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SUMMARY
Cell classes in the human retina are highly heterogeneous with their abundance varying by several orders
of magnitude. Here, we generated and integrated a multi-omics single-cell atlas of the adult human retina,
including more than 250,000 nuclei for single-nuclei RNA-seq and 137,000 nuclei for single-nuclei ATAC-
seq. Cross-species comparison of the retina atlas among human, monkey, mice, and chicken revealed
relatively conserved and non-conserved types. Interestingly, the overall cell heterogeneity in primate retina
decreases compared with that of rodent and chicken retina. Through integrative analysis, we identified
35,000 distal cis-element-gene pairs, constructed transcription factor (TF)-target regulons for more than
200 TFs, and partitioned the TFs into distinct co-active modules. We also revealed the heterogeneity of
the cis-element-gene relationships in different cell types, even from the same class. Taken together, we pre-
sent a comprehensive single-cell multi-omics atlas of the human retina as a resource that enables systematic
molecular characterization at individual cell-type resolution.
INTRODUCTION

The vertebrate retina is a multi-layer neuronal structure that con-

verts light to electrical signals that are transmitted to the brain.1

The retina is composed of six major neuronal classes, rod, cone,

bipolar, horizontal, amacrine, and retinal ganglion cells (RGCs),

along with several non-neuronal cell types, such as M€uller

glia.1,2 Although the overall structure and major cell classes of

the retina are similar across all vertebrates, there are significant

differences in cytoarchitecture, synaptic connections, number of

cell types in each class, and the retinal vascular bed between

species as well as a complete absence of the macula in most

non-primate species.3,4 Recent single-cell transcriptomic

studies of the retina have consistently indicated that the number

and classification of amacrine and RGC types vary greatly

across different species, providing a potential underlying mech-

anism of the retinal structure, circuitry, and functional divergence

across species.5–8 Thus, conclusions drawn from studies on

model organisms may not reflect the situation of the human

retina. The human retina is composed of a highly heterogeneous

population of cells, and it contains an estimated 60 neuronal

types based on morphology, function, and most recently, sin-
This is an open access article under the CC BY-N
gle-cell transcriptional profiles.5,9–11 The abundance of each

cell type is highly variable and ranges from over 60% to less

than 0.05% of the cell population. As a result, a combination of

both an increase in the number of cells profiled and targeted

enrichment of rare cell types is required to build a comprehen-

sive cell atlas of the human retina.

Beyond single-cell transcriptomics, obtaining the epigenomic

landscape at single-cell resolution is critical for gaining insights

into the dynamics of gene expression regulation and identifying

candidate regulatory elements and variants that affect transcrip-

tion. Assay for Transposase-Accessible Chromatin sequencing

(ATAC-seq) has emerged as an ideal method for profiling open

chromatin regions, which contain most of the active regulatory

elements for gene expression, in cells.12 Recent advancements

havemade it possible to perform ATAC-seq to profile open chro-

matin regions for individual cells.13,14 By combining single-nuclei

ATAC-seq data with single-nucleus transcriptomics data, it is

possible to systematically map gene cis-regulatory elements

(CREs) for each cell type and elucidate the gene-regulatory land-

scape of the retina. These putative regulatory elements will be

useful for identifying and prioritizing non-coding mutations asso-

ciated with retinal disorders.15,16 Furthermore, a large portion of
Cell Genomics 3, 100298, June 14, 2023 ª 2023 The Authors. 1
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Table 1. Information of the donors from whom the retina tissue was obtained and profiled

Donor-

ID Ethnicity Sex Age

Total

cell

number Central Peripheral

Peripheral

(sorted)

D001-

12

European F 78 17,664 0 0 17,664

19D013 European F 78 45,905 41,345 0 4,560

19D014 European M 84 45,118 38,497 0 6,621

19D015 Hispanic M 73 101,089 57,579 8,283 35,227

19D016 European M 83 19,645 19,645 0 0

17D013 European M 65 5,470 0 0 5,470

Table 2. Donor information and number of nuclei sequenced

from each sample for single-nuclei ATAC-seq

Donor-ID Ethnicity Sex Age

Total cell

number

19D013 European F 78 21,085

19D014 European M 84 7,334

19D016 European M 83 16,255

19_D007 Caucasian M 66 3,577

19_D003 Caucasian M 86 2,606

19_D005 Hispanic M 53 6,527

19_D006 Caucasian M 90 5,526

19_D008 Hispanic F 64 4,489

19_D009 Hispanic M 68 4,815

19_D010 Caucasian F 88 5,334

19_D011 Caucasian F 90 7,137

19_D019 Caucasian F 82 5,570

D005_13 Caucasian M 80 4,266

D009_13 Asian M 85 3,854

D013_13 Caucasian M 69 4,480

D017_13 Caucasian M 65 5,295

D018_13 Caucasian F 91 1,693

D019_13 Caucasian M 82 6,281

D021_13 Caucasian M 86 2,408

D026_13 Caucasian M 81 6,632

D027_13 Caucasian M 77 4,606

D028_13 Caucasian M 67 8,018
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genome-wide association study hits have mapped to potential

gene-regulatory regions rather than the coding region of the

genome.17,18 Thus, obtaining a high-quality chromatin land-

scape along with transcriptomic profiles at single-cell resolution

is a critical step toward a better characterization of human retina

biology and diseases at the molecular level. Several recent ap-

proaches reported single-cell level open chromatin profiles

with human retina19–22; however, none of these studies included

extensive cell-type classification, so in general, the open chro-

matin profiling for retina is still at the cell class level, instead of

cell-type level.

In this report, we built a single-cell multi-omics map of the hu-

man retina by profiling transcriptomes of more than 250,000

nuclei and open chromatin from more than 137,000 nuclei. In to-

tal, more than 70 cell types, including 68 neuronal types, were

identified from this dataset. By integrating the single-nuclei

ATAC-seq (snATAC-seq) and single-nuclei RNA sequencing

(snRNA-seq) data, open chromatin profiles were identified for

each cell type. Cross-species comparison between humans,

monkeys, mice, and chicken revealed various levels of similarity

for the different cell types among these species. Counter-intui-

tively, we found that the sequence conservation of differentially

accessible regions (DARs) could not explain the relative conser-

vation of the cell types across species. Candidate CREs were

identified and most of them showed strong cell-type specificity.

We also showed that the regulatory relationship between

genome regions and genes is only partially shared among cell

types, which suggested that evaluation of gene regulation at

cell-type level is required. Last, we constructed TF-target regu-

lons and demonstrated that the TFs could potentially work in

modules. We were able to annotate the TF modules and infer

the hub regulators for the modules. In summary, our study has

generated a comprehensive single-cell multi-omics atlas that en-

ables the in-depth characterization of the human retina at spe-

cific cell-type resolution.

RESULTS

The single-cell multi-omics atlas of human retina
To generate a comprehensive cell atlas and identify most cell

types of the human retina, we performed snRNA-seq and snA-

TAC-seq on six and 23 healthy donors, respectively (Tables 1

and 2). It is known that more than 60 cell types exist in the pri-

mate retina.5 Since the distribution of retinal types is not uniform,
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some of the cell types are exceedingly rare. For instance, at least

18 RGC types have been classified in the human retina based on

morphology,23 but the total number of RGCs only accounts for

approximately 1% of the cell population in the retina.24 In addi-

tion, the proportions of RGC types differ significantly, and

some RGC types, such as intrinsically photosensitive RGCs

(ipRGCs), make up less than 0.01% of retinal cells.25 Similarly,

it has been estimated that more than 30 types of Amacrine cells

(ACs) exist in the primate retina.5 Therefore, to profile these rare

cell types, enriching RGCs and ACs before profiling could be

very necessary.

NeuN is a nuclear envelope protein encoded by the RBFOX3

gene that has been reported to be highly expressed in a subset



Figure 1. Overview of the single-cell multi-omics atlas of human adult retina

(A) The study design of this work. The retina samples were first split into the central and peripheral parts and rare cell enrichment was performed for peripheral

retina. The snRNA-seq and snATAC-seq data were first processed separately and then integrated for analysis.

(B) Two-dimensional embeddings (UMAP) for snRNA-seq (left) and snATAC-seq (right) data. Each data point represents a cell, and the color represents the

annotated cell class.

(C) The number of each cell class from the snRNA-seq (top) and snATAC-seq (bottom).

(D) The gene expression and gene accessibility of reported retinal cell class marker genes in the snRNA-seq and snATAC-seq data.

(E) Heatmap of the correlation between the open chromatin profiles of each retinal cell class and those of other human tissues.
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of neuronal cells.26 In the mouse retina, NeuN was shown to be

highly expressed in RGCs and ACs but lowly expressed in pho-

toreceptors.27 Antibody staining showed that NeuN showed a

similar pattern in the human retina to the mice retina (Figure S1).
Thus, we devised a strategy to profile cells from the retina, as

illustrated in Figure 1A. Specifically, the retina was first sepa-

rated into two regions, the macular/foveal and the peripheral.

For the macular/foveal region, as cell proportion was relatively
Cell Genomics 3, 100298, June 14, 2023 3
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even, we directly profiled nuclei without enrichment. In contrast,

for the retinal peripheral region, nuclei are fractioned based on

the NeuN staining. As shown in Figure S1B, nuclei with high

NeuN signal (top 5%, denoted as NeuNT) and moderately high

NeuN signal (from 5% to 10%, denoted as NeuNM) are collected

for snRNA profiling. The NeuNT group showed the highest

enrichment of RGCs and ACs and the NeuNM fraction is

enriched of ACs but not RGCs compared with the unenriched

peripheral retina sample (Figure S1C). Given that snRNA-seq,

instead of snATAC-seq, is the major approach for us to perform

the cell-type classification, we decided to only collect snATAC-

seq data from the macula region, which already has a relatively

balanced cell-type distribution (Figure 1A).

