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Heterochromatin is mostly composed of repeated DNA sequences prone to aber-

rant recombination. How cells maintain the stability of these sequences during

double-strand break (DSB) repair has been a long-standing mystery. Studies in

Drosophila cells revealed that faithful homologous recombination repair of het-

erochromatic DSBs relies on the striking relocalization of repair sites to the

nuclear periphery before Rad51 recruitment and repair progression. Here, we

summarize our current understanding of this response, including the molecular

mechanisms involved, and conserved pathways in mammalian cells. We will

highlight important similarities with pathways identified in budding yeast for

repair of other types of repeated sequences, including rDNA and short telo-

meres. We will also discuss the emerging role of chromatin composition and

regulation in heterochromatin repair progression. Together, these discoveries

challenged previous assumptions that repair sites are substantially static in mul-

ticellular eukaryotes, that heterochromatin is largely inert in the presence of

DSBs, and that silencing and compaction in this domain are obstacles to repair.

This article is part of the themed issue ‘Chromatin modifiers and remodellers

in DNA repair and signalling’.
1. Heterochromatin presents unique challenges to DNA repair
DNA is under constant attack from both endogenous and exogenous stresses,

resulting in various lesions to the double helix. Double-strand breaks (DSBs)

are the most dangerous type of DNA damage, because they interrupt the continu-

ity of the DNA molecule: even a single DSB can trigger cell death or genomic

instability if left unrepaired [1–5]. Importantly, DSB repair occurs in the context

of chromatin, which comprises histones and non-histone proteins that package

the DNA and influence several aspects of DNA damage processing and repair

(reviewed in [6,7]).

Two main types of chromatin have been described in eukaryotic cells:

euchromatin and heterochromatin. Heterochromatin (from the Greek words

‘heteros’ ¼ different, and ‘chroma’¼ colour) was initially defined based on dis-

tinctive histological staining patterns in interphase cells, where it appeared as

more densely stained regions of the nucleus amid lightly stained euchromatin

[8]. We now know that these two types of chromatin represent two distinct genomic

and nuclear domains distinguished by several properties, including histone

modifications, chromatin accessibility, gene density, replication timing and DNA

sequence composition ([9,10]; reviewed in [11]). While much is known about

DSB repair pathways in euchromatin, heterochromatin repair mechanisms are

just starting to emerge.

Heterochromatin is typically enriched for the ‘silent’ histone marks H3K9me2/3,

and associated proteins like heterochromatin protein 1a (HP1a) in flies [9,12]

(figure 1a) and HP1a or HP1b in mammalian cells [14]. Conversely, histone
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Figure 1. Organization and distribution of heterochromatin in Drosophila. (a) Organization of different types of silenced sequences along a Drosophila chromosome,
including distinguishing features between euchromatin and pericentromeric heterochromatin in terms of chromatin compaction and histone modifications. HP1a and
Su(var)3 – 9 are enriched in heterochromatin (the arrow indicates that Su(var)3 – 9 maintains and spreads H3K9me2/3 in heterochromatin). (b) Schematic view of all
Drosophila chromosomes showing the position and extent of pericentromeric heterochromatin (adapted from [9]). (c) Schematic view of the nuclear position of
different types of silenced sequences relative to the nuclear periphery in Drosophila cells. (d ) Immunofluorescence analysis of a Drosophila Kc cell (adapted
from [13]), showing the organization of heterochromatin in a distinct nuclear domain, surrounded by euchromatin. The DAPI-bright region is embedded in the
heterochromatin domain.
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modifications correlated with ‘open’ chromatin and gene

expression (e.g. histone hyperacetylation and H3K4me) are

generally found in gene-rich, euchromatic regions [15–18]

(figure 1a,b). Heterochromatin is also more compact than

euchromatin, resulting in reduced accessibility to molecules

and enzymatic digestion [19–22]. In terms of chromosomal

localization, most heterochromatin is concentrated at pericentro-

meric and telomeric regions in Drosophila and mammalian cells,

while euchromatin is distributed along the chromosome arms

(figure 1a) [9,10,15–18]. This review focuses on pericentromeric

heterochromatin, a prominent chromosomal structure spanning

about 30% of fly and human genomes [10,23,24] (figure 1b),

but absent in budding yeast. Notably, pericentromeric hetero-

chromatin is late replicating in most organisms [25,26], but it is

functionally and structurally distinct from late replicat-

ing lamina-associated domains (LADs) distributed along the

chromosome arms [10,27–29]. In contrast to those, pericentro-

meric heterochromatin is not usually associated with the

nuclear periphery (e.g. [13,30–35]) or enriched for H3K27me3

which promotes tissue-specific gene silencing (also traditionally

referred to as ‘facultative heterochromatin’) (figure 1c) [10].

Pericentromeric heterochromatin (hereafter ‘heterochro-

matin’) is mostly composed of repeated DNA sequences

[10,23,24]. In Drosophila, for example, about half of these

sequences are ‘satellite’ repeats, predominantly 5 base-pair

sequences repeated in tandem for hundreds of kilobases to

megabases, while the rest of the heterochromatin contains

scrambled clusters of transposable elements and about 250 iso-

lated genes [10,23,24]. Heterochromatin is likely maintained in

cells because of its critical roles in centromere function [36–38],

sister chromatid cohesion [39,40], meiotic pairing [41,42] and

genome organization [35,43], but the abundance of repeated

sequences also presents unique challenges to DSB repair and

genome stability (reviewed in [31,44,45]).
The two prominent repair pathways responding to DSBs

are non-homologous end joining (NHEJ) and homologous

recombination (HR). NHEJ involves direct re-joining of the

two ends with little processing and is frequently error-prone

[46–50] (reviewed in [51]). Conversely, HR relies on extensive

resection of the DSB to form single-stranded DNA (ssDNA)

filaments, which invade ‘donor’ homologous sequences used

as templates for DNA synthesis and repair (reviewed in [52]).

