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Abstract: Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum
(Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins
produced by Fg are harmful to the environment and humans. In our previous study, we obtained
two mutants TPS1− and TPS2−. Neither of these mutants could synthesize trehalose, and they
produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we
systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O,
the TPS− mutants and wild type (WT) using NMR combined with multivariate analysis. More
than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids,
choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible
wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear
metabolic differences between inoculation with mutants (TPS1−/TPS2−) and with ddH2O/WT.
For the susceptible wheat, there were obvious metabolic differences between inoculation with
mutant (TPS1−/TPS2−) and inoculation with ddH2O; however, there were no significant metabolic
differences between inoculation with TPS− mutants and with WT. Specifically, compared with ddH2O,
resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid
in response to TPS− mutants; however, susceptible wheat did not. Shikimate-mediated secondary
metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the
production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat
varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and
shikimate-mediated secondary metabolism in wheat remains to be further studied.

Keywords: Fusarium graminearum; resistant and susceptible wheat; trehalose biosynthesis; TPS1−;
TPS2−; metabonomics; NMR

1. Introduction

Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum
aestivum L.) globally. FHB, caused by Fusarium graminearum (Fg) Schwabe (teleomorph
Gibberella zeae Petch), not only leads to huge reductions in wheat grain yield, but also
harms the environment and humans by producing deteriorated grain quality contaminated
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with trichothecene mycotoxins [1–4]. Since 1993, FHB has become a major problem for the
agriculture industry in North America [5,6]. Apart from FHB, Fg can also infect other cereals
(such as barley, maize, and oats), and cause stalk rot or root rot [7]. Although fungicides
have been applied to control Fg, the resulting environmental problems and fungicide
resistance are not negligible [7]. Breeding FHB-resistant wheat varieties is considered to be
an economical and environmentally friendly approach to managing FHB.

Trehalose is a nonreducing disaccharide formed by two glucose molecules linked with
a 1α–1α bond, and is widely found in plants, bacteria, fungi and insects [8]. In recent
years, trehalose has drawn considerable attention for its important functions in serving as a
carbon source [9], regulating osmotic pressure as a compatible solute in prokaryotes [10],
and stabilizing and protecting membranes and proteins [11,12]. In addition, trehalose
plays a significant role in the response to various stresses such as oxidative stress, heat, and
drought [13–15]. More importantly, trehalose may play a role in signaling or regulation [16].

It is reported that there are at least five pathways for trehalose biosynthesis in dif-
ferent organisms [8,16]. The best-known pathway involves two steps: the first step is
being catalyzed by trehalose 6-phosphate synthase (TPS1), and the second step is being
catalyzed by trehalose 6-phosphate phosphatase (TPS2). TPS1 catalyzes the transfer of
combined uridinediphospho (UDP) glucose and glucose 6-phosphate to generate trehalose
6-phosphate (T6P), while TPS2 is responsible for catalyzing the dephosphorylation of T6P
to form trehalose [17,18]. Many studies have demonstrated that, apart from involvement in
trehalose synthesis, TPS genes also take part in the development, pathogenicity and stress
responses in yeast and higher fungi [19]. Blocking trehalose synthesis may be a promising
approach for managing fungal diseases [20].

We obtained two mutant strains, TPS1− and TPS2−, from our previous study, carrying
a single deletion of TPS1 or TPS2, respectively [21]. The results showed that TPS1 appeared
unessential for Fg development and virulence, while TPS2 deletion abolished sporulation
and sexual reproduction of Fg. In addition, it was reported that the TPS2− mutant had
a more significant reduction in the production of mycotoxins compared with the TPS1−

mutant [22].
Metabonomics has emerged as a powerful tool for studying the metabolic responses

of plants to both biotic and abiotic stresses [23–29]. It has been used in understanding the
interaction between plants and pathogens [30,31] and between plants and insects [24,32,33].
For example, metabolomics analysis of wheat leaves and stem tissues indicated that the
levels of betaine, sucrose, glucose, glutamate, glutamine, alanine, trans-aconitic acid, and
some aromatic compounds were positively correlated with FHB resistance [34]. Moreover,
Liu et al. [25] found that the activation of γ- amino butyric acid shunt and shikimate-
mediated secondary metabolism was vital for rice plants to resist insect infestation. Further-
more, combined transcriptomic and metabolomic analyses revealed that the tryptophan
synthesis pathway plays an important role in the resistance of cotton to V. dahlia [35]. So
far, the metabolic responses of FHB-resistant and -susceptible wheat to TPS− mutants
and WT is unclear. However, this information can afford us metabolites or metabolic
pathways related to FHB resistance and can afford help in controlling Fg and developing
FHB-resistant wheat varieties.