We first performed the clustering and cell-type annotation on

the snRNA-seq and snATAC-seq separately (Figures 1B and

1C) and all the major cell types showed well isolated tight clus-

ters. In addition, cluster heterogeneity is visible for some cell

classes with multiple types, such as ACs and bipolar cells

(BCs). For both datasets, rod cells remain the most abundant

major type (Figure 1C), while we were also able to profile more

than 50,000 ACs and BCs, and 10,000 RGCs. Known markers

were used to perform the cell-type annotation and as is shown

in Figure 1D, we visualized the expression and gene body acces-

sibility of the same set of markers (PDE6A for rod,NETO1 for BC,

ARR3 for cone, ONECUT1 for HC, RLBP1 for MG, RBPMS for

RGC, TFAP2B for AC, GFAP for astrocyte, and CD74 for micro-

glia). In both datasets, all the markers showed quite distinct and

expected distribution among cell types. To further evaluate the

data quality of the snATAC-seq data, we split the data based

on major cell types and compare them with published bulk

ATAC-seq data (Figure 1E) of human tissues, including aorta, ad-

renal gland, pancreas, stomach, thyroid gland, hippocampus

neuron, hippocampus glia, cerebellum, spinal cord, macula,

and retina.28 The datasets primarily formed three groups, with

one exclusively for the bulk retina, bulk macula, bulk spinal

cord, and single-cell retina data, one for the hippocampus and

the cerebellum, and the other for all the rest of the tissues. Inter-

estingly, although all are from the central nervous system, the

spinal cord data grouped close to the retina while the cerebellum

and hippocampus data did form an individual cluster. This obser-

vation highlights the substantial epigenetic differences between

the retina and the brain. Moreover, the bulk retina clustered

closer to the photoreceptor cells while the bulk macula is closer

to interneurons, which is expected and likely driven by the

different cell-type proportions of the bulk and macula samples.

Transcriptomic and open chromatin profiles of retinal
cell types
To obtain the profiles for both the transcriptome and open chro-

matin modality for retinal cell types, we adopted a strategy that

we first annotate types using the RNA-seq data solely, because

of the larger number of cells, and then use the annotated RNA-

seq data as a reference to annotate the ATAC-seq data (Fig-

ure 2A). To determine the optimal parameters for clustering, a

combination of two parameters, the ‘‘number of nearest neigh-

bors’’ and the ‘‘Leiden resolution,’’ that gives the highest Silhou-

ette score is identified (Figure S2). As a result, we identified 36

ACs, 14 BCs, 2 HCs, 13 RGCs, three photoreceptors (rod and
4 Cell Genomics 3, 100298, June 14, 2023
two cone types), and two non-neuronal cells (MG and astrocyte)

in our snRNA-seq data, totaling 70 cell types (Figure S3).We then

compared this classification result with a previously published

human retina transcriptome atlas.9 BCs and HCs showed high

consistency between the two independent datasets with

adjusted-rand-index (ARI) close to 1, while ACs showed some

differences (we detected 10more AC subtypes in the current da-

taset). Through the cross-dataset comparison, we are able to

identify several well-studied AC types, such as the starburst

AC (AC7), the CAI/CAII ACs (AC34), and VG3 AC (AC28), which

all showed one-to-one matching. RGCs have the most differ-

ences (Figure S4). This is likely because both datasets are under-

powered and have reached sufficient coverage for the rarest

RGC types. Nevertheless, two OPN4 positive clusters in our da-

taset showed one-to-one matching to the two ipRGC clusters of

the previous study, and their marker genes, EOMES and LMO2,

were also consistent (Figure S5). It has been estimated that

ipRGCs accounted for approximately 1% of all the RGCs, which

sets the limit of resolution in our presented dataset. We also

found substantial differences in the relative proportion of cell

types between the central and peripheral retina (Figure S6).

Given that the major peripheral retina nuclei underwent anti-

NeuN enrichment in our snRNA-seq profiling experiments, we

also investigated if this step accounts for some levels of the pe-

ripheral/central cell proportion differences (Figure S7). We

showed that AC types with higher expression of RBFOX3

(NeuN) tend to have a higher relative proportion in the peripheral

retina compared with the central retina, while RGC types did not

show this effect. Thus, we cannot rule out the possibility that the

anti-NeuN enrichment contributes to the different proportions of

ACs between the two retina regions observed in our data.

With the annotated types from the snRNA-seq data, we per-

formed data integration to co-embed the snRNA-seq and snA-

TAC-seq data followed by the label transfer using the Seurat

‘‘transfer anchors’’ framework.29 As is shown in Figure 2B, BC

types were well separated in the co-embedding space, and the

predicted labels of the snATAC-seq cells match well with

snRNA-seq clusters. To further evaluate the reliability of this

approach, we first identified differentially expressed genes

(DEGs) among cell types using the snRNA-seq data and snA-

TAC-seq data (imputed gene expression) separately and then

computed the pairwise Jaccard similarity between the two DEG

lists (Figure 2C). Theassumption is that if the label prediction is ac-

curate, signatures detected fromonemodality of a type should be

largely consistent with the ones from the othermodality. For most

types, the two lists generally showed one-to-one matching (Fig-

ure 2C, Figure S8). We also visualized the DAR peaks of BC types

and showed that their nearest genes displayed a similar pattern in

the BC snRNA-seq data. Both results supported the reliability of

the snATAC-seq annotation of our data. Thus, we obtained the

openchromatin profileof the retinaat the individual cell-type level.

With this dataset, we computed the DEGs and DARs for cell clas-

sesand types (TableS1). TheDARs for rarer cell types,mostlyACs

and RGCs, were not reported by previous studies.

Cross-species comparison between our dataset and the cell

atlas ofmonkey,5mouse,6,8,30,31 and chicken7 is performed. Given

that noATAC-seq-based study on human or anymodel organisms

has reached type level, only snRNA-seq data is used. We first



Figure 2. Classification and multi-omics integration of retinal cell types

(A) The analysis strategy to perform classification and multi-omics integration of retinal cell types. We perform sub-clustering solely using snRNA-seq data first

and leverage published single-cell RNA-seq data of human or model organisms to assist the annotation of the cell types. We then annotate the snATAC-seq data

using the annotated snRNA-seq data as the reference.

(B) Two-dimensional embeddings (UMAP) for bipolar cells of the ATAC (top) and RNA (bottom) modality.

(C) Heatmap representing the similarity between the differentially expressed genes and the differentially accessible genes from each bipolar cell type.

(D) Demonstration of the consistency between the differentially accessible regions (DARs, left) and their nearest genes (right) among bipolar cell types.

(E) Phylogenetic tree representing the overall similarity of bipolar cell types among four species: human (gray), monkey (yellow), mouse (blue), and chicken (green).

(F) Boxplot showing the PhastCons score of DARs of each bipolar cell type. The DARs were partitioned to ‘‘gene body,’’ ‘‘intergenic,’’ or ‘‘promoter’’ before the

visualization. The center line of the boxplot shows the median of the data; the box limits show the upper and lower quartiles; the whiskers show 1.5 times in-

terquartile ranges.
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co-embedded the data of all four species into the same latent

space, followed by clustering them based on their average dis-

tances in the space (Figure 2D). Examination of the result suggests
that the cross-species matching of cell types is largely consistent

with a previous study,7 while more accurate matching can be

achieved for some cell types. For example, the BP-19 from the
Cell Genomics 3, 100298, June 14, 2023 5
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chicken BCs has been annotated as the chicken rod bipolar cell

(RBC). In our phylogenetic tree, this type formed a cluster with

the RBCs of the other three species, indicating that the RBC is a

highly conserved type,while thisBP-19clustered togetherwith hu-

man and monkey flat midget bipolar cells in the previous study.7

We observed that human and monkey BCs and HCs generally

formed one-to-onematching, while ACs showmore complex pat-

terns (Figures 2E, S9). It is worth noting that even for BCs, some

interesting matching patterns are observed. For example, human

DB3b and DB5 clustered only with the monkey counterpart, indi-

cating that they could be primate-specific types. We were also

able to identify marker genes of DB3b (MEIS2) and DB5 (QPCT)

for humanandmonkeyBCs. Thesegeneswere either not detected

or appeared non-specific in mouse or chicken BCs (Figure S10).

Similarly, some mouse or chicken bipolar cell clusters are without

closely related clusters from human or monkey data, indicating

they are likely to be species specific as well. We were then inter-

ested that whether the relative conservation of cell types is related

to the sequence conservation of their signature genes. We

computed the PhastCons scores,32 an evaluation of the sequence

conservation, for each of the DARs of bipolar cell types, and then

visualized the scores of the DARs after partitioning them based

on the genomedistribution: genebody, promoter region, and inter-

genic regions (Figure 2F). The sequence conservation in promoter

regions is constantly higher than those of the other regions. Inter-

estingly, it was not observed that highly conserved types, such

as RBCs, showed a higher sequence conservation score in DAR.

This result suggested that activity rather than the sequence of the

regulatory elements drive the difference among cell types.