In single copy sequences, a unique donor is present on the

sister chromatid or the homologous chromosome, and HR

repair is largely ‘error free’ [52]. In heterochromatin, however,

the availability of thousands to millions of potential donor

sequences in pericentromeric regions of different chromosomes

can initiate unequal sister chromatid exchanges, or intra-/

inter-chromosomal recombination, leading to deletions, dupli-

cations, translocations, release of DNA circles, and formation of

dicentric or acentric chromosomes [13,32,53–55] (reviewed in

[31,44,45]). Despite this risk, HR is a primary pathway used

to repair heterochromatic DSBs in both Drosophila and mam-

malian cells [13,32,34,55–57], and specialized mechanisms

enable ‘safe’ HR repair in heterochromatin while preventing

aberrant recombination.

Studies in Drosophila cells, where heterochromatin forms a

distinct nuclear ‘domain’ [9,13] (figure 1d), revealed that HR

starts inside the domain, leading to resection [13,32,57,58],

but subsequent repair steps are temporarily halted [13,32,55]

(figure 2). Next, resection triggers a global expansion of the

domain and a striking relocalization of DSBs to the nuclear per-

iphery, where repair progresses [13,32,57,58] (figures 2 and 3).

Interestingly, ‘silent’ chromatin marks are necessary for this

spatial and temporal regulation of heterochromatin repair

[13]. Inactivating this relocalization pathway results in aberrant

recombination and widespread genomic instability, revealing

its importance to genome integrity [13,32,55]. Relocalization
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Figure 2. Model for the molecular mechanisms that relocalize heterochromatic DSBs to the nuclear periphery in Drosophila. When DSBs form in heterochromatin
(orange area), early damage responses efficiently occur inside the domain. These include DSB detection, checkpoint activation, resection, and the recruitment of
Smc5/6 (including its SUMO-E3 ligase subunits Nse2/Qjt, Nse2/Cerv) and the SUMO-E3 ligase dPIAS. SUMOylation of unknown targets blocks HR progression
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Anchoring to the nuclear periphery promotes STUbL-mediated ubiquitination of SUMOylated targets, removal of the block to HR progression, Rad51 recruitment, and
‘safe’ HR progression. Removal of the block might rely on proteasome-mediated degradation of ubiquitinated targets (as shown). Alternatively, these targets might
become active after ubiquitination or de-SUMOylation (not shown). This model also predicts that sister chromatids or homologous chromosomes (grey lines) relocalize
in concert with the damaged site to provide homologous templates for repair completion. min: time in minutes after DSB formation by exposure to ionizing radiation.
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likely promotes ‘safe’ HR repair while preventing aberrant

recombination by isolating the DSBs and their repair templates

(on the homologous chromosome or the sister chromatid) away

from non-allelic (ectopic) sequences before strand invasion

[13,32,55] (reviewed in [31,45,59]). Remarkable similarities to
this relocalization pathway have been described in mouse

cells [31,34,60,61] (figure 3), where heterochromatin is orga-

nized in several nuclear domains called ‘chromocentres’ [62],

suggesting highly conserved strategies for heterochromatin

repair [45].
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This review will summarize our current understanding of the

molecular mechanisms of heterochromatin repair in Drosophila
and mouse cells, with a specific focus on the role of nuclear archi-

tecture and chromatin structure in different steps of repair. We

will also highlight important similarities with pathways first

described in yeast for DSB repair of other types of repeated

sequences and persistent DSBs, which raise interesting questions

regarding the nature of the signals responsible for relocalization.
2. Despite the risk of aberrant recombination,
double-strand breaks in heterochromatin are
efficiently processed for homologous
recombination repair

Initial studies in mouse and Drosophila cells revealed that, in

spite of the silent and compact nature of heterochromatin,

DSB detection and signalling are not delayed in this domain

[13,31,61]. In fly cells, responses associated with initial repair

steps, including the formation of foci of gH2Av (corresponding

to mammalian gH2Ax [63]) and Mu2/Mdc1 [13,64] (a com-

ponent associated with gH2Av), occur within seconds to

minutes from DSB induction with ionizing radiation (IR)

[13], and with kinetics surprisingly similar to foci in euchroma-

tin [13,57] (figure 4). This is in agreement with earlier studies

showing that heterochromatin does not block access or

exchanges of molecules [20–22].

Another unexpected feature of the DSB response in hetero-

chromatin is that, despite the risk of aberrant recombination,

HR is widely used for repairing this domain. Drosophila tissues

enriched for G1 cells, and mammalian cells in G1/G0, largely

use NHEJ in heterochromatin [30,34,56,57]. However, HR

repair prevails in Drosophila cultured cells, which are mostly in

S/G2 [13,32,55], as well as in mammalian cells during G2

[34,56,65], suggesting that HR is preferentially used in hetero-

chromatin when both HR and NHEJ are available (reviewed in

[45]). Perhaps even more surprising, foci of proteins that associ-

ate with resected DSBs (e.g. ATRIP and TopBP1) form faster and

appear brighter in heterochromatin relative to euchromatin [13]

(figure 4). This reveals that early steps of HR repair (e.g. resection,

ATRIP/TopBP1 recruitment and/or focus clustering [31]) occur

more efficiently in heterochromatin than in euchromatin [13].

