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INTRODUCTION

The brain does not operate like a typical computer—there is no central processing unit, there are
no separate memory banks, and performance degrades gracefully when individual components
fail. This is because all brain functioning is distributed across vast networks of neurons, which are
connected by synapses that process and store information. To understand the brain, we therefore
need to know how synapses work, hence the central importance of the Synaptic Neuroscience
research field that this Frontiers Specialty Journal covers.

In 2000, Abbott and Nelson overviewed the field of synaptic plasticity and likened it to
the taming of a beast (Abbott and Nelson, 2000). Synaptic plasticity is indeed a particularly
daunting task in neuroscience: experiments are slow and challenging, outcomes vary with precise
experimental conditions, and interpretations of the results are inherently prone to disagreement,
due to experimental as well as theoretical complexities. We are now more than two decades after
the publication of Abbott and Nelson’s review, we have seen the immense progress since, and we
are in a good position to speculate on what is at the Frontiers of Synaptic Neuroscience. Here, in
personal view, I have collected a non-exhaustive list of challenges, phrased as questions.

HOW DOES ONE BUILD A SYNAPSE?

The key building blocks of the active zone (Südhof, 2012) and the postsynaptic density (Sheng and
Kim, 2011) of central synapses are well described. Even so, we may have only barely scratched the
surface. Particularly intriguing are the scenarios where the target cell type determines presynaptic
release mechanisms, such as in the case of Elfn1 (Stachniak et al., 2019), which—given the diversity
of cell types in the brain—implies a potentially enormous diversity of synaptic building blocks
across different synapse types. This question is furthermore tightly linked to a related question:
How are synapse built during development?

HOW CAN WE MAP PLASTICITY AT ALL SYNAPSE TYPES?

It has long been known that short-term plasticity at connections made by the same axon can
vary dramatically depending on the target neuron type (e.g., Markram et al., 1998). Since the
postsynaptic cell determines presynaptic release, this is really a matter of synapse-type rather
than cell-type specificity (Blackman et al., 2013). This synapse-type specificity also holds true for
long-term plasticity—both phenomenology and mechanisms can vary dramatically depending on
the form of synapse at hand (Toth and McBain, 2000; Larsen and Sjöström, 2015). Since there
is a plethora of cell types in the brain, there may therefore be a corresponding multiplicity of
synapse-type-specific learning rules. Today, the state-of-the-art approach for achieving synapse-
type-specific experiments—where both the pre- and the postsynaptic cell identities are known—
is still the paired-recording technique. This technique, however, is painstaking and challenging.
To create a relatively complete library of synaptic learning rules across all brain regions—the
plasticitome, the learning rule equivalent to the genome or the connectome—we clearly need novel
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approaches that have ten to a hundred-fold higher throughput
than the paired recording technique. Solving the plasticitome
will probably require combining multiple techniques, including
electrode arrays (Field et al., 2020), multiple simultaneous whole-
cell recordings (Perin and Markram, 2013; Lalanne et al., 2016),
patch robots (Annecchino et al., 2017; Suk et al., 2017), and
optogenetics (Zhang and Oertner, 2007; Emiliani et al., 2015).

IS THERE A GRAND UNIFYING THEORY

OF SYNAPTIC LEARNING RULES?

Many studies have tried to establish if calcium alone can account
for synaptic plasticity (Shouval et al., 2002; Rackham et al.,
2010; Chindemi et al., 2020), but given the involvement of
multiple mechanisms based on dendrite biophysics (Froemke
et al., 2010), presynaptic NMDA receptors (Wong et al.,
2021) or NMDA receptors that signal unconventionally (Dore
et al., 2017), metabotropic glutamate receptors (Nevian and
Sakmann, 2006), and learning mechanisms residing in a third
cell such as astrocytes (Min and Nevian, 2012; Adamsky et al.,
2018), can we really hope to find one calcium model that
fits all synapse types? If the calcium hypothesis in synaptic
plasticity is not valid for all synapse types, then can we
at least establish a phenomenological model that captures
plasticity at all synapses? Perhaps it is possible to derive a
phenomenological model that can be easily tweaked to account
for factors such as synapse position in the dendritic arbor
(e.g., Clopath and Gerstner, 2010; Clopath et al., 2010), but
whether such an approach is generally feasible for all synapse
and cell types remains unknown. Clearly, plasticity at some
synapse types does not conform to classical NMDA receptor
dependent plasticity, e.g., parallel fibers onto cerebellar Purkinje
cells (Hansel et al., 2001), or mossy fibers onto hippocampal
CA3 pyramidal cells (Zalutsky and Nicoll, 1990). Also, in a
contrasting view to the Grand Unifying Theory, Suvrathan
(2018) has convincingly argued that learning rules may in fact
be intrinsically heterogenous, to form a basis for learning the
behavioral tasks at hand. But perhaps it will be possible to
establish a small set of canonical models for a handful of
archetypical central synapse classes? Such an effort would help
typify synapses of the brain, eventually leading to a robust
synapse classification scheme.

