Chinese GC 
patients, validation through immunohistochemical 
methods showed that the protein levels of CDC6 and 
MCM3 in tumor and nontumor tissues had significantly 
different histochemistry scores (H-scores; see Methods). 
Additionally, we showed that CDC6 is an independent 
prognostic factor for GC with stratified analysis. 
Finally, via KEGG enrichment analysis, we showed that 
the gene expression in the low-risk group was related to 
cell cycle pathways, and patients in this group may 
benefit more from cell cycle therapies. 
 
In summary, cell cycle genes play an important role in 
cancer progression. This study shows the value of cell 
cycle genes as prognostic biomarkers for GC. However, 
as a retrospective study, certain limitations are 
inevitable. To understand the specific mechanism and 
biological functions of cell cycle genes on prognosis, 
further investigation is needed. 
 
Conclusions 
 
We constructed a prognostic model involving seven cell 
cycle genes based on GC data from TCGA and GEO. 
Combining the proposed prognostic model with a 
nomogram of clinical pathology, a higher survival 
prognosis prediction ability can be achieved. According 
to our findings, the proposed prognostic model may 
promote individualized diagnosis and treatment of GC 
patients and thus further improve the prognosis of these 
patients. 
 
MATERIALS AND METHODS 
 
Gene expression data 
 
On the TCGA website, we downloaded RNA sequencing 
and clinical data involving 375 GC tissues and 32 

nontumor tissues from the STAD dataset. Subsequently, 
125 cell cycle-related genes were obtained from the 
KEGG database, and GSE84437 data were downloaded 
from the GEO database. These datasets were used for 
further analysis after they were corrected by the 
“batchType” correction model in the SVA4.04R software 
package. 
 
Differentially expressed cell cycle genes in GC 
 
Using the “limma” package in R, 375 tumor samples and 
32 normal tissue samples from TCGA were subjected to 
differential expression analysis for cell cycle genes. 
Differentially expressed genes were selected with an 
FDR of <0.05 and log fold-change of >0.5. 
 
Prognostic gene model 
 
Univariate Cox proportional hazards regression analysis 
was conducted to select cell cycle genes significantly 
correlated with the OS of individuals included in the 
TCGA-STAD dataset. According to the hazard ratio of 
each gene and P-values obtained using the Wald test, 
P<0.05 was adopted as the threshold to select genes that 
were significantly correlated with the survival of GC 
patients. Based on the “glmnet” package in R [33, 34], a 
multivariate model of cell cycle genes was constructed 
via lasso regression. In the lasso regression model, genes 
with nonzero coefficients were selected to calculate risk 
scores by the following equation: risk score=∑nj=1 
Coefj*Xj, where Coef j stands for the coefficient and Xj 
for the relative expression level of each cell cycle gene 
[35]. All TCGA patients were divided into two groups 
(i.e., a high-risk group and a low-risk group) depending 
on the median risk score. Similar to the TCGA dataset, 
the same formula was used to determine the risk scores 
in the GEO dataset. We then calculated Kaplan–Meyer 
survival curves and used the log-rank test to clarify the 
statistical significance of the difference in OS between 
the two groups. Clinical information (e.g., age, sex, T-
staging, and N-staging) was then extracted from the 
TCGA-STAD and GSE84437 datasets. These factors 
were tested for their impact on prognosis with univariate 
and multivariate Cox regression analyses. Any factor 
with a P<0.05 was deemed statistically significant. 
Moreover, ROC curves were also calculated to verify the 
predictive value of the model. 
 
Nomogram-based prediction model 
 
Survival data from the patients were combined with their 
age, T-staging, N-staging, and risk scores to build a 
nomogram using the “rms” package in R. Subsequently, 
calibration curves were calculated to evaluate the 
consistency between the actual and predicted survival 
rates. Furthermore, a C-index ranging from 0.5 to 1.0 was 
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calculated to assess the performance of the prognosis 
prediction model. The AUC was used to evaluate the 
sensitivity and specificity of the model. 
 