Interestingly, resection is required for relocalizing hetero-

chromatic DSBs to outside the domain in both Drosophila and
mouse cells [13,34] (figure 3), revealing that this early response

is important for the spatial and temporal dynamics of hetero-

chromatin repair. Efficient resection in heterochromatin

might represent an advantage because faster processing of a

DSB facilitates its departure from the heterochromatin

domain, thus preventing ectopic exchanges. At the same

time, channelling DSBs towards the HR pathway provides

more opportunities to regulate repair progression, given that

this pathway is characterized by metastable intermediates

that can be reverted in case of accidental strand invasion of

ectopic sequences (reviewed in [52]).

Together, these studies reversed the initial assumption that

heterochromatin is resistant to DSB processing and repair, and

revealed that early HR steps are particularly efficient in this

domain. However, studies in mouse and human cells also

suggest that heterochromatin requires more time to complete

repair than euchromatin [30,56], raising the possibility that

repair is delayed at later stages in these cells.
3. Homologous recombination progression is
halted inside the heterochromatin domain by
SUMOylation to prevent aberrant
recombination

While early steps of HR occur efficiently inside the hetero-

chromatin domain in both Drosophila and mouse cells,

recruitment of the strand invasion component Rad51 does not

occur until after relocalization [13,32,34] (figures 2 and 3). In Dro-
sophila cells, the initial block to HR progression is dependent on

SUMOylation, with three SUMO E3 ligases involved: dPIAS and

the Smc5/6 subunits Nse2/Qjt (Quijote) and Nse2/Cerv (Cer-

vantes) [13,32,55] (figure 2 and table 1). SUMO E3 ligases are

recruited to heterochromatic DSB before relocalization

[13,32,55]. Removing these components results in abnormal

recruitment of Rad51 inside the domain, aberrant recombination

leading to heterochromatic DNA filaments between mitotically

dividing cells, and widespread chromosome rearrangements

[13,32,55]. These discoveries revealed the importance of

SUMOylation and of the block to Rad51 recruitment inside the

heterochromatin domain to prevent aberrant recombination

between heterochromatic repeated sequences.

Interestingly, the loss of Smc5/6 leads to abnormal for-

mation of Rad51 foci inside the heterochromatin domain in



Table 1. Heterochromatin repair components. The main repair components responsible for heterochromatin repair in Drosophila are shown, including their
functions in heterochromatic HR repair and homologous proteins in S. cerevisiae and mammalian cells. See text for details. Common names used in flies are in
square brackets. Question marks indicate functions that have been hypothesized but not directly tested.

D. melanogaster
enzymatic/structural
activity

function in Drosophila
heterochromatic DSB repair ref. S. cerevisiae mammals

Su(var)3 – 9,

SetDB1 [Egg]

H3K9me2/3

methyltransferases

HP1a recruitment to heterochromatin. [13] Suv39H1

Suv39H2

SetDB1

SetDB2

HP1a

[Su(var)205]

H3K9me2/3- associated

protein

Smc5/6 recruitment to the

heterochromatin domain. Maintains

compaction.

[13] HP1a

HP1b

HP1g

ATR [Mei41]

ATM [Tefu]

checkpoint kinases Heterochromatin expansion. Relocalization

of DSBs.

[13] Mec1

Tel1

ATR

ATM

Blm, Exo1

[Tosca], CtIP

resection proteins Heterochromatin expansion. Relocalization

of DSBs.

[13] Sgs1, Exo1,

Sae2

Blm, Exo1 CtIP

Smc5/6 core complex subunits of

the Smc5/6 complex

Block HR progression and aberrant

recombination inside the

heterochromatin domain. Relocalization

of DSBs.

[13] Smc5/6 Smc5/6

Qjt, Cerv SUMO-E3 ligase subunits

of the Smc5/6

complex.

Block HR progression and aberrant

recombination inside the

heterochromatin domain. Relocalization

of DSBs.

[32] Mms21 Nse2

dPIAS

[Su(var)2 – 10]

SUMO E3 ligase Blocks HR progression and aberrant

recombination inside the

heterochromatin domain. Relocalization

of DSBs.

[55] Siz1, Siz2 PIAS1

PIAS2

PIAS3

PIAS4

Dgrn SUMO-targeted Ub ligase

(STUbL)

Relocalization/anchoring of DSBs. Repair

restart.

[32] Slx5/8 Rnf4

dRad60 SUMO-like protein

associated with STUbL

Anchoring of DSBs. Repair restart? [32] Esc2 Nip45

Nup107 nuclear pore complex

subunit

Anchoring of DSBs to the nuclear

periphery. Repair restart.

[32] Nup84 Nup107

Koi, Spag4 inner nuclear membrane

proteins

Anchoring of DSBs to the nuclear

periphery. Repair restart.

[32] Mps3 Sun1, Sun2, Sun3,

Sun5, Spag4
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Drosophila [13,32,55], but not in mouse cells [34], suggesting

the existence of alternative or redundant mechanisms that

block HR progression in mammalian heterochromatin.

Together, these studies uncovered pathways that halt HR

progression inside the heterochromatin domain, and a central

role of SUMOylation in this response in Drosophila cells.

4. Heterochromatic double-strand breaks
relocalize to the nuclear periphery to
continue homologous recombination repair

In Drosophila cells, heterochromatic DSBs associate with the

nuclear periphery before recruiting Rad51 and continuing repair

[13,32] (see also [45] for a recent review). Specifically, DSBs
move to nuclear pores or to inner nuclear membrane proteins

(INMPs) of the SUN family Koi and Spag4 [32] (figure 2 and

table 1). At nuclear pores, this interaction is mediated by the ‘Y

complex’ subunits Nup107-Nup160 [32] (table 1). Depletion by

RNA interference (RNAi) of nuclear pores and INMPs results in

increased dynamics of repair sites, persistent damage in hetero-

chromatin and gross chromosomal rearrangements [32],

revealing the importance of DSB anchoring to the nuclear periph-

ery for accurate progression of heterochromatin repair.

