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Dendritic cells are the antigen presenting cells that process antigens effectively and prime
the immune system, a characteristic that have gained them the spotlights in recent years.
B cell antigen presentation, although less prominent, deserves equal attention. B cells
select antigen experienced CD4 T cells to become memory and initiate an orchestrated
genetic program that maintains memory CD4 T cells for life of the individual. Over years of
research, we have demonstrated that low levels of antigens captured by B cells during the
resolution of an infection render antigen experienced CD4 T cells into a quiescent/resting
state. Our studies suggest that in the absence of antigen, the resting state associated with
low-energy utilization and proliferation can help memory CD4 T cells to survive nearly
throughout the lifetime of mice. In this review we would discuss the primary findings from
our lab as well as others that highlight our understanding of B cell antigen presentation and
the contributions of the MHC Class II accessory molecules to this outcome. We propose
that the quiescence induced by the low levels of antigen presentation might be a
mechanism necessary to regulate long-term survival of CD4 memory T cells and to
prevent cross-reactivity to autoantigens, hence autoimmunity.

Keywords: memory, CD4 lymphocyte, gene regulation, longevity, B cell Ag presentation, newCD4memorymarkers,
resting memory CD4+ T-cells
DENDRITIC CELLS AS ANTIGEN PRESENTING CELLS TO
INITIATE A PRIMARY RESPONSE

Initiation of an adaptive immune response begins with naïve T cells being activated by antigens
presented on dendritic cells (DCs), a highly specialized professional antigen presenting cell
(APC) (1, 2). As a frontline defender, DCs are key APCs bridging the gap between innate and
adaptive immunity. Located primarily in peripheral tissues, immature DCs are well known for
their ability to recognize and capture invading pathogens mainly through phagocytosis and
micropinocytosis. Uptake of antigen (Ag) is closely followed by upregulation of MHC Class I,
Class II and co-stimulatory molecules on the surface of DCs, as they lose the ability to perform
macropinocytosis (3, 4). Mature DCs then migrate to draining lymph nodes where they present
pathogen-derived epitopes to naïve CD4 and CD8 T cells (5). One unique characteristic of DCs is
their ability to uptake Ag via phagocytosis and cross-present it on MHC Class I molecules.
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This makes DCs a perfect primary antigen presenter for
initiation of an immune response (2). Moreover, it has also
been noted that activation of immature DCs by various Toll-like
receptor ligands (TLR3 and TLR9) transiently increases antigen
specific micropinocytosis (6), which likely increases the ability of
DCs to capture Ag within an inflammatory context. To date,
research into what contributions DCs make to memory
development has been limited and mainly focuses on memory
CD8 T cells development (7–11). Use of Batf3 knock-out (KO)
mice, which lack CD8a DCs responsible for cross-presentation,
found no impact on primary CD4 T cell responses but drastically
impaired CD8 responses (12). Likewise, work using Toxoplasma
gondii showed a crucial role for CD4 T cells in protecting Batf3
KO mice from succumbing to T. gondii infection (13). Yet none
of these studies using DC KO mice investigated a role for DCs in
memory CD4 T cell development. Data from Dalai et al.,
however suggests that loss of DCs does not likely impact the
formation of memory CD4 T cells as removal of CD11c+ DCs
did not affect the development of quiescent memory CD4 T
cells (14).
B CELLS AS APCS IN
SECONDARY RESPONSES

B cells are another major professional APCs, which unlike DCs,
take up antigens specifically by B cell receptor (BCR) (1). Upon
interaction with a cognate Ag, the BCR-Ag complex would be
internalized and shuttled to the specialized MHC class II
enriched compartments (MIIC) for processing and
presentation to the Ag-specific CD4 T cells (15). These CD4
T-B interactions provide essential activation signals to B cells for
affinity maturation and differentiation into memory B, or
antibody-secreting plasma B cells (16). The memory B cells
generated from this T-B interaction have been found to also be
important for CD4 T cell memory responses (17).
HOW B CELLS AND DCS IMPACT
MEMORY T CELL DEVELOPMENT