Immunohistochemical evaluation of protein 
expression levels of cell cycle genes 
 
Two hundred fifty tumor tissues and 144 nontumor 
tissues were derived from 250 Chinese patients affected 
by GC. From the TCGA database, CDC6 and MCM3, 
which were most closely correlated with prognosis, 
were selected for validation based on their protein 
levels. The H-score is used to evaluate 
immunohistochemical conditions. In detail, the number 
of positive cells on each slide and their staining 
intensity are converted into values as a semiquantitative 
measure of the amount of histological staining. H-Score 
(H-SCORE=∑pi × i)=(percentage of weak intensity 
cells ×1)+(percentage of moderate intensity cells 
×2)+(percentage of strong intensity cells ×3), where pi 
represents the proportion of positive cells and i is the 
staining intensity. The H-score has a range of 0–300. 
The greater the value is, the greater the staining 
intensity of positive cells will be [36, 37]. 
 
Gene set enrichment analyses 
 
Regarding the differentially expressed genes in the 
TCGA-STAD array between the high- and low-risk 
groups, GSEA was used to identify enriched pathways 
[38, 39]. P<0.05 and FDR<0.25 were considered 
statistically significant. 
 
Statistical analysis 
 
All statistical analyses were conducted in R software 
(Version 4.0.4; https://www.R-project.org). The 
correlation between the risk scores and clinical features 
was investigated using the χ2 test. Besides drawing 
Kaplan–Meier curves, a log-rank test was conducted to 
test intergroup differences in OS. Univariate and 
multivariate Cox proportional risk regression analyses 
were conducted to determine the association between 
the risk score and OS. The AUC was calculated as a 
measure of the prediction accuracy of the prognostic 
models. P<0.05 was used to signify statistically 
significant results. 
 
AUTHOR CONTRIBUTIONS 
 
L-Q Z, L-D W and F-Y Z contributed design and idea 
of the study. S-L Z, J-K L, X-K Z and L-Q Z 
contributed collection and procession of clinical data. S-
L Z and J-K L performed experiments. L-Q Z, P-N C 
and S-L Z performed the data analysis and interpreted 
the results. S-L Z, L-Q Z, X-L L and F-Y Z wrote the 

manuscript. All authors contributed to the article and 
approved the submitted version. 
 
CONFLICTS OF INTEREST 
 
The authors declare that they have no conflicts of 
interest. 
 
FUNDING 
 
This work was supported by grants from the Post-
doctoral Foundation of Zhengzhou University and 
Doctoral Research Initiation Fund of Henan Provincial 
people’s Hospital. 
 
REFERENCES 
 
1. Choi RS, Lai WYX, Lee LTC, Wong WLC, Pei XM, Tsang 

HF, Leung JJ, Cho WCS, Chu MKM, Wong EYL, Wong 
SCC. Current and future molecular diagnostics of 
gastric cancer. Expert Rev Mol Diagn. 2019; 19:863–74. 

 https://doi.org/10.1080/14737159.2019.1660645 
PMID:31448971 

2. Machlowska J, Maciejewski R, Sitarz R. The Pattern of 
Signatures in Gastric Cancer Prognosis. Int J Mol Sci. 
2018; 19:1658. 

 https://doi.org/10.3390/ijms19061658 
PMID:29867026 

3. Min A, Kim JE, Kim YJ, Lim JM, Kim S, Kim JW, Lee KH, 
Kim TY, Oh DY, Bang YJ, Im SA. Cyclin E overexpression 
confers resistance to the CDK4/6 specific inhibitor 
palbociclib in gastric cancer cells. Cancer Lett. 2018; 
430:123–32. 

 https://doi.org/10.1016/j.canlet.2018.04.037 
PMID:29729292 

4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, 
Jemal A. Global cancer statistics, 2012. CA Cancer J 
Clin. 2015; 65:87–108. 

 https://doi.org/10.3322/caac.21262  
PMID:25651787 

5. Camargo MC, Kim WH, Chiaravalli AM, Kim KM, 
Corvalan AH, Matsuo K, Yu J, Sung JJ, Herrera-Goepfert 
R, Meneses-Gonzalez F, Kijima Y, Natsugoe S, Liao LM, 
et al. Improved survival of gastric cancer with tumour 
Epstein-Barr virus positivity: an international pooled 
analysis. Gut. 2014; 63:236–43. 