Importantly, SUMO and the SUMO E3 ligases dPIAS,

Nse2/Qjt and Nse2/Cerv, are required to relocalize DSBs to

the nuclear periphery [13,32,55]. This reveals a double function

for SUMOylation in heterochromatin repair: establishing a

block to HR progression inside the heterochromatin domain

and relocalizing DSBs. Furthermore, relocalization is mediated
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by the SUMO-targeted ubiquitin ligase (STUbL) Dgrn [32],

which contains four SUMO-interacting motifs (SIMs) for bind-

ing poly-SUMOylated proteins [66], and is recruited to DSBs

before relocalization [55]. STUbL and its partner, the RENi

(Rad60-Esc2-Nip45) family protein dRad60 are also highly

enriched at both nuclear pores and INMPs [32], suggesting a

later function of these components in DSB anchoring and/or

repair restart. Interestingly, Dgrn and dRad60 physically inter-

act with the Smc5/6 complex in response to damage,

suggesting that the three components establish a docking com-

plex for repair sites at the nuclear periphery after relocalization

[32] (figure 2 and table 1).

Notably, RNAi depletion of STUbL/RENi proteins, nuclear

pores or INMPs affects relocalization without altering the block

to HR progression inside the heterochromatin domain [32].

In the absence of these nuclear periphery components, repair

sites fail to associate with the nuclear periphery and eventually

return inside the domain, but Rad51 foci do not form at

these sites [32]. This is different from the consequence of

losing SUMOylation, which results in abnormal formation of

Rad51 foci inside the heterochromatin domain [13,32,55].

These studies reveal a separation of function between the path-

way that blocks HR progression and the mechanism of

relocalization, with SUMOylation required for both, but

STUbL and nuclear periphery components only mediating relo-

calization/anchoring to the nuclear envelope [13,32,55]

(table 1).

What restarts repair at the nuclear periphery is

still unknown, but STUbL proteins typically ubiquitinate

SUMOylated targets to induce either proteasome-mediated

degradation [67–71] or protein activation [72] during HR

repair. Thus, ubiquitination of SUMOylated components at

the nuclear periphery might remove the SUMOylated block to

HR progression to restart repair (figure 2). This model predicts

that the compartmentalization of SUMOylation activities inside

the heterochromatin domain and of ubiquitination activities at

the nuclear periphery is sufficient to regulate heterochromatin

repair progression in space and time.

Notably, HR progression at the nuclear periphery also

requires the presence of donor sequences, but single-strand

annealing, a pathway relying on tandem repeated sequences

for repair, appears surprisingly inefficient in heterochromatin

[13,34,57]. This suggests that sister chromatids or homologous

chromosomes relocalize together with the broken site to the

nuclear periphery to provide templates for HR repair

(figure 2). Accordingly, both homologous chromosomes

and sister chromatids are used as templates for HR repair of

Drosophila heterochromatin, although with a preference for

the sister chromatid [57]. Homologous chromosomes are

readily available as repair templates in Drosophila because of

the characteristic mitotic pairing of the homologues in inter-

phase [73–75] (reviewed in [76]). While the mechanisms that

maintain an association between damage sites and their tem-

plates are still unknown, they likely include cohesins [77–80]

and proteins required for mitotic pairing of homologous

chromosomes in flies [75].

Some of the molecular details governing heterochromatin

repair in mouse cells are still under investigation, but important

similarities with the mechanisms discovered in Drosophila
suggest highly conserved pathways. Similar to Drosophila
cells, DSBs repaired via HR in mouse cells leave the heterochro-

matic ‘chromocentres’ before recruiting Rad51 and continuing

repair [31,34,61] (figure 3). In addition, both resection and
Smc5/6 are required for relocalization [34]. In both systems,

RNAi depletion of Rad51 results in defective relocalization

[13,34], suggesting a role of HR progression in stabilizing the

positioning or anchoring of repair sites outside of the domain.

However, Cas9- or ion irradiation-induced damage sites in het-

erochromatic satellites appear to move for a relatively short

distance in mouse cells, reaching the periphery of the chromo-

centres before recruiting Rad51 [34,61]. Whether these sites

also associate (perhaps transiently) with the nuclear periphery

is unclear, and careful tracking of repair sites is required to fully

understand focus dynamics in mouse cells. However, an inter-

esting possibility is that alternative anchoring structures exist in

large nuclei to limit the distance travelled and the time required

for repair, along with the potential for aberrant recombination

with other repeated sequences [81].

Notably, in mouse cells, relocalization of heterochromatic

DSBs occurs in S/G2, but not during G1 [34], suggesting that

NHEJ repair of heterochromatic DSBs does not require reloca-

lization. This might be different in Drosophila tissues, where

high frequency of NHEJ repair does not seem to correlate

with low relocalization frequency [57], but more direct

studies are necessary to establish whether NHEJ requires

relocalization in Drosophila heterochromatin. Together, these

studies revealed the importance of both relocalization and

anchoring to the nuclear periphery for faithful repair of het-

erochromatic DSBs.
5. Nuclear relocalization pathways participate in
repair of other repetitive sequences

Initial studies in mammalian cells detected only limited

dynamics of repair sites relative to the size of the nucleus [82–

90], which led to the conclusion that DSBs are substantially

static in multicellular eukaryotes (reviewed in [91]). This was in

striking contrast with significant movement of repair sites

detected in early studies in budding yeast [67,92–96]. However,

the discovery of long-range movements of repair sites for

heterochromatin and other repeated sequences in Drosophila
and mammalian cells [13,32,34,61,97,98] established a new para-

digm in which extensive dynamics are also common in

multicellular eukaryotes, at least for DNA repeats. This is

particularly important considering that the genome of multicel-

lular eukaryotes is largely composed of repeated sequences.