Identification of CREs through integrative analysis of
snRNA-seq and snATAC-seq data
The integration of the snRNA-seq and snATAC-seq allows the

imputation of gene expression levels for each cell in the snA-

TAC-seq data. Thus, we leveraged this information to compute

the correlation between each gene and relatively proximal peaks

(Figure 3A). For each gene, open chromatin regions detected by

snATAC-seq within 250 kb from the gene transcription start site

are tested (TSS). With a cutoff at 0.3 for the Pearson’s correlation

coefficient, more than 35,000 peak-gene pairs were identified as

putative enhancers (Table S2, Figure 3B), and they generally

showed a closer distance to the gene TSS and a higher

sequence conservation (Figure 3C). We also compared the puta-

tive enhancer list with the major cell-type DARs and found that

the list enriches DARs compared with other proximal peaks

(within 250 kb) (Figure 3D). Also, as is shown in Figure 3E, both

these putative enhancers and their linked genes displayed high

levels of cell-type specificity.

Correlating peak accessibility to gene expression across cells

has been incorporated in different analysis frameworks as a

method to identify regulatory regions.33,34 However, it has not

been well discussed what groups of cells should be used as the

input. A simple question could be whether to use all the cells as

the input or only use cells from the same cell type as the input.

To obtain a core set of putative enhancers, we used all the cells

as the input, and we reason that this approach will allow for de-

tecting stronger signals since a much larger number of cells are

used. However, given the complexity of the retinal types, we hy-
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pothesized that while some peaks have consistent activities,

other peaks might display different or even opposite activities

among cell types of the same class. Thus, we performed the

peak-gene correlation analysis for each BC type separately. To

account for the sparsity of the data, especially the ATAC-seq

data, we computed the correlation at the pseudo-bulk level, by

combining all the cells of the same type from one sample to a

single pseudo-bulk data point, followed by the calculation of

Pearson’s correlation coefficient. For each peak-gene pair, the

mean and standard deviation of Pearson’s correlation coefficient

across the cell types is calculated (Figure S11A). The coefficient

did not show clear biases at the cell-type level due to the different

cell numbers sampled for each cell (Figure S11B). Both constant

and highly heterogeneous peak-gene pairs have been identified

(Table S3). As an example of a heterogeneous peak-gene link

(chr12:6959945-6962406; GNB3; Figure 3F), seven of the BC

types showed a positive correlation while six showed a negative.

As an example of constant link (chr3: 61548584-61550601;

PTPRG; Figure S11C), 10 of 13 BC types showed a positive

correlation with coefficients above 0.2 while the other three

showed positive to neutral level correlation. With these results,

we showed cases that the activity of CREs could differ among

cell types of the same cell class, therefore underscoring the

importance of obtaining high-resolution chromatin profiling.

Integrative analysis of transcription factor functions and
cell-type specificity in the retina
We then inferred transcription factor (TF) activities for retina cells

leveraging both the transcriptome and open chromatin informa-

tion (FigureS12).Wefirst created ‘‘metacells’’ for each typebased

on their similarity in latent space (20 cells into one meta cell) and

used the meta cells as the input. Our approach was based on

the SCENIC pipeline,35 with a modification that we trimmed the

initial TF-target regulon based on the appearance of the TF motif

in proximal peaks of the potential target gene (Figure S12). We

then scored the TF activity for each meta cell using the AUCell

method (Figure 4A). It could be observed that most of the TFs

(200) showed certain levels of cell-type specificity (Figure 4A).

The number of target genes differed drastically across the TFs,

with amedian of 196 targets per TF. For each target gene, theme-

dian of the number of TFswassix (Figure 4B). The full TF-target list

can be found in Table S4.

We then computed the correlation between TFs using their ac-

tivity as the input (Figure 4C) and grouped them into 10 modules.

Each TFmodule is annotated based on its activity in classes (Fig-

ure 4D). We found that rather than being specific at individual cell

class level, most of the TF modules accounted for combinations

of cell classes, such as the ones for photoreceptor-bipolar (mod-

ule 3), AC-RGC (module 1), non-photoreceptor (module 9), etc.

There were also two modules (5/6) being less specific. The full

list of the partition of TF modules and the TF activity at the major

cell class level can be found in Table S5. It is worth mentioning

that substructures did appear in some of the relatively largemod-

ules, accounting for a finer cell class driven separation, such as

module 1 (Figure S13A). Finally, we investigated the TF-TF regu-

latory relationships by building a directed network for the TFs.

The out-degree is a measurement of the number of direct targets

for a TF in this network, and we reason that the TFs with high
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Figure 3. Identification of putative enhancers by linking peak to genes

(A) Demonstration of the idea of correlating the gene expressionwith the proximal peak accessibility. When observing the relationship between a peak and a gene

among cells, it is possible that they are positively, negatively, or neutrally correlated.

(B) Volcano plot showing the overall distribution of peak-gene links in two dimensions: their Pearson’s correlation coefficient and negative log-transformed

q-values (p values with false discovery rate correction). Red data points highlight the links we considered as putative enhancers.

(C) Boxplot showing the comparison between the putative enhancers and other proximal peaks on their distance to linked gene and sequence conservation.

Wilcoxon tests were performed to evaluate the difference between the groups. The center line of the boxplot shows themedian of the data; the box limits show the

upper and lower quartiles; the whiskers show 1.5 times interquartile ranges.

(D) Bar plot showing the comparison between the putative enhancers and other proximal peaks on their overlapping with major cell class DARs.

(E) Heatmap showing the relative expression of genes linked to peaks and their linked genes across different cell types. The gene expression level and peak

accessibility level were both normalized between 0 and 1.

(F) The peak-gene correlation between chr12:6959945-6962406 andGNB3 in all bipolar cell types. For each panel, each data point represents a donor and the red

dashed-line represents the linear fit of the correlation between the peak and the gene. The Pearson’s correlation coefficients were labeled on each panel.
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out-degree could be potential hub regulators (Figure S13B). We

selected the TFs with out-degree larger than 15 and calculated

the overlapping between their targets and the TFs in each of the
10 modules (Table S6 and Figure S13C). Some well-studied

TFs were identified. For example, PAX6 appeared as a potential

hub regulator for module 1, which was the AC/RGC module.
Cell Genomics 3, 100298, June 14, 2023 7



Figure 4. Inference of TF activity and annotation of TF modules

(A) Heatmap representing the TF activities (row) for each meta cell (column). The TF activities were first calculated using the AUCell framework and then

normalized between 0 and 1.

(B) Basic metrics of the TF-target regulons. The upper and bottom panels showed the distribution of number of targets per TF and numbers of TF regulators per

target. Median values are labeled.

(C) Heatmap depicting the TF-TF correlations. Hierarchical clustering was first made, and modules were detected by cutting the tree to K groups (K = 10 here).

(D) The activity of TFs in eachmodule in each cell class. The TFmodules were then annotated based on the observed specificity of themodule. Previously studied

TFs are also listed. The center line of the boxplot shows the median of the data; the box limits show the upper and lower quartiles; the whiskers show 1.5 times

interquartile ranges.
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Also, CRX,OTX2, and NRL appeared as potential hub regulators

formodule 2,whichwas the photoreceptormodule. These exam-

ples highlight the reliability of theanalysis,while other less studied

TFs still require further study.

DISCUSSION

Comprehensive single-cell multi-omics atlas of the
human retina
In this study, we have generated a comprehensive single-cell

multi-omics atlas of the human retina that includes snRNA-seq

for more than 250,000 nuclei and snATAC-seq for more than

137,000 nuclei. To capture the rare cell types in the retina, we

have sorted nuclei based on NeuN gradient and collected

fractions that are enriched for ACs andRGCs,whichwill be insuf-

ficiently sampled without such enrichment. This combined strat-

egy resulted in an atlas that is improved over the previous pub-
8 Cell Genomics 3, 100298, June 14, 2023
lished dataset in several aspects. First, the cell portion is better

normalized for cell types with high heterogeneity, including AC,

BC, and RGC, comprising 21.5%, 20.8%, and 4.1% of the cell

population for this dataset, respectively. Consequently, this al-

lows the detection of rare cell types, such as the two ipRGC

types, which are estimated to comprise only 0.01% of all retinal

cells. Second, the number of cell types identified in this study is

69, including 67 neuronal types, which is higher than previously

published studies on the human retina. This is likely to represent

a nearly complete catalog of all cell types in the retina. Third, this

study is further strengthened with the first large-scale snATAC-

seq dataset in the retina with 137,000 nuclei profiled.

Cross-species comparison among cell types
As the key light-sensing organ, the evolution of the eye is

fascinating and the morphology and structure of the eye across

metazoans are highly diverse. Vertebrate animals share the
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camera-like eye structure, which contains a multi-layer

neuronal structure, the retina, whose function is to capture

the light and convert it to an electric signal that is transmitted

to the brain. The major cell types in the retina, which includes

photoreceptor, bipolar, horizontal, amacrine, and RGCs are

conserved across vertebrate animals. With the human retina

cell atlas and previously published studies on model organ-

isms, we could conduct cross-species comparisons among hu-

man, monkey, chicken, and mouse at cell-type level. This

approach was first taken in a previous study,7 and we applied

a more comprehensive dataset and a more dedicated compu-

tational framework (LIGER). Interestingly, we found that the de-

gree of conservation differs among different cell types with

increased divergence observed as we move from the outer nu-

clear to the inner nuclear layer of the retina. Specifically, con-

servation decreased from the outer to the inner retina, with

cell types at the outer nuclear layer of the retina (photorecep-

tors) being the most conserved and cell types in the retinal gan-

glion layer being the most divergent. This finding is consistent

with a previous study5 and suggests that although there is a

common mechanism of initial retinal photon capture, by

photoreceptors, downstream processing of the visual signal

by the interneurons, diverges between species. Moreover,

this gradient of conservation was also shown to extend to the

chick retina by Yamagata et al.7 Interestingly, the number of

cell types observed in ACs and RGCs is negatively correlated

with the position of the organism in the evolution tree. Large

numbers of AC and RGC types have been identified in mice

and chicken retinas compared with human and monkey retinas.