It is generally accepted that memory T cells differentiate after
exposure to Ag followed by multiple rounds of proliferation (18–
20). While characterization of memory T cells has been explored
intensely, the onset of differentiation of Ag-experienced T cells
into memory, and how APCs influence this process is less
appreciated. Especially that in rare publications, it has been
proposed that CD8 memory T cells may be generated upon
asymmetric cell division, which precludes the need for
interaction with antigen presenting cells (14, 21, 22). On
another line of studies, CD8 memory T cell development and
homeostasis has been reported to be mediated by IL-15Ra
expressed by DCs and Macrophages (23, 24). It is also found
that long-lasting CD8 memory can be achieved in the absence of
CD4 T cells or B cells (25).
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For CD4 Memory T development, however, TCR-pMHC
interaction appears to drive CD4 Memory T development (14,
26–30). In this regard, Williams et al. found that lower levels of
LCMV antigen density led to high functional avidity CD4 T
memory differentiation, while higher levels of LCMV antigen
density promoted both high avidity and low avidity CD4 T cells
expansion (28). However, the authors did not explore whether
DCs or B cells were the APCs to drive such differentiation.
Studies addressing contributions of B cells to activation of naïve
CD4 T cells has been inconclusive (31). Conversely, several
investigations have reported that B cells play a critical role in
regulating CD4 memory T development and differentiation (14,
17, 26, 30, 32–37). It is noteworthy that among these studies,
both Chowdhury (17) and Misumi (35) found that absence of
antigen specific B cells either from SCID mice without B cells or
treatment of anti-CD20 mAb did not impact the priming of CD4
T cells in viral infection but impaired the development and
effector function of memory CD4 T cells. By virtue of having
antigen specific B Cell Receptors, B cells can recognize and
internalize specific antigens, process, and present them to
cognate CD4 T cells (15). As such, B cell antigen presentation
adds a new and exciting dimension to our current knowledge.

The first clear demonstration that B cells play a role in
memory CD4 T cell generation/differentiation came from
Bradley and colleagues who reported B cell knockout mice did
not develop memory CD4 T cells (32). Further studies have
shown that loss of B cells adversely affects development of
Tuberculosis (TB)-specific CD4 memory precursor effector
cells (MPECs) in TB vaccinated B cell deficient mice (36).
Because of the ability of B cells to produce antibodies that bind
to Ag, it has been postulated that contribution of B cells to CD4
memory T cell development might be linked to Ag-Ab
complexes. However, when this issue was specifically addressed
by Whitmire et al., T cell responses to lymphocytic
choriomeningitis virus (LCMV) infection, the team found that
in contrast to B cell-deficient mice, membrane Ig expressing Tg
mice retained functional Th cell memory, indicating that B cells
selectively preserve CD4 T cell memory independently of
immune complex formation (33).

To directly test if B cells were important for the development
of CD4 T cell memory, Dalai et al. tested the specific interactions
of various APCs with Ag experienced CD4 T cells (14). Using an
ex vivo anergy assay, the group showed that only B cells, but not
DCs, induced a resting state in Ag experienced CD4 T cells.
Further in vivo characterization using an adoptive cell transfer
assay further confirmed the ex vivo observations. Previous
findings had demonstrated that sub-optimal levels of agonist
peptides had induced a resting state in T cells in vitro, and in vivo
(34, 38–44). Thus, the above observations that B cells, but not
DCs, pulsed with low doses of Ag induced resting memory CD4
T cells confirmed prior findings that B cells are indispensable for
memory CD4 T cell development/differentiation. In agreement
with the above findings, B cell deficient mice did not develop
quiescent CD4 memory T cells. However, when B cells were
transferred to the B cell deficient mice, hyporesponsive CD4
memory T cells were developed. Importantly, B2 (B220+CD43+)
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follicular B cells, which have diverse BCR were identified as the
cells that rendered CD4 memory T cells hyporesponsive (14).
These finding were later supported by Keck et al, who found that
B cells were required for both optimal expansion and T-bet
expression in response to weak TCR stimulation and optimal
generation of CD4 T memory (30).
CONTRIBUTION OF AG DENSITY
PRESENTED BY FOLLICULAR B CELLS
TO CD4 MEMORY T CELL
INDUCTION/DIFFERENTIATION

