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Metagenomic analysis using 
next-generation sequencing of 
pathogens in bronchoalveolar 
lavage fluid from pediatric patients 
with respiratory failure
Suguru Takeuchi1, Jun-ichi Kawada   1, Kazuhiro Horiba1, Yusuke Okuno2, 
Toshihiko Okumura1, Takako Suzuki1, Yuka Torii1, Shinji Kawabe3, Sho Wada4, 
Takanari Ikeyama4 & Yoshinori Ito1

Next-generation sequencing (NGS) has been applied in the field of infectious diseases. Bronchoalveolar 
lavage fluid (BALF) is considered a sterile type of specimen that is suitable for detecting pathogens of 
respiratory infections. The aim of this study was to comprehensively identify causative pathogens using 
NGS in BALF samples from immunocompetent pediatric patients with respiratory failure. Ten patients 
hospitalized with respiratory failure were included. BALF samples obtained in the acute phase were 
used to prepare DNA- and RNA-sequencing libraries. The libraries were sequenced on MiSeq, and the 
sequence data were analyzed using metagenome analysis tools. A mean of 2,041,216 total reads were 
sequenced for each library. Significant bacterial or viral sequencing reads were detected in eight of 
the 10 patients. Furthermore, candidate pathogens were detected in three patients in whom etiologic 
agents were not identified by conventional methods. The complete genome of enterovirus D68 was 
identified in two patients, and phylogenetic analysis suggested that both strains belong to subclade B3, 
which is an epidemic strain that has spread worldwide in recent years. Our results suggest that NGS can 
be applied for comprehensive molecular diagnostics as well as surveillance of pathogens in BALF from 
patients with respiratory infection.

In the field of infectious diseases, identification of etiologic microorganisms is essential for definitive diagno-
sis and decisions regarding appropriate management. Establishment of bacterial and fungal cultures is the gold 
standard method for identification of causative microorganisms. However, about 2–3 days are generally required 
to obtain quantitative culture test results, and this method is not suitable for identification of unculturable bac-
teria. For identification of viral pathogens, PCR and antigen tests are commonly used, but only a defined set of 
candidate microorganisms can be examined. Furthermore, virus isolation is a reliable method to determine the 
causative pathogen, but it is time-consuming, and its sensitivity may be insufficient. Although combinations of 
these procedures are performed, no significant pathogens are identified in 34–57% of pediatric patients1 and 
13–62% of adult patients with pneumonia2,3.

Microbiological diagnosis of respiratory infection can be determined when a specific pathogen is isolated 
from sterile materials such as bronchoalveolar lavage fluid (BALF), transtracheal aspiration, percutaneous lung 
aspiration, and pleural effusion; when a significant quantity of bacteria is cultured from sputum; or when the 
presence of pathogens that do not usually colonize the upper respiratory tract is proven1,4,5. Sputum is generally 
used for detecting pathogens that cause lower respiratory tract infections. However, obtaining sputum is difficult, 
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especially in pediatric patients, and distinguishing pathogens from resident bacteria in the oral cavity is some-
times difficult as well6. Therefore, BALF is more suitable than sputum for identifying pathogens of respiratory 
diseases because it can be collected from the locus of infection with less contamination with oral bacteria. BALF is 
often obtained for PCR of Pneumocystis jirovecii or cytomegalovirus (CMV) in patients with severe pneumonia7,8. 
BALF can be obtained with a relatively safe procedure and with low morbidity and mortality9. The diagnostic 
yield of causative pathogens from BALF was 28–68% in lower respiratory tract infections in immunosuppressed 
children including those with hematological malignancy and organ transplantation10. Furthermore, positive or 
negative results following microbiological examination of BALF lead to alteration in the management of the 
infection in 38.7–72.7% of patients9–11.

Next-generation sequencing (NGS) has been applied for comprehensive detection of causative pathogens 
in various infectious diseases12–16. We have demonstrated the utility of NGS for identification of causative or 
potentially causative pathogens of encephalitis, fulminant hepatitis, bloodstream infection, and acute myocar-
ditis17–20. In several previous studies, NGS was applied to detect pathogens from BALF samples. Recently, Miao 
et al. have shown that significant reads of candidate pathogens were detected in 34% of BALF samples obtained 
from patients with infectious and noninfectious diseases21. However, BALF samples examined in previous studies 
were obtained mainly from adult patients, and no study was performed to simultaneously detect both bacteria 
and viruses22–24. In this study, we conducted comprehensive detection of pathogens from BALF samples from 
immunocompetent pediatric patients with severe respiratory failure using NGS.