A potential model to explain this phenomenon is that primates

might rely more on the visual cortex for processing visual

signals.

Our approaches performing the comparison is also worth

mentioning. There has not been a standard, widely applied work-

flow designed aiming at computing the distance between cross-

species cell types from scRNA-seq data. Regardless of which

metric was selected, direct measurement of distance among

cross-species cell types tended to group the cell types from

the same species together. This was due to significant ‘‘batch ef-

fects,’’ which were stronger than normal batch effects driven by

different sequencing technologies or by different groups that

generated the data. Thus, we chose to first minimize the batch

effects across the datasets through data integration using

LIGER,36 which performed the best out of several methods,

many of which failed in this type of task, according to Luecken

et al.37 The distance among cell types was then computed in

the reduced dimensions after integration. This approach allows

us to capture the conserved signal relatively accurately across

species, such as the chicken BP-19 case as mentioned above.

With multi-omics data at the cell-type level, we were able to

test the hypothesis regarding the relationship between gene

regulation landscapes and the conservation of subtypes. The

first natural hypothesis we generated was that the sequence of

regulatory elements for signature genes of conserved subtypes

might also be more conserved. We found that the conservation

of promoters of these genes could not explain the conservation

of cell types, indicating the involvement of more complex regula-

tory processes for cells to gain their identity.
Integrative analysis for snRNA-seq and snATAC-seq to
decipher key elements in gene regulation
CREs are important genomic regions that regulate the tran-

scription of neighboring genes usually through regulating the

recruitment of transcription initiation machinery. With the two

modalities of gene expression and peak accessibility, we asso-

ciated them to infer the potential regulatory functions of

genomic regions. More than 35,000 peak-gene pairs were iden-

tified in our study and most of the peaks were also identified as

DARs for at least one cell class. Besides, we investigated the

regulatory function of genomic regions in different types within

a major type. We showed that some genomic regions could

constantly act as regulators for proximal genes, while others

displayed higher heterogeneity. The underlying mechanism of

this observation could be the robustness and redundancy of

transcription regulation.38 The expression of one gene could

be driven by different transcription-activating proteins (e.g.,

transcription factors) using different genome regions as har-

bors. Thus, the gene transcription regulation could be highly

specific to individual cell types or even cell states. Although

straightforward, such scenarios have rarely been highlighted

in previous studies. Our finding highlights the importance of

investigating CREs in the context of cell types. Also, this could

only be investigated with a comprehensive dataset as we pre-

sented here, for cell-type level resolution is required for both

modalities.

In addition to the identification of CREs, mapping chromatin

accessibility can also help to study gene-regulatory networks

(GRNs). Many efforts have been made, using scRNA-seq alone,

to decipher the GRNs for transcription factors or simply build

gene modules, with some of them leading to the discovery of

functionally important TFs for the retinal tissue.39 One of the pop-

ular frameworks, SCENIC,35 used the motif information at the

proximal regions of genes (e.g., 10 kb regions around TSS) for

trimming the initially built GRNs. With the snATAC-seq data,

the search space for motif existence becomes broader and

more accurate. In this study, we leveraged the information on

the TF-motif presence in open chromatin regions around gene

TSS to perform the pruning of co-expression-based TF-target

networks. With this approach, we were able to quantitatively

assess the activity of TFs and learn their specificity across cell

types. Furthermore, we could group the TFs into modules based

on their activity in cells and annotate these modules. Multiple

well-studied cell-type-specific TFs such as OTX2, PAX6, and

NRL were included in the expected modules and were likely

the key regulators for these modules. Besides, we noticed that

some TFs, less studied in the context of the retina, appeared

to be potential master regulators, such as RORA, TCF4,

FOXN3, BACH2, etc. Some retinal defects related to these TFs

have been reported in mice according to the MGI database

(https://www.informatics.jax.org/), for example, TCF4 heterozy-

gous KO led to abnormal retina morphology and BACH2 KO

led to abnormal optic disk morphology. Our study could serve

as a prioritization step of the TFs as targets of in vivo functional

genomics screening in the retina, with technologies including

CRISPR screening or perturb-seq, using the mouse retina or

preferably, human retina organoids. Given the technical chal-

lenge in in vivo screening approaches, a prioritized list of targets
Cell Genomics 3, 100298, June 14, 2023 9
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may facilitate the experiment when lower throughputsweremore

technically preferable.

In summary, we report a comprehensive single-cell multi-

omics atlas for the human adult retina as part of the HCA project.

The utilization of well-characterized retinal tissue in this study in-

creases the translational value of the resulting dataset. This atlas

enables in-depth integrative analysis at individual cell-type reso-

lution, making it a highly valuable and robust resource for the

research community.

Limitations of the study
As is elaborated in the main text, the detection of RGCs was still

underpowered in our dataset. This is likely because we only

applied enrichment using the peripheral retinal samples, and

ACs were the more dominant NeuN-positive cell class, not

RGCs. The insufficient collection of RGCs also leads to a

decrease in the robustness of the integration of the RNA-ATAC

modalities (Figure S8). When some RGC types were rare in

numbersandsome (e.g.,ON/OFF-MGCs)weremuchmore abun-

dant, the co-embeddingwill largely be drivenby the abundant cell

types and compromise the integration performance on rarer

types. A full investigation of RGCs would need further efforts.

Given the rich size and comprehensiveness of these data, it is

admitted that our dataset has certain limits in reflecting the diver-

sity of human genetics. A major part of the profiled nuclei origi-

nated from Caucasian males, and from senior people. This study

then failed to capture information from younger groups or people

from other genetic backgrounds.We also did not consider sex as

a factor that could alternate the transcriptome to certain levels

for the analysis. Again, efforts have been made for postmortem

phenotyping to ensure that the retinal tissues were in healthy

states, and we have not observed biases such as a proportion

decrease in RGCs or any cell types among age groups (Fig-

ure S14), yet it is not practical to rule out the aging driven effect

in this way. These limits should be considered by potential users

of our presented data.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
10
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Nuclei isolation and sorting

B Single-nuclei sequencing

B Immunofluorescence (IF) staining

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Sequencing read alignment

B snRNA-seq quality control, clustering, and differential

expression

B Obtaining additional RGC data from other local data-

sets
Cell Genomics 3, 100298, June 14, 2023
B Matching cell types between the current study and pre-

vious ones using random forest classifiers

B Cross-species integration of snRNA-seq data

B snATAC-seq quality control, clustering, and differential

accessible analysis

B Comparing snATAC-seq datawith bulk ATAC-seq data

B Integration of snATAC-seq and snRNA-seq data

B Identification of CREs

B Transcription factor regulon determination and scoring
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2023.100298.

ACKNOWLEDGMENTS

This work is supported by the Chan-Zuckerburg Foundation Grant CZF2019-

002425. Single-nucleusRNA sequencingwas performedat theSingleCell Geno-

mics Core at BCM partially supported by NIH shared instrument grants

(S10OD018033, S10OD023469, S10OD025240), P30CA125123, P30EY002520,

and CPRIT Comprehensive Cancer Epigenomics Core Facility RP200504. The

cell-sorting experiments are also supported by the Cytometry and Cell Sorting

CoreatBaylorCollegeofMedicinewith funding from theCPRITCoreFacilitySup-

port Award (CPRIT-RP180672), the NIH (CA125123 and RR024574), and the

assistance of Joel M. Sederstrom. Ascertainment, collection, processing, and

phenotyping of donor eye tissue was partially supported by the Macular Degen-

erationFoundation, Inc., theCarlMarshallandMildredAlmenReevesFoundation,

and Ira G. Ross and Elizabeth Olmsted Ross Endowed Chair.

We want to thank Kaitlyn Xiong for offering critical advice. We want to thank

Dr. Aboozar Monavarfeshani for important discussion regarding the NeuN

enrichment technique.

AUTHOR CONTRIBUTIONS

R.C. andM.D. conceived and supervised the project. Q.L. and J.W. performed

the data analysis. X.C. and Y.L. performed the single-nuclei dissociation,

sequencing, and validation experiments. L.O., A.S., J.L., C.Z., M.F., and I.K.

performed the sample collection and postmortem phenotyping. Q.L. and

R.C. wrote the initial draft with input of all other authors. All authors approved

the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 28, 2022

Revised: February 22, 2023

Accepted: March 17, 2023

Published: April 11, 2023

REFERENCES

1. Masland, R.H. (2012). The neuronal organization of the retina. Neuron 76,

266–280. https://doi.org/10.1016/j.neuron.2012.10.002.

2. Kolb, H. (2012). Gross anatomy of the eye (Webvision). http://webvision.

med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/.

3. Baden, T., Euler, T., and Berens, P. (2019). Understanding the retinal basis

of vision across species. Nat. Rev. Neurosci. 21, 5–20. https://doi.org/10.

1038/s41583-019-0242-1.

4. Hoon, M., Okawa, H., Della Santina, L., andWong, R.O.L. (2014). Functional

architecture of the retina: development and disease. Prog. Retin. Eye Res.

42, 44–84. https://doi.org/10.1016/J.PRETEYERES.2014.06.003.

https://doi.org/10.1016/j.xgen.2023.100298
https://doi.org/10.1016/j.xgen.2023.100298
https://doi.org/10.1016/j.neuron.2012.10.002
http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/
http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/
https://doi.org/10.1038/s41583-019-0242-1
https://doi.org/10.1038/s41583-019-0242-1
https://doi.org/10.1016/J.PRETEYERES.2014.06.003


Resource
ll

OPEN ACCESS
5. Peng, Y.R., Shekhar, K., Yan, W., Herrmann, D., Sappington, A., Bryman,

G.S., van Zyl, T., Do, M.T.H., Regev, A., and Sanes, J.R. (2019). Molecular

classification and comparative taxonomics of foveal and peripheral cells in

primate retina. Cell 176, 1222–1237.e22. https://doi.org/10.1016/j.cell.