Building upon those initial findings, Dalai et al. tested the effects
of B cell presentation of peptide-MHC (pMHC) density on the
induction of quiescent memory CD4 T cells. They used a clever
strategy by recovering B cells from mice at various timepoints
post immunization and transferring them into recipient mice
harboring CD4 T memory precursor cells at 4-day intervals (26).
This staggered timeframe allowed Dalai et al. to correlate the
amount of pMHC presented by the B cells to the time post
immunization; earlier time points displayed more pMHC, and
later time points fewer pMHC. Interestingly, the group found
that only B cells harvested between day 16-20 post OVA
immunization induced resting hyporesponsive CD4 memory T
cells. These findings supported the idea that CD4 memory T cells
are signaled to a resting state by the presentation of a
subthreshold numbers of pMHC. These conclusions were
further expanded to HEL-specific B cells (45) HEL-specific B
cells when used for induction of quiescence/resting state of Ag
experienced T cells were more efficient in capturing the Ag and
induced quiescence in Ag experienced CD4 T cells at much later
time points, i.e., 41-48 days vs 16-20 days post immunization by
non-specific B cells. In those experiments B cells immunized with
protein antigens were transferred to mice that carried primed T
cells at 4-day intervals. The rationale was to find out when during
an immune response B cell presentation of pMHC reaches to the
levels necessary for the induction of quiescence naturally, in vivo.
It was quite gratifying to see that HEL-specific B cells had
captured far more antigen so that the required densities of
pMHC for inducing quiescence had reached 20 plus days later
than the polyclonal B cells (26). Altogether, Dalai et al.
established that: (1) B cells are the APCs responsible for
rendering CD4 memory T cells the quiescent, and (2) low
levels of pMHC presentation are the main driving force that
signal CD4 T cells to enter a resting state (26).

More recently, we have explored how this state of anergy
impacts both the longevity and function of CD4 T memory cells.
Song et al. investigated gene expression dynamics in CD4 T
memory cells at different stages post immunization representing
activated, early memory, late memory, and long-term memory
stages (46). OVA-specific DO11.10 T cells were adoptively
transferred into naïve mice before infecting them with Vaccinia-
OVA virus, followed by harvesting the CD44hiDO11.1pos T cells at
different time points post immunization and subjecting their
mRNA for gene expression analyses. Through this approach, the
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group was able to illustrate the gene expression dynamics
occurring during CD4 T memory development up to almost 1
year. In agreement with findings of others (47–51), authors found
that the OVA-specific CD4 memory T cells adopted a resting
phenotype. Furthermore, the memory phenotype associated with
multiple genetic programs regulating cellular proliferation, DNA
repair, prevention of apoptosis, glucose, and lipid metabolism
(Figure 1). Specifically, most genes regulating cellular proliferation
and DNA repair response were found to be associated with p53
pathways, which highlights the importance of limiting cell
proliferation and promoting DNA repair in long-lived CD4
Memory T cells. Also, of note was that like CD8 Memory T
cells, genes regulating lipid metabolism were upregulated
indicating that long-lived CD4 Memory T cells may also rely on
lipid metabolism. However, unlike CD8 memory, the genes
regulating lipid metabolism in CD4 T memory were found to be
centered on regulating cellular cholesterol and ceramide levels,
which could be related to the T cell signaling and prevention of
apoptosis. Altogether, these programs play important roles in CD4
Memory T development and maintenance.

The above genetic studies also revealed upregulated levels of
CD99, CCR10 and Itga3 as potentially new surface markers for
long-lived CD4 memory T cells. Importantly, the high
expression levels of these new CD4 memory markers at the
protein level were confirmed to hold true across different animal
models and antigens. For example, CD99hi resting human CD4
T cells from flu vaccinated donors had much better proliferation
responses than the CD99lo CD4 subsets to in vitro challenges,
indicating that the gene expression programs found in murine
CD4 memory T cells could also be applicable to human CD4
memory T cells. Overall speaking, this work indicated not only
that the resting state of CD4 memory T cells was mediated by
multiple genes and could be part of the reason for CD4 memory
longevity, but also the surprising findings that the murine CD4
memory differentiation is regulated by genetic programs that
evolve upwards of 6 months to fully appear.
CONTRIBUTION OF CLASS II
ACCESSORY MOLECULES IN CD4
MEMORY FORMATION