Furthermore, the nuclear periphery was first identified as a pref-

erential site for repairing relatively rare classes of ‘persistent’

DSBs, collapsed forks or telomeric lesions in yeast [67,94–

96,99], while most DSBs are normally repaired in the nucleo-

plasm [67,96,100,101]. With the discovery of the importance of

nuclear pores and INMPs in Drosophila heterochromatin repair

[32], the nuclear periphery is emerging as an essential component

for DSB repair and genome stability in multicellular eukaryotes.

Several types of nuclear dynamics have been described in

the context of DSB repair, from yeast to mammalian cells (see

also [102] for a recent review). First, mobilization of repair sites

during inter-homologue recombination [98,100,101,103,104]

likely reflects Rad51-mediated ’homology search’ (reviewed in

[105]). Second, undamaged chromatin also becomes more

dynamic during repair, albeit to a lesser extent than the

broken site [87,101,106,107]. This could be a consequence of

global chromatin relaxation [84,108] or release from nuclear

anchoring structures [109–111], and might facilitate both DSB

relocalization and chromatin accessibility by repair proteins.
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Third, fusion of repair sites into larger units, or ‘clustering’, has

been observed in both euchromatin and heterochromatin

[13,31,83,84,87,90], and might facilitate DSB signalling by enrich-

ing the local concentration of repair and checkpoint proteins. In

human transcribed sequences, clustering potentially reflects a

‘halted’ state for HR until cells enter S phase [90]. Fourth, depro-

tected telomeres are mobilized in mouse cells, and this facilitates

telomere fusions likely by increasing the contact probability with

other chromosomes [97]. Fifth, a few chromosome territories

reposition in response to damage in human fibroblasts, perhaps

reflecting large-scale changes in chromatin organization

[112,113]. Lastly, repair sites relocalize to specific subnuclear

compartments when the lesion occurs in DNA regions that are

difficult to repair such as at repeated sequences

[13,31,32,34,55,93,99,114], collapsed forks [67,99], eroded telo-

meres [95,115], subtelomeric regions [116,117] or persistent/

unrepairable DSBs (e.g. in the absence of a donor sequence for

HR repair) [67,94,96,116,118–120] (figure 3). In these contexts,

relocalization appears to be required to avoid aberrant recombi-

nation with ectopic repeated sequences [13,32,55,93,99] or to

promote alternative repair pathways when repair is stalled

[67,95,96,115,118,120] (see also [45,121–126] for recent

reviews).

The relocalization pathway responsible for heterochroma-

tin repair in Drosophila shares striking similarities with

pathways that respond to DSBs in repeated sequences or

to persistent DSBs in budding yeast (recently reviewed in

[45]). For example, pioneering work in budding yeast

revealed that DSBs in ribosomal DNA (rDNA) repeats leave

the nucleolus before recruiting Rad51, and this requires

Smc5/6 and SUMOylation by Siz2 (a dPIAS homologue)

[93]. Given the abundance of tandem repeated sequences,

yeast rDNA presents similar challenges to repair pathways

as pericentromeric heterochromatin in multicellular eukar-

yotes. Further, persistent DSBs move to nuclear pores or the

INMP Mps3 (a Koi and Spag4 homologue) [67,94,96,118–

120]. This pathway also relies on Smc5/6, SUMOylation by

Nse2 and Siz2 [67,94,96,120], and the STUbL–RENi proteins

Slx5/8-Esc2 (homologues of Dgrn-dRad60). Finally, STUbL

and SUMOylation are also required for targeting eroded tel-

omeres and expanded CAG repeats to nuclear pores for HR

repair in yeast [95,99,115,116].

The similarity between relocalization pathways in yeast

and in Drosophila heterochromatin repair is particularly sur-

prising, given that budding yeast lacks pericentromeric

heterochromatin and the ‘silent’ histone marks or HP1 pro-

teins required to relocalize heterochromatic DSBs [13].

However, the existence of similar relocalization pathways

suggests that relocalization mechanisms originated early in

the evolution, and have evolved to deal with the complexity

of repairing the long stretches of highly repeated sequences

that characterize heterochromatin in multicellular eukaryotes.

One question raised by these studies is whether the repeated

nature of the DNA is sufficient to trigger relocalization sig-

nals or additional levels of control (such as the presence of

HP; see also next section) are required for mobilizing hetero-

chromatic sequences.

Intriguingly, distinct SUMOylated proteins appear to

generate relocalization signals in different contexts: SUMO-

ylation of Rad52 mediates the relocalization of damaged

rDNA and expanded CAG repeats [93,99]; SUMOylation of

telomeric proteins and RPA (replication protein A) triggers

relocalization of eroded telomeres to the nuclear periphery
[115]; and H2AZ SUMOylation targets persistent DSBs to

nuclear pores [94,118]. What components are SUMOylated

for the spatial and temporal regulation of heterochromatin

repair is still unknown, and given the abundance of SUMO-

ylated proteins during DSB repair (e.g. [127–130]),

identifying those targets is a major challenge in the field.