2019.01.004.

6. Tran, N.M., Shekhar, K., Whitney, I.E., Jacobi, A., Benhar, I., Hong, G.,

Yan, W., Adiconis, X., Arnold, M.E., Lee, J.M., et al. (2019). Single-cell pro-

files of retinal ganglion cells differing in resilience to injury reveal neuropro-

tective genes. Neuron 104, 1039–1055.e12. https://doi.org/10.1016/J.

NEURON.2019.11.006.

7. Yamagata, M., Yan, W., and Sanes, J.R. (2021). A cell atlas of the chick

retina based on single-cell transcriptomics. Elife 10, e63907. https://doi.

org/10.7554/ELIFE.63907.

8. Yan, W., Laboulaye, M.A., Tran, N.M., Whitney, I.E., Benhar, I., and Sanes,

J.R. (2020). Mouse retinal cell atlas: molecular identification of over sixty

amacrine cell types. J. Neurosci. 40, 5177–5195. https://doi.org/10.

1523/JNEUROSCI.0471-20.2020.

9. Yan, W., Peng, Y.-R., van Zyl, T., Regev, A., Shekhar, K., Juric, D., and

Sanes, J.R. (2020). Cell atlas of the human fovea and peripheral retina.

Sci. Rep. 10, 9802. https://doi.org/10.1038/s41598-020-66092-9.

10. Cowan, C.S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum,

D., Hou, Y., Munz, M., Rodrigues, T.M., Krol, J., Szikra, T., et al. (2020).

Cell types of the human retina and its organoids at single-cell resolution.

Cell 182, 1623–1640.e34. https://doi.org/10.1016/J.CELL.2020.08.013.

11. Orozco, L.D., Chen, H.-H., Cox, C., Katschke, K.J., Arceo, R., Espiritu, C.,

Caplazi, P., Nghiem, S.S., Chen, Y.-J., Modrusan, Z., et al. (2020). Integra-

tion of eQTL and a single-cell atlas in the human eye identifies causal

genes for age-related macular degeneration. Cell Rep. 30, 1246–

1259.e6. https://doi.org/10.1016/J.CELREP.2019.12.082.

12. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf,

W.J. (2013). Transposition of native chromatin for multimodal regulatory

analysis and personal epigenomics. Nat. Methods 10, 1213–1218.

https://doi.org/10.1038/NMETH.2688.

13. Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L.,

Snyder, M.P., Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chro-

matin accessibility reveals principles of regulatory variation. Nature 523,

486–490. https://doi.org/10.1038/NATURE14590.

14. Satpathy, A.T., Granja, J.M., Yost, K.E., Qi, Y., Meschi, F., McDermott,

G.P., Olsen, B.N., Mumbach, M.R., Pierce, S.E., Corces, M.R., et al.

(2019). Massively parallel single-cell chromatin landscapes of human im-

mune cell development and intratumoral T cell exhaustion. Nat. Bio-

technol. 37, 925–936. https://doi.org/10.1038/S41587-019-0206-Z.

15. Bhatia, S., Bengani, H., Fish, M., Brown, A., Divizia, M.T., de Marco, R.,

Damante, G., Grainger, R., van Heyningen, V., and Kleinjan, D.A. (2013).

Disruption of autoregulatory feedback by amutation in a remote, ultracon-

served PAX6 enhancer causes aniridia. Am. J. Hum. Genet. 93, 1126–

1134. https://doi.org/10.1016/J.AJHG.2013.10.028.

16. Ghiasvand, N.M., Rudolph, D.D., Mashayekhi, M., Brzezinski, J.A., Gold-

man, D., and Glaser, T. (2011). Deletion of a remote enhancer near ATOH7

disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 14,

578–586. https://doi.org/10.1038/NN.2798.

17. Rai, V.,Quang,D.X., Erdos,M.R.,Cusanovich,D.A., Daza,R.M., Narisu,N.,

Zou, L.S., Didion, J.P., Guan, Y., Shendure, J., et al. (2020). Single-cell

ATAC-Seq in human pancreatic islets and deep learning upscaling of rare

cells reveals cell-specific type 2 diabetes regulatory signatures. Mol.

Metab. 32, 109–121. https://doi.org/10.1016/J.MOLMET.2019.12.006.

18. Kim, S.S., Jagadeesh, K., Dey, K.K., Shen, A.Z., Raychaudhuri, S., Kellis,

M., and Price, A.L. (2021). Leveraging single-cell ATAC-seq to identify dis-

ease-critical fetal and adult brain cell types. Preprint at bioRxiv. https://doi.

org/10.1101/2021.05.20.445067.

19. Lyu, P., Hoang, T., Santiago, C.P., Thomas, E.D., Timms, A.E., Appel, H.,

Gimmen,M., Le, N., Jiang, L., Kim, D.W., et al. (2021). Gene regulatory net-

works controlling temporal patterning, neurogenesis, and cell-fate speci-
fication in mammalian retina. Cell Rep. 37, 109994. https://doi.org/10.

1016/J.CELREP.2021.109994.

20. Finkbeiner, C., Ortuño-Lizarán, I., Sridhar, A., Hooper, M., Petter, S., and

Reh, T.A. (2022). Single-cell ATAC-seq of fetal human retina and stem-

cell-derived retinal organoids shows changing chromatin landscapes dur-

ing cell fate acquisition. Cell Rep. 38, 110294. https://doi.org/10.1016/J.

CELREP.2021.110294.

21. Thomas, E.D., Timms, A.E., Giles, S., Harkins-Perry, S., Lyu, P., Hoang, T.,

Qian, J., Jackson, V.E., Bahlo, M., Blackshaw, S., et al. (2022). Cell-spe-

cific cis-regulatory elements and mechanisms of non-coding genetic dis-

ease in human retina and retinal organoids. Dev. Cell 57, 820–836.e6.

https://doi.org/10.1016/j.devcel.2022.02.018.

22. Wang, S.K., Nair, S., Li, R., Kraft, K., Pampari, A., Patel, A., Kang, J.B.,

Luong, C., Kundaje, A., and Chang, H.Y. (2022). Single-cell multiome of

the human retina and deep learning nominate causal variants in complex

eye diseases. Cell Genom. 2, 100164. https://doi.org/10.1016/J.XGEN.

2022.100164.

23. Dacey, D. (2004). 20 origins of perception: retinal ganglion cell diversity

and the creation of parallel visual pathways. In The Cognitive Neurosci-

ences Iii, G. Michael S., ed. (MIT Press), p. 281.

24. Kolb, H. (2015). Morphology and circuitry of ganglion cells. In Webvision,

pp. 1–16. https://webvision.med.utah.edu/book/part-ii-anatomy-and-

physiology-of-the-retina/morphology-and-circuitry-of-ganglion-cells/.

25. DO,M.T.H., and YAU, K.-W. (2010). Intrinsically photosensitive retinal gan-

glion cells. Physiol. Rev. 90, 1547–1581. https://doi.org/10.1152/PHYS-

REV.00013.2010.

26. Wolf, H.K., Buslei, R., Schmidt-Kastner, R., Schmidt-Kastner, P.K.,

Pietsch, T., Wiestler, O.D., and Bl€umcke, I. (1996). NeuN: a useful neuronal

marker for diagnostic histopathology. J. Histochem. Cytochem. 44,

1167–1171.

27. Lin, Y.-S., Kuo, K.-T., Chen, S.-K., and Huang, H.-S. (2018). RBFOX3/

NeuN is dispensable for visual function. PLoS One 13, e0192355.

https://doi.org/10.1371/JOURNAL.PONE.0192355.

28. Cherry, T.J., Yang,M.G., Harmin, D.A., Tao, P., Timms, A.E., Bauwens,M.,

Allikmets, R., Jones, E.M., Chen, R., De Baere, E., and Greenberg, M.E.

(2020). Mapping the cis-regulatory architecture of the human retina re-

veals noncoding genetic variation in disease. Proc. Natl. Acad. Sci. USA

117, 9001–9012. https://doi.org/10.1073/PNAS.1922501117.

29. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,

W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Compre-

hensive integration of single-cell data. Cell 177, 1888–1902.e21. https://

doi.org/10.1016/j.cell.2019.05.031.

30. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Ko-

walczyk, M., Adiconis, X., Levin, J.Z., Nemesh, J., Goldman, M., et al.

(2016). Comprehensive classification of retinal bipolar neurons by single-

cell transcriptomics. Cell 166, 1308–1323.e30. https://doi.org/10.1016/j.

cell.2016.07.054.

31. Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman,M.,

Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly

parallel genome-wide expression profiling of individual cells using nanoliter

droplets. Cell 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002.

32. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rose-

nbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al.

(2005). Evolutionarily conserved elements in vertebrate, insect, worm,

and yeast genomes. Genome Res. 15, 1034–1050. https://doi.org/10.

1101/GR.3715005.

33. Stuart, T., Srivastava, A., Madad, S., Lareau, C.A., and Satija, R. (2021).

Single-cell chromatin state analysis with Signac. Nat. Methods 18,

1333–1341. https://doi.org/10.1038/s41592-021-01282-5.

34. Granja, J.M., Corces, M.R., Pierce, S.E., Bagdatli, S.T., Choudhry, H.,

Chang, H.Y., and Greenleaf, W.J. (2021). ArchR is a scalable software

package for integrative single-cell chromatin accessibility analysis. Nat.