In this study, we analyzed the metabolomics profiles of FHB-resistant and -susceptible
wheat varieties inoculated with ddH2O, WT, and TPS− mutants. Our objectives are to
obtain the different metabolic responses of resistant and susceptible wheat to ddH2O,
WT, and TPS− mutants, which will offer important information for further cultivating
FHB-resistant wheat varieties.

2. Materials and Methods
2.1. Chemicals

Methanol, NaH2PO4.2H2O, and K2HPO4.3H2O were purchased from Guoyao Chemical
Co. Ltd. (Shanghai, China), while sodium 3-trimethlysilyl [2, 2, 3, 3-D4] propionate (TSP) and
D2O (99.9% D) were obtained from Cambridge Isotope Laboratory (Miami, FL, USA).
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2.2. Fungus Material Culture and Plant Materials

Fg strain 5035 (wild type, WT) was isolated from a scabby wheat spike in Wuhan
(China). Strain 5035 was highly pathogenic to wheat through producing many mycotox-
ins [36,37]. TPS1− and TPS2− are two isogenic strains obtained from homologous recombi-
nation of Fg strain 5035 through Agrobacterium-mediated transformation [21]. Molecular
characterization confirmed that trehalose 6-phosphate synthase gene was deleted in the
TPS1− mutant, while trehalose 6-phosphate phosphatase was deleted in the TPS2− mu-
tant [21]. Fg strains were cultured in CMC broth (7.5 g/L of carboxymethyl cellulose,
0.5 g/L of KH2PO4, 0.5 g/L of NH4NO3, 0.25 g/L of MgSO4.7H2O, and 0.5 g/L of yeast
extract) [38] at 28 ◦C for 5 days (200 rpm). Conidiaspores were collected and adjusted to
the concentration of about 1 × 106 spores/mL, and 10 µL of the conidia was cultured at
28 ◦C on potato-dextrose agar (PDA) for 3 days.

In this experiment, the wheat variety Sumai 3, which is resistant to FHB, and Annong
8455, which is susceptible to FHB, were grown in fields at Huazhong Agricultural Univer-
sity, Wuhan, China [39]. At the early anthesis, one spike per wheat was inoculated with
10 µL of ddH2O or the above conidia suspensions (Fg WT, TPS1−, and TPS2−) using
a pipette tip for 96 h. Five inoculated spikes were collected as a sample, and a total of
46 samples of the two wheat varieties were obtained to afford five to seven biological
replicates (n = 5–7). The wheat spikes were harvested and snap-frozen in liquid nitrogen,
then stored at −80 ◦C until further analysis.

2.3. Metabolite Extraction for Wheat

Metabolites in wheat spikes were extracted using a previously reported method with
some improvements [24]. The samples were freeze-dried, ground into powder with a
mortar and pestle, and about 25 mg of the powder samples was transferred into a 2 mL
Eppendorf tube with the addition of 1.2 mL of methanol/water solution (v/v = 2/1, −40 ◦C)
and one 5 mm tungsten carbide bead (Qiagen, Germany). The mixture was homogenized
using a tissuelyser (Qiagen, Germany) after drastically vortexing for 30 s followed by 15 min
intermittent sonication (i.e., 30 s sonication with 30 s break) in an ice bath. The supernatant
of each sample was transferred into a new 5 mL Eppendorf tube following centrifugation
for 10 min (16,099× g, 4 ◦C). The remaining residues were further extracted twice using
the same method, and three supernatants were combined as one sample. After removal
of methanol under vacuum, samples were lyophilized. The freeze-dried extracts were
redissolved in 600 µL of phosphate buffer (0.1 M K2HPO4-NaH2PO4, pH 7.4) containing
50% D2O (v/v) and 0.02% TSP [40]. After being centrifuged for 10 min (16,099× g, 4◦C), a
total of 500 µL of supernatant for each sample was transferred into 5 mm NMR tubes for
NMR-based metabolite analysis.