Possible targets include histones [94,118,131], RPA

[68,115,132,133], Mdc1/Mu2 [68], Smc5/6 subunits

[127,129], Blm (Bloom syndrome protein) [134,135] and

other repair [99,127–129] and heterochromatin [71,136] com-

ponents. However, artificial targeting of poly-SUMOylated

tails or the STUbL Slx5/8 is sufficient to trigger relocalization

of an undamaged chromatin site to the nuclear pores in yeast

[120], supporting the idea that once these targets are SUMOy-

lated, relocalization occurs through common pathways.

Notably, not all repeated sequences move to new locations

during HR repair, which would argue against a model where

the presence of repeated sequences is sufficient to induce relo-

calization. A typical example is mouse centromeric sequences

that remain associated with the minor satellite region during

HR progression [34]. Further, significant differences between

relocalization pathways have been identified (reviewed in

[45]). In addition to specific SUMOylation targets, different

pathways rely on distinct anchoring structures and repair path-

ways available at the nuclear periphery (reviewed in [45]).

Characterizing the differences and similarities between reloca-

lization pathways for distinct DNA sequences, and the role of

both repeated sequences and silencing components in relocali-

zation, is a necessary step to unravelling the role of nuclear

architecture and dynamics in genome stability.
6. How do pre-existing histone marks impact
heterochromatin repair?

How cells distinguish heterochromatic DSBs and channel them

through a specialized repair pathway defined by distinct spatial

and temporal dynamics is largely unknown. However, the

unique chromatin environment in heterochromatin (figure 1a)

likely contributes to different aspects of this response.

In Drosophila cells, components required for heterochroma-

tin silencing (i.e. Su(var)3–9, SetDB1 and HP1a) are essential

to block Rad51 recruitment and abnormal HR progression

inside the heterochromatin domain [13] (figure 1 and table 1).

Epistasis analyses place HP1a and Smc5/6 in the same pathway

for blocking Rad51 recruitment [13]. HP1a also physically inter-

acts with Smc5/6 and is required for Smc5/6 recruitment to

chromatin, suggesting that the function of silencing com-

ponents in blocking HR progression is, at least in part,

mediated by the recruitment of Smc5/6 and its SUMO-ligase

activities [13,32,55] (figure 1 and table 1). However, RNAi

depletion of silencing components is not sufficient to induce

Rad51 focus formation in mouse chromocentres, suggesting a

more complex protection mechanism in mammalian cells.

The silent chromatin state might also enhance early repair

steps by facilitating DSB signalling and/or resection in het-

erochromatin. Direct studies to test this hypothesis are still

missing, but, intriguingly, H3K9me2/3 and HP1 proteins

are transiently deposited to euchromatic DSBs [137–144],

and defects in this response result in impaired DSB signal-

ling, RPA focus formation and HR progression [139–144].

RPA typically associates with resected DSBs, suggesting

that silent marks promote resection at euchromatic DSBs
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[139–142,144]. This is potentially mediated by the Brca1–

Bard1 complex, which physically associates with HP1g and

counteracts chromatin barriers to resection [140,144–146].

The transient deposition of silent chromatin marks at euchro-

matic DSBs might also promote damage signalling and

checkpoint activation by inducing chromatin condensation

[81,143]. In agreement, inducing compaction of a chromatin

array by targeting silencing components to chromatin is

sufficient to trigger a DSB response in mammalian cells [81].

Whether similar activities contribute to the DSB response in

heterochromatin is unclear, but the constitutive compaction

and high levels of H3K9me2/3 and HP1 proteins in this

domain might be sufficient to enhance DSB signalling and

resection, resulting in faster progression of early HR steps.

Interestingly, ATM is required to stabilize Brca1–Bard1–

HP1g associations during repair [145]. Given the importance

of ATM in heterochromatin repair ([30], see also [147]), it will

be important to establish whether ATM functions in this

context are mediated by Brca1–Bard1–HP1g complexes.

In conclusion, heterochromatin compaction and the unique

pre-existing chromatin state could influence the initial steps of

heterochromatin repair in different ways, by: (i) promoting

DSB signalling and resection, thus channelling DSBs through

the HR pathway, (ii) suppressing HR progression after resec-

tion, via HP1-dependent recruitment of Smc5/6 and

SUMOylation and (iii) triggering relocalization, via resection

activation and SUMOylation induction. Understanding the

impact of silencing on resection and relocalization of hetero-

chromatic DSBs, and mechanisms available in mammalian

cells to regulate these repair steps, are important goals for

future studies.
7. What is the role of chromatin expansion in
heterochromatin repair?

In the absence of damage, the heterochromatin domain

appears compact and shows very limited dynamics [13,20].

However, DSB formation results in a striking expansion of

the heterochromatin domain in Drosophila and mouse cells

[13,34,55,60,148] (figure 3). In Drosophila cells, expansion

starts minutes after DSB formation by IR, and peaks during

relocalization of repair sites resulting in up to approximately

50% more volume occupied in the nucleus [13,55]. This

response is also associated with the formation of dynamic

protrusions of the heterochromatin domain, and is followed

by partial contraction [13]. In fly cells, the mechanisms

responsible for expansion include checkpoint kinases, par-

ticularly ATR, and resection components. Interestingly, the

same components are required for DSB signalling and reloca-

lization of heterochromatic DSBs [13] (figure 3), suggesting

that expansion facilitates early steps of repair and/or the

mobilization of repair sites in flies. The nature of the chroma-

tin changes leading to expansion is still unclear, as is the

impact of expansion on relocalization, but this response

does not correlate with a spreading of HP1a along the

chromosomes in Drosophila [13], and it more likely reflects a

general relaxation of the heterochromatin domain.