The finding that proper development of CD4 T memory cells
relies on quantitative differences in presentation of
immunodominant epitopes by B cells, brings the focus to the
potential roles that accessory molecules in antigen processing
play in the selection of epitopes for binding to MHC Class II. It is
demonstrated that as the main Class II peptide-editor, HLA-DM
(human DM; murine H2-M) contributes to the selection of
immunodominant epitopes by generating higher quantities of
those epitopes (52–55). HLA-DO (human DO; murine H2-O), is
a second accessory molecule, which requires DM for its
expression; DO is mainly expressed in thymic epithelium and
B cells (54–56). Both DM and DO contribute to T cell immunity
in a significant way, because lymphocytes usually respond to a
small portion of the potential determinants on a protein antigen,
June 2021 | Volume 12 | Article 677036
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defined as ‘immunodominant’ (57). Immunodominant epitopes
are the essential targets of the immune response against
infectious diseases, cancer, autoimmune diseases, and allergy.
Hence, deserve the attention devoted to the understanding of
epitope selection and immunodominance. To better understand
how each accessory molecule impacts immunodominant epitope
selection, we must discuss each molecule individually.

Mechanism of DM in Finding the
Immunodominant Determinants During
Antigen Processing
It has been well established that the MHC II groove is flexible and
requires a bound peptide to maintain its shape. Without a peptide,
the MHC II groove would close and becomes inefficient in binding
peptides (58–60). Thus, newly synthesizedMHC II molecules bind
to a domain of the Class II invariant chain (CLIP) that serves two
functions; a) protects the groove from binding to peptide in the ER
(61), and b) acts as a place-keeper, while another domain of Ii
guides the complex to the specialized vesicular compartments filled
with pathogen-derived antigenic peptides, MIIC. Within MIIC,
DM is necessary to first dissociate CLIP to form a peptide-receptive
conformation that can quickly scan unfolded exogenous proteins to
find its suitable determinant (62). DM does this job by effectively
dissociating any peptide sequences that do not fill in the pockets of
theMHCII groove.Onlywhen a sequence of antigenicdeterminant
that would fit in the MHC II groove leading to formation of a
compact folded conformation, the complex becomes resistant to
Frontiers in Immunology | www.frontiersin.org 4
DM-mediated dissociation (DM-resistant). Next, the proteases
would trim the MHC II bound determinant. The proteases also
cut the antigenic determinants that do not fit the groove, hence are
susceptible to DM-mediated dissociation (DM-sensitive) and are
dislodged by DM (63–71). The solution of the crystal structure of
the DM/DR complex (72) using DR1/peptide complexes that
enforced an open DR1 groove, revealed that DM would bind the
P1pocketofHLA-DRmolecules tightly if empty, andwould remain
bound until a P1 filling peptide would bind the groove and induce
closing of the groove, and displacing DM (72–74). The above
findings were complemented by the measured thermodynamics
of peptide binding to DR1, indicating that a greater entropic
penalty, versus a smaller penalty, was associated with structural
rigidity rather thanwith theflexibility of thepMHCcomplexes (75).
These findings suggested that an overall dynamic MHC II
conformation in addition to P1 pocket occupancy, determines
susceptibility to DM-mediated peptide exchange and provides a
molecular mechanism for DM to efficiently target poorly fitting
pMHC II complexes and editing them formore stable ones. Hence,
in addition to the removal of CLIP, DM helps in shaping epitope
selection and immunodominance by producing a higher
abundance of those determinants (62).