HOW DOES THE BRAIN SOLVE THE

CREDIT ASSIGNMENT PROBLEM?

Artificial neural networks have in recent years outperformed
humans in several complex tasks. Key to this success is deep
learning, i.e., the use of multi-layered networks in combination
with the error backpropagation algorithm. This algorithm is
used during a separate training phase to assign credit to each
synapse, so that the network output error travels backwards
to tweak synaptic strengths individually. The brain is clearly a
very deep network, so how does it solve the credit assignment
problem? Presumably, information cannot travel backwards
across synapses in the brain. Storing and using information

are furthermore not separate modes of operation for the
real brain; your brain is online and functional as you learn
new things.

Recent theoretical studies have offered exciting new
solutions to these problems. For example, Payeur et al.
(2021) recently proposed that by combining short-term
plasticity, local dendritic regenerative events, and long-
term plasticity in feedback pathways, deep learning can be
effectively mimicked by spike burst-dependent plasticity.
However, most theoretical propositions similar to this
one remain to be validated experimentally (Richards and
Lillicrap, 2018; Richards et al., 2019), which can be technically
quite challenging.

Because of issues such as the credit assignment problem,
it is not clear that the classical forms of cellular learning
that dominate the present literature—e.g., long-term
potentiation (LTP; Malenka and Bear, 2004) and spike-
timing-dependent plasticity (STDP; Markram et al.,
2012)—are enough to account for information storage
in the brain. As a consequence, demonstrating how the
brain solves the credit assignment problem may also tell
us which type of synaptic learning rules discovered in
vitro are actually relevant in the intact brain, which has
been a long-standing debate (Lisman and Spruston, 2005,
2010).

Having said that, it is also important to remember that
the question “How does the brain solve the credit assignment
problem?” is potentially misleading, because the answer might
be: it doesn’t. The best biological and technological solutions
need not be identical; planes do not flap their wings like
birds do.

DOES LONG-TERM SYNAPTIC

PLASTICITY UNDERLIE LEARNING AND

MEMORY?

In a short review, Stevens (1998) asked what he called themillion-
dollar question: Does LTP = memory? He outlined four essential
experiments that should be carried out to demonstrate that
LTP underlies behavioral learning and memory: blocking LTP
prevents behavioral learning; synapses exhibit LTP; behavioral
learning causes LTP that when blocked abolishes the learning;
and inducing LTP causes behavioral learning. Although it has
been established that LTP=memory in simpler model systems—
such as for the gill withdrawal reflex in the sea slug Aplysia
(Kandel, 2001)—with the Stevens (1998) definition, it actually
remains to be demonstrated that LTP = memory in most
mammalian learning models. In fact, most studies of long-
term plasticity do not explore beyond an hour or two; clearly
not enough to establish a direct link with long-term memory
formation (Stevens, 1998). Perhaps the closest we currently get
to satisfying the four requirements of Stevens (1998) in a single
paper can be found in the amygdala fear conditioning study by
Nabavi et al. (2014). It may, however, take some time before
the same can be achieved for brain regions with more complex
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roles in learning, such as the hippocampus (Tonegawa et al.,
2018).

WHAT IS THE SYNAPTIC BASIS OF

NEUROPATHOLOGY?

Malfunction of synapses and of their plasticity can contribute
to severe neuropathology, which has led to the notion of a
possible synaptic basis of disease (Lüscher and Isaac, 2009).
Epilepsy is a prime example of how excessive activity can hijack
plasticity in the healthy brain to yield pathology (Cela and
Sjöström, 2019). In fact, both the postsynapse (Kasai et al., 2021)
and the presynapse (Van Battum et al., 2015; Perrone-Capano
et al., 2021) have been shown to contribute to a broad range
of brain diseases as diverse as schizophrenia, autism spectrum
disorder, Alzheimer’s disease, and amyotrophic lateral sclerosis.
By considering neuropathologies as synaptic disease, we may
increase our chances of finding novel and specific therapies,
since different synapse types are often mechanistically distinct.
For example, Walia et al. (2021) recently demonstrated that by
specific pharmacologic blockade of calcium-permeable but not
calcium-impermeable AMPA receptors in the cochlea, it was
possible to protect from excitotoxic pathology during acoustic
overexposure, without impairing hearing as such. Promising
new treatments will thus likely require detailed mechanistic
knowledge of the synaptic pathways at hand.

WHAT WILL THE NEXT BIG

TECHNOLOGICAL BREAKTHROUGHS BE?

There is a broad consensus that major advances in neuroscience
are typically driven by new technologies (Bassett et al., 2020). It is
for example difficult to underestimate the impact of optogenetics
(Boyden et al., 2005) on modern neuroscience. Key to the next
big breakthroughs will be the audacity to ask daring and wishful
questions, such as: How can we read out all the synaptic weights
in live brain tissue? Because what was once science fiction—e.g.,
the activation of individual neurons with light—is now science.
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