Notably, global chromatin relaxation followed by contrac-

tion in response to damage does not appear to be unique to

the heterochromatin domain, given that similar phenomena

were described in studies examining the chromatin behaviour

in the entire nucleus [84,108,148]. For example, in human cells
global DNA access to digestion with micrococcal nuclease

(MNase) increases in response to IR [108], and this response

is dependent on Kap1 Ser824 phosphorylation by ATM

[108]. Further, damage-induced release of the histone H1

from chromatin promotes global chromatin relaxation in

mouse ES cells and in yeast, facilitating DSB signalling and

resection [149]. More recently, studies in yeast revealed that

chromatin remodellers and checkpoint-induced degradation

of histone proteins promote global chromatin dynamics

during HR repair, which might relate to a more ‘accessible’

chromatin state [150,151]. While global chromatin relaxation

is frequently observed in response to damage, this response

might be particularly important in contexts where large-

scale nuclear motions are critical elements of the repair

response, and where the chromatin is potentially less accessible

or less dynamic, such as in heterochromatin. In agreement with

this idea, blocking ATM or Kap1 S824 phosphorylation has a

stronger effect on repair in heterochromatin than in the rest

of the genome in mouse cells [30]. ATM is also required for het-

erochromatin expansion in Drosophila [13], but it is still unclear

whether Kap1/Bonus and its phosphorylation also contribute

to this response.

Finally, while heterochromatin expansion might facilitate

the movement of repair sites, such as by releasing constraints

due to compaction and by facilitating the ‘looping’ of DNA

sequences to outside the domain for repair, this global response

is not sufficient for relocalization of DSBs [55]. In fact, relocali-

zation defects have been observed even in conditions when

expansion is normal (e.g. after Nse2/Qjt RNAi in Drosophila
cells) [55], genetically separating heterochromatin expansion

from relocalization (table 1). Furthermore, blocking chromatin

relaxation in mouse cells (e.g. by Kap1pS824 mutation) does

not impair relocalization of DSBs but it affects heterochromatin

repair [34], suggesting a later function of relaxation in DSB pro-

cessing (see also next section). This is consistent with studies

showing that artificial induction of silencing and compaction

of a chromatin locus does not affect early damage signalling

but it impairs repair progression [148]. Thus, more studies are

required to understand the mechanisms of heterochromatin

expansion, the chromatin changes involved, and the signifi-

cance of expansion to repair progression, but this response

likely facilitates heterochromatin repair by positively contribut-

ing to the accessibility and dynamics of this domain.
8. How do local chromatin changes contribute to
heterochromatin repair?

In addition to global reorganization of the heterochromatin

domain (i.e. expansion and contraction), several studies

suggest that local chromatin changes (i.e., changes proximal

to the DSB site) also participate in early and late steps of hetero-

chromatin repair (figure 3). The specifics of this response still

need to be understood, but a general view is that chromatin

transitions to a more accessible state to facilitate repair pro-

gression, by nucleosome repositioning, chromatin relaxation

or histone modification changes (e.g. via release of ‘silent’ his-

tone marks, or the acquisition of active marks; see also [147]).

Here, we will discuss evidence suggesting that HP1 proteins

and the HP1-interactor Kap1 are key targets of this regulation,

as their local release or modification promotes nucleosome

reorganization and/or chromatin relaxation, and those

responses facilitate early and late steps of heterochromatin
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repair. We will also point to specific chromatin modifiers

potentially involved this response.

HP1 proteins are directly targeted by post-translational

modifications during heterochromatin repair. In mouse

cells, laser-induced DSBs in heterochromatin result in

HP1b phosphorylation by CK2 (casein kinase 2) and HP1b

release from the chromatin, which might promote chroma-

tin opening at repair sites [60] (figure 3). Blocking this

pathway severely affects H2AX phosphorylation, revealing

its importance in the initial steps of DSB signalling [60].

Local HP1 release from the chromatin might also be

required at later repair steps, to promote HR progression

after relocalization. In Drosophila cells, Rad51 recruitment to

heterochromatic DSBs correlates with a significant reduction

of HP1a signals at repair sites [13]. Similarly, induction of

DSBs in heterochromatin by laser radiation leads to the loss

of HP1a at Rad51-containing repair foci [13], suggesting that

HP1a is locally ‘loosened’ at or displaced from heterochromatic

DSBs during repair progression (figure 3). Given the mutual

exclusion between HP1a and Rad51, it has been proposed

that HP1a removal is necessary for Rad51 recruitment [13].

In agreement, RNAi depletion of HP1a results in abnormal

Rad51 recruitment inside the heterochromatin domain [13].

These observations lead to a model that identifies two critical

roles of HP1a in the spatial and temporal regulation of hetero-

chromatin repair in flies: (i) HP1a presence at early steps of

repair is needed to recruit Smc5/6 and block HR progression

and (ii) the local displacement of HP1a after relocalization of

repair sites to the nuclear periphery might be required to

enable Rad51 recruitment and repair progression (figure 3).

More studies are needed to understand the extent to which

HP1a is released at heterochromatic DSBs and how these

changes impact specific repair steps.