2.4. NMR Measurements

All 1H NMR spectra of samples for wheat spikes were acquired at 298 K using an
inverse detection cryogenic probe on a Bruker AVIII 600 spectrometer (Bruker Biospin,
GmbH, Rheinstetten, Germany). The 1H NMR spectra were acquired using NOESY pulse
sequence (RD-90◦-t1-90◦-tm-90◦-acquisition) with 90◦ pulse length of about 9.4 µs and t1
was set to 2 µs. Water peak was saturated with a weak irradiation during the recycle delay
(RD) of 2 s and a mixing time (tm) of 100 ms, and 32 transients were collected into 64 k
data points with a spectral width of 20 ppm. A series of 2D NMR spectra including 1H-1H
TOCSY, 1H-1H COSY, 1H-JRES, 1H-13C HSQC, and 1H-13C HMBC spectra were acquired
using selected samples for metabolite assignments [24].

2.5. Spectral Processing and Multivariate Data Analysis

Following phase and baseline correction using TopSpin (v3.1, Bruker Biospin GmbH,
Germany), all NMR spectra were referenced to the internal standard TSP at δ 0.000 ppm.
The spectral region between 0.5 and 10.0 ppm was divided into bins with a width of
0.004 ppm (2.4 Hz) using the AMIX software (v 3.8.3, Bruker Biospin GmbH, Germany).
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The water regions at δ 4.700–5.100 were removed. A total of 2275 bins for all remaining
regions were normalized to the dry weight of wheat spikes to give a dataset in the form of
signal area (metabolite quantity) per gram dry weight of wheat.

Principal component analysis (PCA) and orthogonal projection to latent structures
discriminant analysis (OPLS-DA) [41] were both performed on the normalized NMR data
using SIMCA-P+ software (v12.0, Umetrics, Umea, Sweden). In OPLS-DA models, one
orthogonal and one predictive component were calculated using the unit-variance (UV)
scaled NMR data as X-matrix and the class information as Y-matrix. The model quali-
ties were described by the explained variances for X-matrix (R2X values) and the model
predictability (Q2 values) with further assessment with ANOVA of the cross-validated resid-
uals (CV-ANOVA) approach where intergroup differences were considered as significant
with p value < 0.05 [42]. Leave-One-Out (LOO) validation was used in the cross-validation
of the models. The results were exhibited in both the form of scores plots and loadings
plots, in which scores plots and loadings plots showed group clustering and indicated
variables (metabolite levels) contributing to inter-group differences, respectively. In such
loading plots, variables were color-coded according to absolute values of the correlation
coefficients (|r|) [43], and variables (i.e., metabolite contents) with a cool color (e.g., blue)
showed less significant contributions to inter-group differences than those with a warm
color (e.g., red). In this study, the metabolites showing statistically significant changes were
obtained at the level of p < 0.05.

3. Results
3.1. Metabolic Profiles for FHB-Susceptible and -Resistant Wheats

1H NMR spectra of wheat spike extracts showed obvious difference in the metabolic
profiles for FHB-resistant wheat (Sumai 3) inoculated with ddH2O, WT, TPS1−, and TPS2−

(Figure 1). Similarly, there was also an obvious difference in the metabolic profiles for the
FHB-susceptible wheat (Annong 8455) inoculated with ddH2O, WT, TPS1−, and TPS2−

(Figure 2). Signals were assigned to individual metabolites (Table S1) based on data in the
literature [23,44,45] and in-house databases. A series of 2D NMR spectra were acquired for
selected samples to further confirm metabolite identifications. More than 40 metabolites
were identified, including 5 sugars (sucrose, glucose, raffinose, fructose, and myo-inositol),
16 amino acids and their metabolites (Val, Ieu, Ile, Thr, Ala, Arg, Met, GABA, Glu, Gln, Asp,
Asn, Phe, Trp, Tyr, and His), 9 organic acids (acetate, lactate, pyruvate, succinate, fumarate,
citrate, α-ketoglutarate, malate, and formate), 5 choline metabolites (choline, phosphocholine,
glycine betaine, ethanolamine, and dimethylglycine), 6 nucleotide metabolites (adeno-
sine, uridine, guanosine, hypoxanthine, inosine, and AMP), and 2 secondary metabolites
(p-hydroxy cinnamic acid and chlorogenic acid) (Figures 1 and 2, Table S1).