 https://doi.org/10.1136/gutjnl-2013-304531 
PMID:23580779 

6. Szczepanik A, Sierzega M, Drabik G, Pituch-Noworolska 
A, Kołodziejczyk P, Zembala M. CD44+ cytokeratin-
positive tumor cells in blood and bone marrow are 
associated with poor prognosis of patients with gastric 
cancer. Gastric Cancer. 2019; 22:264–72. 

https://www.r-project.org/
https://doi.org/10.1080/14737159.2019.1660645
https://pubmed.ncbi.nlm.nih.gov/31448971
https://doi.org/10.3390/ijms19061658
https://pubmed.ncbi.nlm.nih.gov/29867026
https://doi.org/10.1016/j.canlet.2018.04.037
https://pubmed.ncbi.nlm.nih.gov/29729292
https://doi.org/10.3322/caac.21262
https://pubmed.ncbi.nlm.nih.gov/25651787
https://doi.org/10.1136/gutjnl-2013-304531
https://pubmed.ncbi.nlm.nih.gov/23580779


www.aging-us.com 3998 AGING 

 https://doi.org/10.1007/s10120-018-0858-2 
PMID:30056567 

7. Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, Choi IJ, 
Ryu KW, Kim YW. Peroxisome proliferator-activated 
receptor γ upregulates galectin-9 and predicts 
prognosis in intestinal-type gastric cancer. Int J Cancer. 
2015; 136:810–20. 

 https://doi.org/10.1002/ijc.29056 PMID:24976296 

8. Lin C, Liu H, Zhang H, He H, Li H, Shen Z, Qin J, Qin X, Xu 
J, Sun Y. Interleukin-13 receptor α2 is associated with 
poor prognosis in patients with gastric cancer after 
gastrectomy. Oncotarget. 2016; 7:49281–8. 

 https://doi.org/10.18632/oncotarget.10297 
PMID:27351230 

9. He Q, Li G, Wang X, Wang S, Hu J, Yang L, He Y, Pan Y, 
Yu D, Wu Y. A Decrease of Histone Deacetylase 6 
Expression Caused by Helicobacter Pylori Infection is 
Associated with Oncogenic Transformation in Gastric 
Cancer. Cell Physiol Biochem. 2017; 42:1326–35. 

 https://doi.org/10.1159/000478961 PMID:28700998 

10. Nie K, Zheng Z, Wen Y, Shi L, Xu S, Wang X, Zhou Y, Fu 
B, Li X, Deng Z, Pan J, Jiang X, Jiang K, et al. 
Construction and validation of a TP53-associated 
immune prognostic model for gastric cancer. 
Genomics. 2020; 112:4788–95. 

 https://doi.org/10.1016/j.ygeno.2020.08.026 
PMID:32858135 

11. Chen L, Ma G, Wang P, Dong Y, Liu Y, Zhao Z, Guo J, 
Liang H, Yang L, Deng J. Establishment and verification 
of prognostic model for gastric cancer based on 
autophagy-related genes. Am J Cancer Res. 2021; 
11:1335–46. 

 PMID:33948361 

12. Molina-Castro S, Pereira-Marques J, Figueiredo C, 
Machado JC, Varon C. Gastric cancer: Basic aspects. 
Helicobacter. 2017 (Suppl 1); 22:e12412. 

 https://doi.org/10.1111/hel.12412 PMID:28891129 

13. Parkin DM. The global health burden of infection-
associated cancers in the year 2002. Int J Cancer. 2006; 
118:3030–44. 

 https://doi.org/10.1002/ijc.21731 PMID:16404738 

14. Nitti D, Belluco C, Mammano E, Marchet A, Ambrosi A, 
Mencarelli R, Segato P, Lise M. Low level of p27(Kip1) 
protein expression in gastric adenocarcinoma is 
associated with disease progression and poor 
outcome. J Surg Oncol. 2002; 81:167–75. 

 https://doi.org/10.1002/jso.10172 PMID:12451619 

15. Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC, 
Chen YL. Cyclin D1 overexpression correlates with poor 
tumor differentiation and prognosis in gastric cancer. 
Oncol Lett. 2017; 14:4517–26. 