Different Models on How DO Fine-Tunes
Antigenic Epitope Selection
DO also contributes to the selection of immunodominant
epitopes, although understanding the contributions of DO to
FIGURE 1 | Gene networks in long-lived CD4 memory T cells. Five different gene programs were identified as dynamically regulated during memory CD4 T cell
differentiation. The genes shown were from the long-lived memory CD4 cells 10.5 months post immunization as compared to naïve controls and are marked in
different colors: Yellow: cell proliferation; Green: DNA repair; Red: Apoptosis; Light blue: Lipid metabolism; Dark blue: Carbohydrate metabolism; Black: Not identified
in the five gene programs but served as connecting genes. Each line represents an interaction/co-expression of genes as identified by literature report.
June 2021 | Volume 12 | Article 677036
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epitope selection has proven to be highly challenging (54–56, 76).
In brief, our knowledge about DO can be distilled into two
working hypotheses: (1) DO binds to DM to inhibit its activity,
mainly removal of the CLIP peptide and, (2) DO differentially
affects presentation of structurally diverse peptides and acts as a
second accessory molecule working together with DM in fine
tuning MHC II repertoire selection. Data in support of the
former hypothesis mainly comes from studying over-
expression of DO genes in cell lines, or dendritic cells (77, 78);
Welsh, 2019 #13} and the recent mutagenesis and structural
studies of DM/DO interactions (79, 80). The 3D structure of
DM/DO showed that DO binds to DM at the same interface with
which DM interacts with DR1 (74). Studies supporting the latter
hypothesis came from biochemical (81) and biophysical studies
demonstrating that DO only affected association kinetics of
certain peptides to DR but, had no effect on the dissociation
kinetics of any tested peptide/DR1 complexes (76, 82). The
effects of DO on association kinetics directly correlated with
peptide sensitivity to DM-mediated dissociation. DO reduced
binding of peptides that formed DM-sensitive complexes with
DRandenhanced the bindingofpeptides that formedDM-resistant
complexes. In a nutshell, it was clearly shown that; i) DO works
directly onDR1, and not by regulating the effect of DM, ii) DO can
only bind the peptide-receptive MHC Class II, and iii) that this
peptide-receptive conformation is generated byDM.Hence, authors
proposed that DM and DO cooperate for a more effective epitope
selection. Thus, in one model, DO would reduce presentation of
immunodominant epitopes, whereas in the other, DO would
increase the abundance of immunodominant epitopes.

Speculations for Future Research
The question of the potential contributions of DO and DM to
memory CD4 T cell development is of most interest and is
discussed below. A few characteristics of DO hint to its possible
link to CD4 memory differentiation. First, DO is mainly
expressed in B cells (81, 83, 84) and it enhances the
presentation of immunodominant epitopes (56, 76). Next, it
has been documented that successful entry of B cells into the
germinal center (GC) requires high expression levels of pMHC
(85–89). B cells enter GC and interact with CD4 T cells in search
of proper signaling for affinity maturation. It is conceivable that
CD4 T cells also receive signals from GC B cells for their own
differentiation into resting memory T cells. One might say if high
Frontiers in Immunology | www.frontiersin.org 5
levels of pMHC equip B cells for entry into GC, how could B cells
signal T cells to differentiate into resting memory, as this process
requires suboptimal densities of pMHC presentation. An answer
worth considering is that once B cells enter GC, their expression
levels of DO and DM decreases, leading to a reduced level of
pMHC II expression (90–92). As such, those GC B cells can
interact with Ag-specific CD4 T cells in the Light Zone (LZ),
selecting them to become memory precursor cells. In support of
this argument, in an elegant study, Kim et al. have documented
that memory CD4 T cells bear high affinity TCR for pMHC II (27),
hence memory CD4 T cells are selected based on TCR affinity.
One may predict that alterations in this controlled entry into the
GC reaction could lead to faulty CD4 T cell memory development
and possibly the development of increased autoreactivity.

Since biology tends to repeat itself, it would be interesting to
compare the effects of pMHC numbers on APCs and their effects
on CD8 memory T cell development. While as far as we know no
studies has made such data available, in an exciting new study
authors reported that in the absence of B cells CD8 T Cell
memory formation was compromised, while CD8 effector
function was enhanced. One might speculate that since CD4 T
cells are essential for CD8 memory T cell development (93),
perhaps their contributions to CD8 memory is mediated
indirectly via CD4 memory T cells.

Future experimental evidence is needed to clarify the
proposed relationship of these MHC II accessory molecules to
the development and maintenance of CD4 memory T cells, and
hopefully this review would prompt new research on the
qualitative and quantitative antigen presentation on CD8
memory T cell development.
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