Visual inspection of Figure 1 suggested that for the resistant wheat Sumai 3, inoculation
with the TPS1− mutant for 96 h induced significant elevation in guanosine level along
with a decrease in α-ketoglutarate level when compared with inoculation with ddH2O,
and it had decreases in myo-inositol and Asp levels when compared with inoculation
with WT (Figure 1a–c). In addition, for the resistant wheat Sumai 3, inoculation with
the TPS2− mutant induced significantly higher levels of Phe and chlorogenic acid than
inoculation with ddH2O, and it had a lower level of sucrose than with inoculation with WT
(Figure 1a,b,d).

For the susceptible wheat variety Annong 8455, the level of adenosine was higher
in response to inoculation with the TPS1− mutant for 96 h than inoculation with ddH2O,
and the levels of sucrose and guanosine were lower after being inoculated with the TPS2−

mutant compared with inoculation with ddH2O (Figure 2). Moreover, inoculation with
the TPS2− mutant induced a more significant reduction in glucose and malate levels in
the susceptible wheat than inoculation with the TPS1− mutant (Figure 2c,d). To obtain
more detailed information about metabolic changes in the resistant and susceptible wheats
induced by ddH2O, WT, TPS1−, and TPS2−, multivariate data analyses were performed
on the NMR data of these wheat spikes.
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Figure 1. 1H NMR spectra of extracts for resistant wheat Sumai 3 inoculated with (a) ddH2O,
(b) Fg WT 5035, (c) Fg TPS1− mutant, and (d) Fg TPS2− mutant for 96 h. The region δ 5.31–9.21 was
vertically expanded 8 times. Keys: 1, isoleucine (Ile); 2, leucine (Leu); 3, valine (Val); 4, threonine (Thr);
5, alanine (Ala); 6, arginine (Arg); 7, methionine (Met); 8, γ-aminobutyrate (GABA); 9, glutamate
(Glu); 10, glutamine (Gln); 11, aspartate (Asp); 12, asparagine (Asn); 13, phenylalanine (Phe); 14,
tryptophan (Trp); 15, tyrosine (Tyr); 16, histidine (His); 17, sucrose; 18, α-glucose; 19, β-glucose; 20,
raffinose; 21, fructose; 22, myo-inositol; 23, acetate; 24, pyruvate; 25, succinate; 26, lactate; 27, formate;
28, fumarate; 29, citrate; 30, α-ketoglutarate (α-KG); 31, malate; 32, choline; 33, phosphocholine
(PC); 34, glycine betaine (GB); 35, ethanolamine (EA); 36, dimethylamine; 37, adenosine; 38, uridine;
39, guanosine; 40, hypoxanthine; 41, inosine; 42, deoxy adenosine monophosphate (dAMP); 43,
p-hydorxy cinnamic acid; 44, chlorogenic acid; 45, thymidine.
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(b) Fg WT 5035, (c) Fg TPS1− mutant, and (d) Fg TPS2− mutant for 96 h. The region δ 5.31–9.21 was
vertically expanded 8 times. Keys were indicated in Figure 1 and Table S1.