In addition to HP1, the chromatin component Kap1 is

targeted by several post-translational modifications in

response to DSBs, which earmarks this component as a central

regulator of chromatin dynamics during repair (reviewed

in [152,153]). For example, Kap1 S824 phosphorylation is

enriched at repair foci before spreading to the rest of

the nucleus in mouse cells, suggesting a local function at

DSBs [108,136,154,155]. Accordingly, Kap1 pS824 promotes

local release of the chromatin remodeller Chd3 from the chro-

matin proximal to DSBs, likely resulting in local chromatin

loosening [136,156] (figure 3). Similarly, Kap1 S473 phos-

phorylation by Chk2 [156] has been reported to weaken

Kap1–HP1b interaction and increase HP1b mobilization in

response to damage [157], potentially contributing to local

and/or global heterochromatin relaxation during repair. Intri-

guingly, STUbL-dependent degradation of SUMOylated Kap1

pS824 also facilitates HR repair in mammalian cells [71], raising

the possibility that Kap1 may be targeted by the proteasome to

promote HR progression after DSB relocalization to outside the

heterochromatin domain [153].

HP1b mobilization and Kap1 phosphorylation have also

been observed at DSBs in euchromatin [60,108,158], but similar

to global chromatin relaxation, these responses might be par-

ticularly important to promote chromatin accessibility in

compact heterochromatic regions during repair. Accordingly,

HP1 removal, constitutive phosphorylation of Kap1 or Chd3

loss, alleviates the ATM requirement for DSB repair specifically

in heterochromatic regions in mouse cells [30,136].

In addition to chromatin reorganization resulting from HP1

and Kap1 phosphorylation, changes in histone modifications
are likely to contribute to early and late steps of HR repair in

heterochromatin. Direct studies addressing the role of chroma-

tin modifiers in heterochromatic DSB repair are still missing,

but candidates for these functions include the histone acetyl-

transferases Tip60, p300, the histone demethylase Kdm4B,

and the chromatin remodellers SWI/SNF and ISWI (for an

overview of the roles of these components in DSB repair, see

also [159–163]). Tip60 directly associates with H3K9me3

through its chromodomain, and this association is essential

for Tip60 ability to induce histone acetylation, chromatin relax-

ation and HR repair [142,164,165]. Given the abundance of

H3K9me3 in heterochromatin, a specific role of Tip60 in this

domain has been previously suggested [165]. In addition to

Tip60, p300 becomes enriched at HP1a-containing chromatin

in response to UV irradiation, suggesting a role for p300 in het-

erochromatin repair [166]. p300 promotes chromatin relaxation

and HR repair via H3/H4 acetylation and the recruitment of

the chromatin remodelling complex SWI/SNF in euchromatin

[167,168]. Whether these responses facilitate heterochromatin

repair still awaits investigation. Intriguingly, yeast SWI/SNF

is required for strand invasion of silenced chromatin in bio-

chemical assays [169], suggesting a role for this complex in

chromatin accessibility of heterochromatic donor sequences

for the progression of HR repair. Further, Drosophila Kdm4B

is recruited to heterochromatin to reduce H3K9me3 levels in

response to UV damage [170], and human Kdm4B associates

with DSBs to promote repair [171], pointing to a potential

role for this histone demethylase in DSB repair of heterochro-

matic regions. Finally, the ISWI chromatin remodeller has

been involved in nucleosome repositioning after Chd3 disper-

sal during heterochromatin repair [172].

Together, these studies support a model where complex

chromatin dynamics, including chromatin loosening and/or

nucleosome repositioning, participate in heterochromatic DSB

repair. However, more studies are needed to establish the

specific function of chromatin remodellers, histone modifiers,

or Kap1 and HP1 modifications, in these chromatin changes.

More work is also needed to understand how chromatin

dynamics impact early and late steps of heterochromatin

repair, including DSB signalling, repair pathway choice, chro-

matin looping to outside the domain, relocalization of DSBs

and HR repair progression.
9. Conclusion and perspectives
Significant efforts in the past decade have begun shedding

light on the mysterious mechanisms responding to DSBs in

heterochromatin, revealing several unexpected and unique fea-

tures of repair pathways in this domain. These discoveries

challenged the previous view that DSBs are mostly static in

the nucleus of multicellular eukaryotes, revealing striking

dynamics of both the heterochromatin domain and repair

sites. Further, counterintuitive to what would be a ‘safe’

repair strategy, heterochromatin is preferentially repaired by

HR in S/G2 cells. To mitigate the risks of HR with ectopic

sequences on other chromosomes, DSBs relocalize to outside

of the domain and even associate with the nuclear periphery

before strand invasion. In Drosophila cells, the coordination of

repair progression with nuclear dynamics includes several

key steps: (i) DSBs are quickly processed for HR repair inside

the heterochromatin domain while Rad51 recruitment is

temporarily blocked by SUMOylation, (ii) resection and
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checkpoint activation trigger DSB relocation to the nuclear per-

iphery and (iii) signalling mechanisms at the nuclear periphery

enable repair restart in a ‘safe’ environment. Despite significant

progress in this field, many questions remain unanswered. For

example, the targets of SUMOylation are still unknown and the

specific effects of SUMOylation and ubiquitination on these

components have not been investigated. The mechanism of

relocation to the nuclear periphery is also unclear. Specifically,

it is not known if Brownian/sub-diffusive motion followed by

nuclear periphery anchoring is sufficient to induce relocaliza-

tion, or if active forces are involved. The nature and function

of local and global chromatin responses in these nuclear

dynamics are also largely unknown. Finally, major efforts

started unravelling the similarities between Drosophila and

mammalian cells, providing exciting new insights. Given that

HR [173–176], heterochromatin silencing [177,178] and the
nuclear periphery [179] are typically deregulated in cancer

cells and become progressively dysfunctional with ageing

[180–183] (see also [45] for a recent review), understanding het-

erochromatin repair mechanisms is expected to open new

avenues for the treatment of cancer and other ageing-depen-

dent human diseases. The tools are now in place for exciting

new discoveries in this field in the near future.
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