Genet. 53, 403–411. https://doi.org/10.1038/s41588-021-00790-6.
Cell Genomics 3, 100298, June 14, 2023 11

https://doi.org/10.1016/j.cell.2019.01.004
https://doi.org/10.1016/j.cell.2019.01.004
https://doi.org/10.1016/J.NEURON.2019.11.006
https://doi.org/10.1016/J.NEURON.2019.11.006
https://doi.org/10.7554/ELIFE.63907
https://doi.org/10.7554/ELIFE.63907
https://doi.org/10.1523/JNEUROSCI.0471-20.2020
https://doi.org/10.1523/JNEUROSCI.0471-20.2020
https://doi.org/10.1038/s41598-020-66092-9
https://doi.org/10.1016/J.CELL.2020.08.013
https://doi.org/10.1016/J.CELREP.2019.12.082
https://doi.org/10.1038/NMETH.2688
https://doi.org/10.1038/NATURE14590
https://doi.org/10.1038/S41587-019-0206-Z
https://doi.org/10.1016/J.AJHG.2013.10.028
https://doi.org/10.1038/NN.2798
https://doi.org/10.1016/J.MOLMET.2019.12.006
https://doi.org/10.1101/2021.05.20.445067
https://doi.org/10.1101/2021.05.20.445067
https://doi.org/10.1016/J.CELREP.2021.109994
https://doi.org/10.1016/J.CELREP.2021.109994
https://doi.org/10.1016/J.CELREP.2021.110294
https://doi.org/10.1016/J.CELREP.2021.110294
https://doi.org/10.1016/j.devcel.2022.02.018
https://doi.org/10.1016/J.XGEN.2022.100164
https://doi.org/10.1016/J.XGEN.2022.100164
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref23
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref23
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref23
https://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/morphology-and-circuitry-of-ganglion-cells/
https://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/morphology-and-circuitry-of-ganglion-cells/
https://doi.org/10.1152/PHYSREV.00013.2010
https://doi.org/10.1152/PHYSREV.00013.2010
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref26
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref26
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref26
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref26
http://refhub.elsevier.com/S2666-979X(23)00064-2/sref26
https://doi.org/10.1371/JOURNAL.PONE.0192355
https://doi.org/10.1073/PNAS.1922501117
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1101/GR.3715005
https://doi.org/10.1101/GR.3715005
https://doi.org/10.1038/s41592-021-01282-5
https://doi.org/10.1038/s41588-021-00790-6


Resource
ll

OPEN ACCESS
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(2020). Benchmarking atlas-level data integration in single-cell genomics.

Preprint at bioRxiv. https://doi.org/10.1101/2020.05.22.111161.

38. Zaugg, J.B., Sahlén, P., Andersson, R., Alberich-Jorda, M., de Laat, W.,

Deplancke, B., Ferrer, J., Mandrup, S., Natoli, G., Plewczynski, D., et al.

(2022). Current challenges in understanding the role of enhancers in dis-

ease. Nat. Struct. Mol. Biol. 29, 1148–1158. https://doi.org/10.1038/

s41594-022-00896-3.

39. Gautam, P., Hamashima, K., Chen, Y., Zeng, Y., Makovoz, B., Parikh,

B.H., Lee, H.Y., Lau, K.A., Su, X., Wong, R.C.B., et al. (2021). Multi-species

single-cell transcriptomic analysis of ocular compartment regulons. Nat.

Commun. 12, 5675. https://doi.org/10.1038/S41467-021-25968-8.

40. Young, M.D., and Behjati, S. (2020). SoupX removes ambient RNA

contamination from droplet-based single-cell RNA sequencing data. Gig-

aScience 9, giaa151. https://doi.org/10.1093/GIGASCIENCE/GIAA151.

41. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck,W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis

of multimodal single-cell data. Cell 184, 3573–3587.e29. https://doi.org/

10.1016/J.CELL.2021.04.048.

42. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder:

doublet detection in single-cell RNA sequencing data using artificial near-

est neighbors. Cell Syst. 8, 329–337.e4. https://doi.org/10.1016/J.CELS.

2019.03.003.

43. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep

generative modeling for single-cell transcriptomics. Nat. Methods 15,

1053–1058. https://doi.org/10.1038/s41592-018-0229-2.

44. Alquicira-Hernandez, J., Sathe, A., Ji, H.P., Nguyen, Q., and Powell, J.E.

(2019). scPred: accurate supervised method for cell-type classification

from single-cell RNA-seq data. Genome Biol. 20. https://doi.org/10.

1186/S13059-019-1862-5.

45. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein,

B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., and Liu, X.S. (2008).

Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.

https://doi.org/10.1186/GB-2008-9-9-R137/FIGURES/3.
12 Cell Genomics 3, 100298, June 14, 2023
46. Ramı́rez, F., Ryan, D.P., Gr€uning, B., Bhardwaj, V., Kilpert, F., Richter,

A.S., Heyne, S., D€undar, F., andManke, T. (2016). deepTools2: a next gen-

eration web server for deep-sequencing data analysis. Nucleic Acids Res.

44, W160–W165. https://doi.org/10.1093/NAR/GKW257.

47. Owen, L.A., Shakoor, A., Morgan, D.J., Hejazi, A.A., McEntire, M.W.,

Brown, J.J., Farrer, L.A., Kim, I., Vitale, A., and DeAngelis, M.M. (2019).

The Utah protocol for postmortem eye phenotyping and molecular

biochemical analysis. Invest. Ophthalmol. Vis. Sci. 60, 1204–1212.

https://doi.org/10.1167/iovs.18-24254.

48. Liang, Q., Dharmat, R., Owen, L., Shakoor, A., Li, Y., Kim, S., Vitale, A.,

Kim, I., Morgan, D., Liang, S., et al. (2019). Single-nuclei RNA-seq on hu-

man retinal tissue provides improved transcriptome profiling. Nat. Com-

mun. 10, 5743. https://doi.org/10.1038/s41467-019-12917-9.

49. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-

cell gene expression data analysis. Genome Biol. 19, 15. https://doi.org/

10.1186/S13059-017-1382-0.

50. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Lei-

den: guaranteeing well-connected communities. Sci. Rep. 9, 5233.

https://doi.org/10.1038/s41598-019-41695-z.

51. Lucas,A.. amap. https://cran.r-project.org/web/packages/amap/index.html.

52. Paradis, E., and Schliep, K. (2019). Ape 5.0: an environment for modern

phylogenetics and evolutionary analyses in R. Bioinformatics 35,

526–528. https://doi.org/10.1093/BIOINFORMATICS/BTY633.

53. Puigdevall, P., and Castelo, R. (2018). GenomicScores: seamless access

to genomewide position-specific scores from R and Bioconductor.

Bioinformatics 34, 3208–3210. https://doi.org/10.1093/BIOINFORMAT-

ICS/BTY311.

54. Sloan, C.A., Chan, E.T., Davidson, J.M., Malladi, V.S., Strattan, J.S., Hitz,

B.C., Gabdank, I., Narayanan, A.K., Ho, M., Lee, B.T., et al. (2016).

ENCODE data at the ENCODE portal. Nucleic Acids Res. 44, D726–

D732. https://doi.org/10.1093/NAR/GKV1160.

55. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841–842. https://doi.org/

10.1093/BIOINFORMATICS/BTQ033.

56. Suo, S., Zhu, Q., Saadatpour, A., Fei, L., Guo, G., Yuan, G.C., and Yuan,

G.-C. (2018). Revealing the critical regulators of cell identity in the mouse

cell atlas. Cell Rep. 25, 1436–1445.e3. https://doi.org/10.1016/j.celrep.

2018.10.045.

57. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). Inferring

regulatory networks from expression data using tree-based methods.

PLoS One 5, e12776. https://doi.org/10.1371/JOURNAL.PONE.0012776.

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/J.CELL.2019.05.006
https://doi.org/10.1016/J.CELL.2019.05.006
https://doi.org/10.1101/2020.05.22.111161
https://doi.org/10.1038/s41594-022-00896-3
https://doi.org/10.1038/s41594-022-00896-3
https://doi.org/10.1038/S41467-021-25968-8
https://doi.org/10.1093/GIGASCIENCE/GIAA151
https://doi.org/10.1016/J.CELL.2021.04.048
https://doi.org/10.1016/J.CELL.2021.04.048
https://doi.org/10.1016/J.CELS.2019.03.003
https://doi.org/10.1016/J.CELS.2019.03.003
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1186/S13059-019-1862-5
https://doi.org/10.1186/S13059-019-1862-5
https://doi.org/10.1186/GB-2008-9-9-R137/FIGURES/3
https://doi.org/10.1093/NAR/GKW257
https://doi.org/10.1167/iovs.18-24254
https://doi.org/10.1038/s41467-019-12917-9
https://doi.org/10.1186/S13059-017-1382-0
https://doi.org/10.1186/S13059-017-1382-0
https://doi.org/10.1038/s41598-019-41695-z
https://cran.r-project.org/web/packages/amap/index.html
https://doi.org/10.1093/BIOINFORMATICS/BTY633
https://doi.org/10.1093/BIOINFORMATICS/BTY311
https://doi.org/10.1093/BIOINFORMATICS/BTY311
https://doi.org/10.1093/NAR/GKV1160
https://doi.org/10.1093/BIOINFORMATICS/BTQ033
https://doi.org/10.1093/BIOINFORMATICS/BTQ033
https://doi.org/10.1016/j.celrep.2018.10.045
https://doi.org/10.1016/j.celrep.2018.10.045
https://doi.org/10.1371/JOURNAL.PONE.0012776