3.2. Different Metabolic Responses of FHB-Resistant and -Susceptible Wheats to Three
Fusarium Strains

PCA of the NMR data for FHB-resistant and -susceptible wheat spikes showed that
there were no obvious metabolic differences between those inoculated with mutants (includ-
ing TPS1− and TPS2−) and those inoculated with WT/ddH2O, and it was the same between
those inoculated with TPS1− and TPS2− (Figure S1). Pairwise OPLS-DA was conducted
between the extracts of wheat spikes inoculated with the TPS− mutants and those inocu-
lated with WT/ddH2O for both the resistant and susceptible wheat varieties. In addition,
OPLS-DA modeling was also conducted comparing the extracts of wheat spikes inoculated
with different TPS- mutants. Significantly different metabolites between these two groups
were tabulated in Table 1. OPLS-DA model parameters showed that for the FHB-resistant
wheat Sumai 3, there were clear metabolic differences between being inoculated with mu-
tants (including TPS1− and TPS2−) and with ddH2O/WT (Figure 3). Significantly altered
metabolites between the two groups were tabulated in Table 1. The loadings plots of OPLS-
DA showed that compared with ddH2O, inoculation with TPS1- in the resistant wheat
induced increased levels of Phe, uridine, guanosine, hypoxanthine, p-hydorxy cinnamic,
acid and chlorogenic acid together with a decreased level of α-ketoglutarate (Figure 3a,
Table 1). Inoculation with TPS2− in Sumai 3 led to higher levels for Phe, guanosine, p-
hydorxy cinnamic acid, and chlorgenic acid along with a lower level of α-ketoglutarate
than with ddH2O, which was similar to inoculation with TPS1−; in addition, inoculation
with TPS2− also led to a decrease in phosphocholine level (Figure 3c, Table 1). Compared
with WT, inoculation with TPS1− in the FHB-resistant wheat resulted in elevated levels
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of guanosine and thymidine together with reduced levels of myo-inositiol, Ala, Asp, and
glycine betaine (Figure 3b, Table 1). However, inoculation with TPS2− in Sumai 3 led
to increased thymidine level together with decreased levels of sucrose and myo-inositol
(Figure 3d, Table 1). Furthermore, we compared the metabolic profiles for inoculation with
the TPS1− and TPS2− mutants in the resistant wheat. The results indicated that there was
no obvious metabolic difference between those inoculated with different TPS− mutants
(R2X = 0.636, Q2 = 0.126, CV-ANOVA p = 1).

For the susceptible wheat Annong 8455, OPLS-DA model parameters indicated that
there were obvious metabolic differences between those inoculated with mutants (includ-
ing TPS1− and TPS2−) and with ddH2O (Figure 4). The color loading plots of OPLS-DA
revealed that compared with ddH2O, infection with the TPS1− mutant in the susceptible
wheat induced increased levels of fumarate, glycine betaine, and adenosine (Figure 4a,
Table 1). Infection with the TPS2− mutant in Annong 8455 led to lower levels of sucrose, fu-
marate, α-ketoglutarate, phosphocholine, adenosine, guanosine, and thymidine (Figure 4b,
Table 1). However, there were no significant metabolic differences between inoculation with
TPS1− and with WT (R2X = 0.868, Q2 = 0.258, CV-ANOVA p = 1) or between inoculation
with TPS2− and with WT (R2X = 0.769, Q2 = 0.0965, CV-ANOVA p = 1) in the susceptible
wheat. The results also showed that for the susceptible wheat, compared with TPS1−,
infection with TPS2− resulted in a reduction in the levels of most metabolites including two
sugars (glucose and fructose), Gln, three organic acids (fumarate, malate, and formate), two
choline metabolites (glycine betaine and phosphocholine), and two nucleotide metabolites
(adenosine and guanosine) (Figure 4c, Table 1).
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Figure 3. OPLS-DA scores plots (left) and coefficient-coded loadings plots (right) showing metabolic
differences of FHB-resistant wheat Sumai 3 inoculated with (a) TPS1− (red) vs. ddH2O (grey) (CV-
ANOVA p = 0.0018), (b) TPS1− (red) vs. WT (black) (CV-ANOVA p = 0.0029), (c) TPS2− (blue) vs.
ddH2O (grey) (CV-ANOVA p = 0.014), and (d) TPS2− (blue) vs. WT (black) (CV-ANOVA p = 0.01).
Metabolite keys are the same as in Figure 1 and Table S1.
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Table 1. Significantly changed metabolites in the resistant and susceptible wheat when inoculated
with ddH2O (H2O), WT, TPS1−, and TPS2−.