 https://doi.org/10.3892/ol.2017.6736 PMID:28943959 

16. Ding ZY, Li R, Zhang QJ, Wang Y, Jiang Y, Meng QY, Xi 
QL, Wu GH. Prognostic role of cyclin D2/D3 in multiple 
human malignant neoplasms: A systematic review and 
meta-analysis. Cancer Med. 2019; 8:2717–29. 

 https://doi.org/10.1002/cam4.2152 PMID:30950241 

17. Alsina M, Landolfi S, Aura C, Caci K, Jimenez J, Prudkin 
L, Castro S, Moreno D, Navalpotro B, Tabernero J, 
Scaltriti M. Cyclin E amplification/overexpression is 
associated with poor prognosis in gastric cancer. Ann 
Oncol. 2015; 26:438–9. 

 https://doi.org/10.1093/annonc/mdu535 
PMID:25403579 

18. Bani-Hani KE, Almasri NM, Khader YS, Sheyab FM, 
Karam HN. Combined evaluation of expressions of 
cyclin E and p53 proteins as prognostic factors for 
patients with gastric cancer. Clin Cancer Res. 2005; 
11:1447–53. 

 https://doi.org/10.1158/1078-0432.CCR-04-1730 
PMID:15746045 

19. Zhao L, Jiang L, He L, Wei Q, Bi J, Wang Y, Yu L, He M, 
Zhao L, Wei M. Identification of a novel cell cycle-
related gene signature predicting survival in patients 
with gastric cancer. J Cell Physiol. 2019; 234:6350–60. 

 https://doi.org/10.1002/jcp.27365 PMID:30238991 

20. Dai J, Li ZX, Zhang Y, Ma JL, Zhou T, You WC, Li WQ, Pan 
KF. Whole Genome Messenger RNA Profiling Identifies 
a Novel Signature to Predict Gastric Cancer Survival. 
Clin Transl Gastroenterol. 2019; 10:e00004. 

 https://doi.org/10.14309/ctg.0000000000000004 
PMID:30702489 

21. Hyrien O, Marheineke K, Goldar A. Paradoxes of 
eukaryotic DNA replication: MCM proteins and  
the random completion problem. Bioessays. 2003; 
25:116–25. 

 https://doi.org/10.1002/bies.10208 PMID:12539237 

22. Kim GS, Lee I, Kim JH, Hwang DS. The Replication 
Protein Cdc6 Suppresses Centrosome Over-Duplication 
in a Manner Independent of Its ATPase Activity. Mol 
Cells. 2017; 40:925–34. 

 https://doi.org/10.14348/molcells.2017.0191 
PMID:29237113 

23. Borlado LR, Méndez J. CDC6: from DNA replication to 
cell cycle checkpoints and oncogenesis. Carcinogenesis. 
2008; 29:237–43. 