Resource
ll

OPEN ACCESS
STAR+METHODS
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-NeuN Millipore MAB377X; RRID:AB_2149209

Anti-RBPMS Novus Biological NBP2-20112

Biological samples

Frozen adult post-mortem

human retinas

UTAH LIONS Eye Bank N/A

Chemicals, peptides, and recombinant proteins

Rnase inhibitor Takara Bio 2323B

MACS BSA Stock Solution Miltenyi Biotec 130-091-376

Protease inhibitor Roche 11697498001

Tween 20 Bio-Rad 1662404

Trizma Hydrochloride Solution, pH 7.4 Sigma-Aldrich T2194

Sodium Chloride Solution, 5M Sigma-Aldrich 59222C

Magnesium Chloride Solution, 1M Sigma-Aldrich M1028

Nonidet P40 Substitute IGEPAL CA-630 Sigma-Aldrich I8896

Critical commercial assays

Chromium Next GEM Single Cell 30 Kit v3.1 10x Genomics

Chromium Next GEM Single

Cell ATAC Library & Gel Bead Kit v1.1

10x Genomics

Deposited data

snRNA-seq and snATAC-seq data This paper https://data.humancellatlas.org/explore/projects/

9c20a245-f2c0-43ae-82c9-2232ec6b594f

https://cellxgene.cziscience.com/collections/

af893e86-8e9f-41f1-a474-ef05359b1fb7

Software and algorithms

Cell Ranger 10x Genomics 3.0.2

Cell Ranger ATAC 10x Genomics 1.2.0

SoupX Young and Behjati.40 https://github.com/constantAmateur/SoupX

Seurat Hao et al.41 https://satijalab.org/seurat/

DoubletFinder McGinnis et al.42 https://github.com/chris-mcginnis-ucsf/DoubletFinder

scVI Lopez et al.43 https://scvi-tools.org/

scPred Alquicira-Hernandez et al.44 https://github.com/powellgenomicslab/scPred

LIGER Welch et al.36 https://github.com/welch-lab/liger

Pysam https://pysam.readthedocs.io/en/latest/api.html

Bedtools https://bedtools.readthedocs.io/en/latest/

macs2 Zhang et al.45 https://pypi.org/project/MACS2/

Deeptools Ramı́rez et al.46 https://deeptools.readthedocs.io/en/develop/

SCENIC Aibar et al.35 https://github.com/aertslab/SCENIC
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Rui

Chen (ruichen@bcm.edu).
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Materials availability
Since the primary samples were limited and were used for data collection, human tissues used in this study will not be available to be

shared upon requests. This study does not report other unique materials. For further information, please contact the lead contact.

Data and code availability
All sequencing data generated in this study is available at: https://data.humancellatlas.org/explore/projects/9c20a245-f2c0-

43ae-82c9-2232ec6b594f; or on gene expression omnibus (GEO) with accession number GSE226108.

HCA portal for this data could be used for interactive visualization: https://cellxgene.cziscience.com/collections/af893e86-8e9f-

41f1-a474-ef05359b1fb7.

Original code is available in: https://github.com/qingnanl/human-retina-multiomics.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The samples used for this study were collected from 25 individuals from the Utah Lions Eye Bank. Detailed information for these do-

nors was included in Table 1 and 2. All donor eye samples were collected within 6 h postmortem. Donors’ eyes were subsequently

phenotyped to ensure that they were absent of any disease pathology. Details for the postmortem phenotyping and dissection were

according to a previously described standardized protocol.47 In brief, only samples from donors with no record of diabetes, retinal

degeneration, macular degeneration, or any other retinal diseaseswere used in this study. Postmortem phenotyping with the spectral

domain–optical coherence tomography (SD-OCT) and fundus imaging, to confirm that there were no drusen, atrophy, or other dis-

ease pathology, was done utilizing our standardized approach.48 Although both donor’s eyes were phenotyped for each subject, to

ensure that disease pathology was absent for a given subject, only one donor eye was used. For this study, the fovea and macula

samples were collected separately, using a 4 mm and 6 mm disposable biopsy punch, respectively, and were flash-frozen in liquid

nitrogen. All samples were then stored at -80 �C before nuclei isolation.

All tissues were de-identified under HIPAA Privacy Rules. Institutional approval for the consent of patients for their tissue donation

was obtained from the University of Utah and conformed to the tenets of the Declaration of Helsinki.

METHOD DETAILS

Nuclei isolation and sorting
Nuclei were isolated by pre-chilled fresh-made RNase-free lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.02% NP40).

The frozen tissue was resuspended and triturated to break the tissue structure in lysis buffer and homogenized with a WheatonTM

Dounce Tissue Grinder. Isolated nuclei were stained with mouse anti-NeuNmonoclonal antibody (1:5000, Alexa Flour 488 Conjugate

MAB377X, Millipore, Billerica, Massachusetts, United States) in pre-chilled fresh-made wash buffer (1%BSA in PBS, 0.2U/ml RNAse

inhibitor) for 30min at 4�C. After being centrifuged at 500g, the pellet was resuspended in wash buffer and filtered with a 40mmFlowmi

Cell Strainer. DAPI (40,6-diamidino-2-phenylindole, 10 mg/ml) was added before loading the nuclei for fluorescent cytometry sorting.

Stained nuclei were sorted with a FACS Aria II flow sorter (Becton Dickinson, San Jose, CA), (70mm nozzle). Sorting gates were

based on flow analysis of events and strengths of the DAPI signal, as well as the FITC signal. Samples were sorted at a rate of 50

events per second, based on side scatter (threshold value >200). Fluorescence detection used a 450-nm/40-nm-band pass barrier

filter for the DAPI, and a 530-nm/30-nm-band pass filter for FITC. For the NeuNT group, the nuclei with the strongest 5% FITC signal

were collected into Eppendorf tubes with 3ml pre-chilled wash buffer.

Single-nuclei sequencing
All single-nuclei RNA or ATAC sequencing in this study was performed at the Single Cell Genomics Core at Baylor College of Med-

icine. Single-nuclei cDNA library preparation and sequencing were performed following the manufacturer’s protocols (https://www.

10xgenomics.com). Single-nuclei suspension was loaded on a Chromium controller to obtain single-cell GEMS (Gel Beads-In-

Emulsions) for the reaction. The snRNA-seq library was prepared with Chromium Next GEM Single Cell 3’ Kit v3.1 (10x Genomics).

The snATAC-seq library was prepared with Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit v1.1 (10x Genomics). The

library was then sequenced on Illumina Novaseq 6000 (https://www.illumina.com).

Immunofluorescence (IF) staining
Healthy human donor retinal tissue was dissected and fixed in 4% PFA for 48 h, cryo-protected with 30% sucrose overnight at 4�C,
and then embedded in OCT to be flash-frozen. Cryosections from a peripheral region of the human retina with 10 mm thickness were

used for the IF.

For the IF, sections were fixed with 4% PFA for 15 min at room temperature, and after being washed with PBS 3 times, 5min per

time, they were blocked for 3 h with blocking buffer (10% normal goat serum in PBS + 0.1% Triton X-100) at room temperature. Sec-

tions were then incubated with primary antibodies (anti-NeuN: 1:50, MAB377X, Millipore, Billerica, Massachusetts, United States;

anti-RBPMS:1:1000, Novus Biologicals NBP2-20112) diluted in blocking buffer. The sections were washed and stained with
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species-specific fluorophore-conjugated secondary antibody in blocking buffer (1:500) for 2hrs at room temperature, then washed

and stained with DAPI for 10 min. After washing with PBS 3 times, the sections weremountedwith AquaMount SlideMountingMedia

(Thermo Scientific 13800). IF stained slides were visualized with Zeiss Axio Imager M2m.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing read alignment
Reads from snRNA-seq were demultiplexed and then aligned to the ‘Ref_cellranger.hg19.premrna’ human reference (from 10x

Genomics) using Cell Ranger (version 3.0.2, 10x Genomics). Reads from snATAC-seq were demultiplexed and then aligned to the

refdata-cellranger-atac-hg19-1.2.0 human reference (from 10x Genomics) using Cell Ranger (version 1.2.0, 10x Genomics).

snRNA-seq quality control, clustering, and differential expression
The gene expressionmatrices generated byCell Ranger were filtered for quality control purposes.We first used the soupX package40

to correct the feature counts to alleviate the effect of ambient RNA. For each matrix, genes detected in less than 5 cells were

removed; cells with total UMI counts less than 800 or more than 8000 were removed, and the top 5% of cells with the highest

mitochondrial gene expression proportion were removed. This processing was performed using the Seurat R package.41 Unlike

single-cell RNA-seq, snRNA-seq data had amuch lowermitochondrial gene expression proportion, and thus, we removed high-mito-

chondrial-content cells based on the rank of cells but not a fixed threshold of mitochondrial gene expression proportion. We then

performed doublet removal on the remaining cells using DoubletFinder.42 The key parameters of DoubletFinder were set such

that pN equals 0.25, the estimated doublet ratio was 0.1, and pK was estimated automatically with ‘find.pK’ function. Details of

cell filtering of each QC-filtering step are reported in Table S7.

The expression matrices after the initial QC were combined into one single scanpy49 anndata object. To account for batch effects

originating from sample collection processes, the scVI framework43 was applied with standard parameters. The low dimensional em-

beddings generated were then used to perform leiden clustering,50 and major cell classes were annotated based on known marker

genes. Major cell classes were then split for sub-clustering, which was also performed with scVI with the same process as described

above. To avoid under- or over-clustering in type discovery, we adapted a parameter-searching approach to finding the best com-

bination of neighbors and resolution for clustering, as described in Figure S2. After sub-clustering, we checked the expression of

marker genes for all major cell classes and used that to remove doublets for a second round. For example, if an AC cluster had

high rod marker gene expression, it was removed.