Coefficient (r) a

Metabolites (No) Sumai 3 (Resistant) Annong 8455 (Susceptible)

Sugars TPS1−

vs. H2O
TPS1−

vs. WT
TPS2−

vs. H2O
TPS2−

vs. WT
TPS1−

vs. H2O
TPS2−

vs. H2O
TPS2−

vs. TPS1−

sucrose (17) c −0.849 b −0.882
α-glucose (18) −0.826
β-glucose (19) −0.816
fructose (21) −0.857
myo-inositol (22) −0.788 −0.821

Amino acids
Ala (5) −0.781
Gln (10) −0.762
Asp (11) −0.857
Phe (13) 0.835 0.756

Organic acids
pyruvate (24) −0.841
formate (27) −0.823
fumarate (28) 0.794 −0.904
a-KG (30) −0.836 −0.782 −0.769
malate (31) −0.963

Choline metabolites
phosphocholine (33) −0.859 −0.877 −0.871
glycine betaine (34) −0.837 0.814 −0.892



Metabolites 2022, 12, 727 9 of 13

Table 1. Cont.

Coefficient (r) a

Metabolites (No) Sumai 3 (Resistant) Annong 8455 (Susceptible)

Nucleotide metabolites
adenosine (37) 0.824 −0.805 −0.917
uridine (38) 0.825
guanosine (39) 0.929 0.758 0.799 −0.826 −0.799
hypoxanthine (40) 0.856
thymidine (45) 0.821 0.834 −0.843

Secondary metabolites
p-hydroxy cinnamaic acid (43) 0.854 0.753
chlorogenic acid (44) 0.922 0.826

a The coefficients were obtained from OPLS-DA results, and positive and negative signs indicate positive and
negative correlation in the concentrations, respectively. b Positive and negative signs indicate the elevation and
decrease of the metabolite levels. Values for p ≥ 0.05 were not tabulated. c Metabolite keys are identical to those
in Figure 1 and Table S1.

4. Discussion

FHB induced by Fg is a destructive disease for wheat. In our previous study [21], we
obtained two mutants, TPS1− and TPS2−, carrying a single deletion of TPS1 (trehalose
6-phosphate synthase) and TPS2 (trehalose 6-phosphate phosphatase), respectively, both of
these two enzymes being involved in trehalose synthesis in Fg. Liu et al. also found that Fg
TPS1− and TPS2− both produce fewer mycotoxins than WT (5035), and TPS2− produces
fewer mycotoxins than TPS1− [22]. However, the metabolic responses of FHB-resistant and
-susceptible wheat to Fg (WT, TPS1−, and TPS2−) inoculation are not clear, but could give
us metabolic information related to trehalose synthesis and FHB resistance.

Sumai 3 is a traditional FHB-resistant wheat variety, while Annong 8455 is a known
FHB-susceptible wheat variety. The metabolic differences in both FHB-resistant and
-susceptible wheat varieties when inoculated with TPS− and with ddH2O could give
us metabolic information about Fg pathogenicity, while the metabolic differences between
inoculation with TPS− and with WT in both FHB-resistant and -susceptible wheat varieties
could give us metabolic information about the difference in pathogenicity induced by TPS1
and TPS2 mutations.

For the resistant wheat Sumai 3, there were higher levels of Phe, guanosine, p-HCA
and chlorogenic acid together with a lower level of α-KG after being inoculated with
TPS1− or TPS2− when compared with being inoculated with ddH2O (Figures 3 and 5,
Table 1). This result indicated that Phe, p-HCA, and chlorogenic acid might be closely
related to FHB-resistance. This is not surprising because both p-HCA and chlorogenic
acid are secondary metabolites derived from the shikimate pathway for biosynthesis of
phenylpropanoid and flavonoid metabolites. It has been reported that Sumai 3 has a
fast and strong response primarily through the activation of the shikimate pathway [28].
HCAs have been reported to play roles in plant defense responses to pathogen challenge
and wounding as integral components [46,47]. Chlorogenic acid, belonging to phenolic
acids, has been reported to be a resistance factor to Fg in maize [48], to Podosphaera in
miniature roses [49] and to diatraea saccharalis in sugarcane [50]. Sumai 3 might synthesize
HCAs to reduce pathogen advancement through thickening host cell walls together with
synthesizing antifungal/antioxidant chlorogenic acid for inhibiting pathogen growth, in
turn reducing subsequent mycotoxin biosynthesis in Fg [51]. In a word, shikimate-mediated
secondary metabolism was activated in the FHB-resistant wheat to produce HCAs and
chlorogenic acid to inhibit the growth of Fg and reduce the production of mycotoxins.
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Figure 5. The metabolic responses of Sumai 3 and Annong 8455 to TPS− mutants and ddH2O
inoculation. Red colored symbols indicate significant up-regulations of metabolites (p < 0.05), whereas
blue colored symbols represent downregulations of metabolites (p < 0.05). G-6-P, glucose-6-phosphate;
3-PGA, 3-phosphate glycerate; Ser, serine; Cho, choline; PC, phosphocholine; GB, glycine betaine;
OAA, oxaloacetic acid; Pyr, pyruvate; PEP, phosphoenolpyruvic acid; 6PGL, 6-phosphogluconate;
PRPP, 5-phosphoribosyl diphosphate; Prep, prephenic acid.