 https://doi.org/10.1093/carcin/bgm268 
PMID:18048387 

24. Teixeira LK, Reed SI. Cdc6: Skin in the carcinogenesis 
game. Cell Cycle. 2016; 15:313. 

 https://doi.org/10.1080/15384101.2015.1131528 
PMID:26694635 

25. Rossi E, Klersy C, Manca R, Zuffardi O, Solcia E. 
Correlation between genomic alterations assessed  

https://doi.org/10.1007/s10120-018-0858-2
https://pubmed.ncbi.nlm.nih.gov/30056567
https://doi.org/10.1002/ijc.29056
https://pubmed.ncbi.nlm.nih.gov/24976296
https://doi.org/10.18632/oncotarget.10297
https://pubmed.ncbi.nlm.nih.gov/27351230
https://doi.org/10.1159/000478961
https://pubmed.ncbi.nlm.nih.gov/28700998
https://doi.org/10.1016/j.ygeno.2020.08.026
https://pubmed.ncbi.nlm.nih.gov/32858135
https://pubmed.ncbi.nlm.nih.gov/33948361
https://doi.org/10.1111/hel.12412
https://pubmed.ncbi.nlm.nih.gov/28891129
https://doi.org/10.1002/ijc.21731
https://pubmed.ncbi.nlm.nih.gov/16404738
https://doi.org/10.1002/jso.10172
https://pubmed.ncbi.nlm.nih.gov/12451619
https://doi.org/10.3892/ol.2017.6736
https://pubmed.ncbi.nlm.nih.gov/28943959
https://doi.org/10.1002/cam4.2152
https://pubmed.ncbi.nlm.nih.gov/30950241
https://doi.org/10.1093/annonc/mdu535
https://pubmed.ncbi.nlm.nih.gov/25403579
https://doi.org/10.1158/1078-0432.CCR-04-1730
https://pubmed.ncbi.nlm.nih.gov/15746045
https://doi.org/10.1002/jcp.27365
https://pubmed.ncbi.nlm.nih.gov/30238991
https://doi.org/10.14309/ctg.0000000000000004
https://pubmed.ncbi.nlm.nih.gov/30702489
https://doi.org/10.1002/bies.10208
https://pubmed.ncbi.nlm.nih.gov/12539237
https://doi.org/10.14348/molcells.2017.0191
https://pubmed.ncbi.nlm.nih.gov/29237113
https://doi.org/10.1093/carcin/bgm268
https://pubmed.ncbi.nlm.nih.gov/18048387
https://doi.org/10.1080/15384101.2015.1131528
https://pubmed.ncbi.nlm.nih.gov/26694635


www.aging-us.com 3999 AGING 

by array comparative genomic hybridization, 
prognostically informative histologic subtype, stage, 
and patient survival in gastric cancer. Hum Pathol. 
2011; 42:1937–45. 

 https://doi.org/10.1016/j.humpath.2011.02.016 
PMID:21676433 

26. Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, Liu Y, 
Zhang N, Yang Q. LncRNA-CDC6 promotes breast 
cancer progression and function as ceRNA to target 
CDC6 by sponging microRNA-215. J Cell Physiol. 2019; 
234:9105–17. 

 https://doi.org/10.1002/jcp.27587 PMID:30362551 

27. Kim YH, Byun YJ, Kim WT, Jeong P, Yan C, Kang HW, 
Kim YJ, Lee SC, Moon SK, Choi YH, Yun SJ, Kim WJ. 
CDC6 mRNA Expression Is Associated with the 
Aggressiveness of Prostate Cancer. J Korean Med Sci. 
2018; 33:e303. 

 https://doi.org/10.3346/jkms.2018.33.e303 
PMID:30450027 

28. Deng Y, Jiang L, Wang Y, Xi Q, Zhong J, Liu J, Yang S, Liu 
R, Wang J, Huang M, Tang C, Su M. High expression of 
CDC6 is associated with accelerated cell proliferation 
and poor prognosis of epithelial ovarian cancer. Pathol 
Res Pract. 2016; 212:239–46. 

 https://doi.org/10.1016/j.prp.2015.09.014 
PMID:26920249 

29. Mahadevappa R, Neves H, Yuen SM, Bai Y, McCrudden 
CM, Yuen HF, Wen Q, Zhang SD, Kwok HF. The 
prognostic significance of Cdc6 and Cdt1 in breast 
cancer. Sci Rep. 2017; 7:985. 

 https://doi.org/10.1038/s41598-017-00998-9 
PMID:28428557 

30. Hu Y, Wang L, Li Z, Wan Z, Shao M, Wu S, Wang G. 
Potential Prognostic and Diagnostic Values of CDC6, 
CDC45, ORC6 and SNHG7 in Colorectal Cancer. Onco 
Targets Ther. 2019; 12:11609–21. 

 https://doi.org/10.2147/OTT.S231941 PMID:32021241 

31. Yan X, Wan H, Hao X, Lan T, Li W, Xu L, Yuan K, Wu H. 
Importance of gene expression signatures in pancreatic 
cancer prognosis and the establishment of a prediction 
model. Cancer Manag Res. 2018; 11:273–83. 

 https://doi.org/10.2147/CMAR.S185205 
PMID:30643453 

32. Zhao B, Zhang J, Chen X, Xu H, Huang B. Mir-26b 
inhibits growth and resistance to paclitaxel 
chemotherapy by silencing the CDC6 gene in gastric 
cancer. Arch Med Sci. 2019; 15:498–503. 

 https://doi.org/10.5114/aoms.2018.73315 
PMID:30899303 

33. Friedman J, Hastie T, Tibshirani R. Regularization Paths 
for Generalized Linear Models via Coordinate Descent. 
J Stat Softw. 2010; 33:1–22. 