For the differential expression analysis, we used the default Wilcoxon method implemented in the Seurat package. The ‘logfc.-

threshold’ was set to 0.25 and ‘min.pct’ was set to 0.2. Only genes with an adjusted p value less than 0.05 were retained as differ-

entially expressed genes (DEGs). The DEGs for major cell classes were computed using other classes as background, while the

DEGs for types were computed using other types from the same class as background.

Obtaining additional RGC data from other local datasets
To increase the number of RGCs for building a more comprehensive atlas, besides the cells from the six donors primarily used, we

also used RGCs from other locally sequenced datasets. These RGCswere identified using a supervised single-cell annotation frame-

work, scPred.44 Annotated snRNA-seq data, including rod, cone, MG, AC, BC, HC, and RGC, were downsampled to 10,000 cells per

cell type, as input for training the scPred model. 70% of cells were used for training and the rest were used for evaluating the per-

formance of the model. The model was then applied to query datasets for automatically annotating cells to major classes, with the

prediction threshold set to 0.8.

Matching cell types between the current study and previous ones using random forest classifiers
Random forest based classifiers had been shown to performwell in previous primate retina studies.5 Tomatch cell types between the

current study and a previous human retina study, the top 2000 highly variable genes were selected from the human expressionmatrix

and were used to build a classifier on the monkey expression matrix. 500 cells for each cell type were used to train the classifier and

the rest were used to evaluate the classifier. Cell types that had small numbers of cells were split by 70%and 30%as training and test

set. The random forest classifier was built using the ‘randomForest’ package in R, using ‘ntree’ equal to 1001. For each cell, if the

highest prediction voting rate was less than a threshold (20%), it was labeled as ‘unassigned’. Sankey plot was used to visualize

the matching of the data, performed in python with the plotly.graph_objects package.

Cross-species integration of snRNA-seq data
The expression matrices and annotations for single-cell RNA-seq data for mouse, chicken, and monkey retinas were obtained from

previous publications.5,7,8,30 All the gene names were converted to human gene nomenclatures, and thematrices from the three spe-

cies were then merged into a single matrix, for each cell type. At this step, we only retained the genes with 1:1 matching orthologs

across species. The data were then integrated using the LIGER framework,36 implemented as a Seurat wrapper. A standard workflow

was applied, using the top 5000 highly variable genes, with the k value set to 20 and lambda set to 5. The data was projected to an

integration space with 20 dimensions. The coordinates of cells from the same type were averaged and then used to calculate the
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distancematrix (across each species) using the ‘Dist’ function of the ‘amap’ R package.51 Euclidean distancewas used. The distance

matrix was then used to build the phylogeny tree using the ‘nj’ function of the ‘ape’ R package.52

snATAC-seq quality control, clustering, and differential accessible analysis
The snATAC-seq data was mainly analyzed using the Signac33 framework. The data output from Cell Ranger ATAC was used as the

input. Data from each donor were first combined based on a consensus set of genomic regions and then filtered with QC metrics

after merging to a single object. Cells with less than 3000 fragments or more than 20000 fragments were removed for downstream

analysis. We also used another two QC criteria implemented in Signac, nucleosome signal and TSS enrichment for filtering nuclei

(nucleosome signal less than 4 and TSS enrichment larger than 2 for the nuclei to be retained). Details of nuclei QC-filtering could

be found in Table S7. Thus, we resulted in an initial peak-by-nuclei matrix.

Dimensionality reduction was performed using the ‘RunTFIDF’ and ‘RunSVD’ functions with default parameters and then clustered

using ‘FindClusters’ function, also with default parameters. The clusters were annotated to major cell types by checking the genome

accessibility of known marker genes. Also, with the annotation information, peaks were identified with macs245 called by each cell

class. With the macs2 output, we updated the peak-by-nuclei matrix, and all the downstream analyses were based on this updated

version.

Differential accessible analysis for finding differential peaks was performed with FindAllMarkers of the Seurat package, setting the

minimal detection percentage (min.pct) equal to 0.1. For calculating the conservation of each peak, the peak coordinates were first

converted to a GenomicRanges object, and we used the R package GenomicScores53 to score the conservation of each peak using

the ‘phastCons 100 species’ system.

Comparing snATAC-seq data with bulk ATAC-seq data
Public ATAC-seq data in bigwig format were downloaded from ENCODE portal54 (ENCFF158OVK for pancreas, ENCFF507OEP for

aorta, ENCFF111XAE for adrenal gland, ENCFF961DZL for thyroid gland, ENCFF492WGC for stomach, ENCFF160VHY

for cerebellum, and ENCFF577GPG for motor neurons of spinal cord), and GEO (GSE137311, for retina and macula; GSE96949

for hippocampus neuron and glia). Conversion from hg38 aligned coordinates to hg19 versions was performed using CrossMap

when needed. snATAC-seq data (bam files) were split based on cell classes using Pysam (https://github.com/pysam-developers/

pysam) based on cell barcodes. The bam files for each cell typewere deduplicated using the ‘MarkDuplicates’ function in picard tools

(http://broadinstitute.github.io/picard/). They were then converted to bigwig format, normalized by total reads, and scaled to 100

million reads using the ‘genomecov’ function in bedtools.55 The genome coverage for all the public bulk ATAC-seq data or grouped

snATAC-seq data were transformed to a data frame using the ’multiBigwigSummary’ function of the deeptools software,46 using a

window size of 10 kb. Spearman correlation among samples was computed using ‘plotCorrelation’ function of deeptools.

Integration of snATAC-seq and snRNA-seq data
For snATAC-seq data, the gene expression wasmodeled using the ‘GeneActivity’ implemented in Signac framework. For cell classes

with known cell type heterogeneity (AC, BC, HC, Cone, and RGC), the integration was performed within that class, to annotate

snATAC-seq data to types. Highly variable genes in both snRNA-seq data and GeneActivity matrices of snATAC-seq data were

selected and the common ones were used as inputs for data integration. The GeneActivity matrices of snATAC-seq were first

used as query data for further imputing the gene expression using the ‘transfer anchors’ method in the Seurat R package, with

snRNA-seq as reference. The imputed gene expression matrices are used for the calculation of the peak-gene correlation at sin-

gle-cell levels. We also directly predict labels for the ATAC-seq data for the purpose of cell type annotation.

Identification of CREs
The gene expression for each nucleus in the snATAC-seq data was inferred using the Seurat ‘transfer anchors’ method with the

snRNA-seq data as the reference. Thus, for each nucleus, we have both the gene expression and peak accessibility information.

These two pieces of information were used as inputs to infer the association between genes and peaks. To avoid the effect of the

sparsity of the single-cell data, we created meta cells by averaging cells being neighbors in the low-dimensional embedding.

Each meta cell is an average of 10 different cells and each cell is only merged into a single meta cell (https://github.com/

qingnanl/SRAVG). We used the ‘LinkPeaks’ function in the Signac package to calculate the correlation between each gene and

any peak within 250 kb of the gene TSS. We performed the analysis with all the nuclei as input to calculate an overall peak-gene as-

sociation (Figures 3B–3E). For cell-type specific CRE inference, we performed the analysis in a ‘pseudo-bulk’ manner. We grouped

the nuclei with the same sample (donor) and calculated the Pearson’s correlation coefficients between any gene and peaks within

250 kb of the TSS (Figure 3F).

Transcription factor regulon determination and scoring
The initial construction of TF regulons required gene co-expression analysis using the snRNA-seq data. Given the large size of our

data, in consideration of computational efficiency, we createdmeta-cells by grouping cells within each cell type and used the average

gene expression for this meta-cell. The size of each group was 20, so that the size of this meta-cell matrix could be reduced to about

5% of the original one. This approach was previously reported by Suo et al.56
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The meta cell matrix was then used as the input of GINIE357 algorithm to construct an initial TF regulon network. The output of

GINIE3 was a weight matrix regarding how likely each TF is a regulator of each target gene. We set the weight cutoff at 0.005 for

deciding the TF-target relationship and thus we resulted in an initial TF-target network. We then used the peaks proximal to target

TSS, which could be obtained from snATAC-seq data, to prune the network. We searched motifs in peaks that were 50kb upstream

to the TSS and required at least one appearance for the TF-target pair to be retained.With the pruned regulons, we used the AUCell R

package by the default parameters to calculate the TF activity score for each meta cell.
Cell Genomics 3, 100298, June 14, 2023 e5


	A multi-omics atlas of the human retina at single-cell resolution
	Introduction
	Results
	The single-cell multi-omics atlas of human retina
	Transcriptomic and open chromatin profiles of retinal cell types
	Identification of CREs through integrative analysis of snRNA-seq and snATAC-seq data
	Integrative analysis of transcription factor functions and cell-type specificity in the retina

	Discussion
	Comprehensive single-cell multi-omics atlas of the human retina
	Cross-species comparison among cell types
	Integrative analysis for snRNA-seq and snATAC-seq to decipher key elements in gene regulation
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Nuclei isolation and sorting
	Single-nuclei sequencing
	Immunofluorescence (IF) staining

	Quantification and statistical analysis
	Sequencing read alignment
	snRNA-seq quality control, clustering, and differential expression
	Obtaining additional RGC data from other local datasets
	Matching cell types between the current study and previous ones using random forest classifiers
	Cross-species integration of snRNA-seq data
	snATAC-seq quality control, clustering, and differential accessible analysis
	Comparing snATAC-seq data with bulk ATAC-seq data
	Integration of snATAC-seq and snRNA-seq data
	Identification of CREs
	Transcription factor regulon determination and scoring