In Sumai 3, when compared with that inoculated with WT, only the change trends
of thymidine and myo-inositol were similar after being inoculated with TPS1− or TPS2−

(Figures 3 and 5, Table 1), which is attributed to the different impacts of TPS1 and TPS2 in
Fg on wheat metabolism. The fact that the number of altered metabolites was less in TPS2−

vs. WT than in TPS1− vs. WT suggested that the induced resistance response was much
stronger in TPS1− than in TPS2−, and the significantly decreased metabolites (Ala, Asp,
and GB) might be closely related to FHB resistance in an unknown way (Figure 5).

For FHB-susceptible wheat variety Annong 8455, there were no metabolic differences
when inoculated with either TPS1− or TPS2− compared to inoculation with WT. This is
not surprising because the metabolic responses of Annong 8455, a highly FHB-susceptible
wheat variety, to TPS1−/TPS2− and WT were similar, although the virulence of both TPS1−

and TPS2− is lower than that of WT. For Annong 8455, compared to being inoculated with
ddH2O, there were significantly higher levels of fumarate, GB and adenosine after being
inoculated with TPS1−; however, there were significantly lower levels of sucrose, two
organic acids (pyruvate and α-KG), phosphocholine, and three nucleic acids (adenosine,
guanosine, and thymidine) after being inoculated with TPS2− (Figures 4 and 5, Table 1).
This result indicated that TPS1− infection induced a slight alteration in Annong 8455;
nevertheless, TPS2− infection slowed glycolysis, TCA cycle, and nucleotide synthesis.
The former might be caused by trehalose deletion, and the latter might be caused by
redundancy of T6P in Fg [21,52]. T6P in Fg may affect the global metabolism of wheat
either as a metabolic regulator or through interaction with some compounds in wheat to
regulate wheat metabolism [20]. However, how the redundancy of T6P in Fg affects wheat
metabolism is still to be further studied.
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5. Conclusions

In conclusion, when infected by Fg, FHB-susceptible and -resistant wheat showed dif-
ferent metabolic responses. Specifically, compared with ddH2O, resistant wheat increased
the levels of Phe, p-HCA, and chlorogenic acid to resist TPS− mutants; however, susceptible
wheat did not. The metabolic difference might be caused by trehalose deletion and redun-
dancy of T6P in the susceptible wheat when infected by TPS1− or TPS2− compared with
ddH2O. Finally, a hypothesis is proposed that when infected by Fg, shikimate-mediated
secondary metabolism was activated in the FHB-resistant wheat to produce HCAs and
chlorogenic acid to inhibit the growth of Fg and reduce the production of mycotoxins.
However, it should be stressed that the molecular relationships between the trehalose
biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat re-
mains to be further studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12080727/s1, Table S1. Assignment of NMR data for
metabolites in FHB-resistant (Sumai 3) and -susceptible (Annong 8455) wheat varieties inoculated
with ddH2O, wild type (WT), TPS1− and TPS2−; Figure S1. PCA scores plots of the NMR data for
FHB-resistant Sumai 3 (a) and -susceptible wheat Annong 8455 (b). The numbers in parentheses
indicate the overall variance explained in the first two principal components. Grey (triangle), black
(square), red (circle), and blue (diamond) indicate metabolites in both FHB-resistant (solid symbol)
and -susceptible wheat (open symbol) inoculated with ddH2O, WT, TPS1−, and TPS2−, respectively.
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