 PMID:20808728 

34. Sauerbrei W, Royston P, Binder H. Selection of 
important variables and determination of functional 
form for continuous predictors in multivariable model 
building. Stat Med. 2007; 26:5512–28. 

 https://doi.org/10.1002/sim.3148  
PMID:18058845 

35. Kidd AC, McGettrick M, Tsim S, Halligan DL, Bylesjo M, 
Blyth KG. Survival prediction in mesothelioma using a 
scalable Lasso regression model: instructions for use 
and initial performance using clinical predictors. BMJ 
Open Respir Res. 2018; 5:e000240. 

 https://doi.org/10.1136/bmjresp-2017-000240 
PMID:29468073 

36. Maclean A, Bunni E, Makrydima S, Withington A, 
Kamal AM, Valentijn AJ, Hapangama DK. Fallopian 
tube epithelial cells express androgen receptor and 
have a distinct hormonal responsiveness when 
compared with endometrial epithelium. Hum Reprod. 
2020; 35:2097–106. 

 https://doi.org/10.1093/humrep/deaa177 
PMID:32876325 

37. Dogan S, Vasudevaraja V, Xu B, Serrano J, Ptashkin RN, 
Jung HJ, Chiang S, Jungbluth AA, Cohen MA, Ganly I, 
Berger MF, Momeni Boroujeni A, Ghossein RA, et al. 
DNA methylation-based classification of sinonasal 
undifferentiated carcinoma. Mod Pathol. 2019; 
32:1447–59. 

 https://doi.org/10.1038/s41379-019-0285-x 
PMID:31186531 

38. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, 
Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle 
M, Laurila E, Houstis N, Daly MJ, Patterson N, et al. 
PGC-1alpha-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in 
human diabetes. Nat Genet. 2003; 34:267–73. 

 https://doi.org/10.1038/ng1180  
PMID:12808457 

39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR, Lander ES, Mesirov JP. Gene set enrichment 
analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci 
USA. 2005; 102:15545–50. 

 https://doi.org/10.1073/pnas.0506580102 
PMID:16199517 

https://doi.org/10.1016/j.humpath.2011.02.016
https://pubmed.ncbi.nlm.nih.gov/21676433
https://doi.org/10.1002/jcp.27587
https://pubmed.ncbi.nlm.nih.gov/30362551
https://doi.org/10.3346/jkms.2018.33.e303
https://pubmed.ncbi.nlm.nih.gov/30450027
https://doi.org/10.1016/j.prp.2015.09.014
https://pubmed.ncbi.nlm.nih.gov/26920249
https://doi.org/10.1038/s41598-017-00998-9
https://pubmed.ncbi.nlm.nih.gov/28428557
https://doi.org/10.2147/OTT.S231941
https://pubmed.ncbi.nlm.nih.gov/32021241
https://doi.org/10.2147/CMAR.S185205
https://pubmed.ncbi.nlm.nih.gov/30643453
https://doi.org/10.5114/aoms.2018.73315
https://pubmed.ncbi.nlm.nih.gov/30899303
https://pubmed.ncbi.nlm.nih.gov/20808728
https://doi.org/10.1002/sim.3148
https://pubmed.ncbi.nlm.nih.gov/18058845
https://doi.org/10.1136/bmjresp-2017-000240
https://pubmed.ncbi.nlm.nih.gov/29468073
https://doi.org/10.1093/humrep/deaa177
https://pubmed.ncbi.nlm.nih.gov/32876325
https://doi.org/10.1038/s41379-019-0285-x
https://pubmed.ncbi.nlm.nih.gov/31186531
https://doi.org/10.1038/ng1180
https://pubmed.ncbi.nlm.nih.gov/12808457
https://doi.org/10.1073/pnas.0506580102
https://pubmed.ncbi.nlm.nih.gov/16199517