Results
Comparison of DNA extraction methods for NGS.  A comparison of DNA extraction methods was 
performed using three BALF samples in which results of bacterial cultures and CMV PCR were available. BALF-1 
was obtained from a 3-month-old boy with interstitial pneumonia. Staphylococcus aureus was isolated by cultur-
ing, and CMV DNA was detected with real-time PCR (2,101,786 IU/ml). BALF-2 was obtained from a 6-month-
old patient with extremely low birth weight and chronic lung disease, and Serratia marcescens was isolated from 
a transtracheal aspiration sample. BALF-3 was obtained from a 7-year-old patient with pulmonary alveolar 
proteinosis, and no bacteria were isolated. We compared the detection efficiency of pathogen-derived reads by 
NGS between two types of DNA extraction kits: QIAamp DNA Microbiome kit (MB kit) and the QIAamp UCP 
Pathogen Mini kit (Path kit). Classifications of total reads from each library are shown in Fig. 1A. Proportions 
of bacterial reads were higher in libraries prepared with the MB kit than the Path kit in BALF-1 and BALF-2 
(14.8% vs. 0.1% and 52.6% vs. 1.2%, respectively). Numbers of sequencing reads assigned to each bacterial spe-
cies or CMV are expressed as reads per million (RPM) and shown in Fig. 1B. In BALF-1, the total number of 
bacterial reads obtained from the library prepared with the MB kit was more than 100 times higher than that 
with the Path kit. Most bacterial reads were aligned with the S. aureus genome in both libraries. CMV-derived 
reads were detectable in libraries obtained with both extraction kits. In BALF-2, approximately 80 times more 
total bacterial reads were obtained from the library with the MB kit compared to the Path kit. Among bacterial 
reads, Streptococcus mitis-derived reads were dominant in both libraries. Other than S. mitis, more than 200 
RPM of four bacterial species were obtained from the library with the MB kit, whereas reads of Staphylococcus 
epidermidis and Enterococcus faecalis were not obtained from the library with the Path kit. S. epidermidis and E. 
faecalis were detected with real-time PCR using DNA extracted with the MB kit (1.6 × 105 and 3.5 × 103 copies/
ml, respectively), whereas they were not detected in DNA extracted using the Path kit. In BALF-3 with a negative 
culture test, a small number of reads of Cutibacterium acnes, which is considered a member of the normal oral 
cavity flora, was detected in both libraries.

The comparison of the read mapping results is shown in Fig. 2. The average coverage (depth) and the fraction 
of reference covered (coverage) of sequenced reads mapped to the reference genome of S. aureus (NC_007795) or 
S. mitis (NC_013853) were much higher in libraries prepared with the MB kit than those with the Path kit. Taken 
together, these results indicate that the MB kit is more suitable than the Path kit for preparing a DNA library to 
detect bacterial reads in BALF samples. Considering that the difference in CMV reads was small in BALF-1, the 
MB kit was used in further experiments.

Comprehensive detection of pathogen-derived sequences from BALF samples from pedi-
atric patients with severe respiratory failure.  We investigated 10 BALF samples from pediatric 
patients with severe respiratory failure (patients 1–10) using NGS to identify etiologic agents. In addition, one 
patient in the chronic phase of idiopathic interstitial pneumonia was included as a control (patient 11). Patient 
characteristics are listed in Table 1. A mean of 2,041,216 total reads was sequenced for each library. The clas-
sification of the sequence data is shown in Supplementary Table 1. To avoid making calls based on spurious 
alignments or cross-contamination, we considered bacterial or viral reads as significant when the number of 
sequences aligned to each reference genome was above 10 RPM, and the sequenced reads covered wide ranges 
of the reference genome with the read mapping approach. Composition of bacterial reads at the genus level of 
each DNA-sequencing library is shown in Fig. 3, and a summary of the pathogens with significant bacterial and 
viral reads is listed in Table 2. A significant number of four types of bacterial reads was detected in three BALF 
samples with DNA-sequencing (patients 1, 2, and 4), and NGS results for three bacteria were consistent with 
the results of transtracheal aspiration culture. Sequencing reads of bacteria identified with DNA-sequencing in 
these three patients were also detected with RNA-sequencing (data not shown). Substantial bacterial reads of 
Cutibacterium and Rastonia, which are considered contamination, were detected in libraries from distilled water 
(Fig. 3 and Supplementary Table 1). Sequence coverage and depth of each reference bacterial genome are shown 
in Fig. 4. In patient 1, Stenotrophomonas maltophilia and Pseudomonas aeruginosa reads were detected with NGS, 
whereas only the latter was isolated in a small amount with culturing. Conversely, no significant bacterial read 
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was identified in patient 5 or 6, in which Streptococcus pneumoniae and Haemophilus influenzae, respectively, were 
isolated with culturing of transtracheal aspiration.

Candidate pathogenic respiratory viruses were detected in seven of 10 patients with RNA-sequencing: 
human respiratory syncytial virus (HRSV) from three patients, enterovirus D68 (EV-D68) from two patients, 
and human metapneumovirus (HMPV) and human rhinovirus B (HRV-B) from one patient each. Viral anti-
gen test results were confirmed by retrospective review of medical records, and most were consistent with NGS 
results. Additionally, we performed multiplex RT-PCR to confirm the presence of the viral genome that was 
identified with NGS, except EV-D68. As a result, the NGS-based approach for detection of the causative virus 
was consistent with the results of multiplex virus PCR except in patient 1 in whom HMPV was not confirmed 
with PCR. Sequence coverage and depth of each reference viral genome are shown in Fig. 5. In patients 3, 6, 7, 
and 8, read mapping to each reference genome was achieved with high coverage and depth, and almost the com-
plete viral genome was obtained. Phylogenetic analysis of the EV-D68 full genome suggested that the EV-D68 
sequences derived from patients 7 and 8 were genetically related to the EV-D68 viruses circulating worldwide 
in 2016 (Fig. 6A). Based on phylogenetic analysis of the VP1 region, the EV-D68 strains detected in this study 
belong to subclade B3 (Fig. 6B). Among the two NGS-negative cases in which neither bacteria nor viruses were 
detected, CMV and HMPV were detected with PCR and an antigen test, respectively (patients 9 and 10). No 
significant bacterial or viral reads were identified from the negative control BALF sample (Patient 11). Consensus 
sequences of detected viruses with high coverage (HRV-B from patient 3, HRSV-B from patient 6, and EV-D68 
from patients 7 and 8) are deposited in the DNA Data bank of Japan (Accession numbers: LC495296, LC495297, 
LC495298, and LC495299).

Discussion
In this study, we used NGS to perform comprehensive detection of pathogenic microorganisms from BALF sam-
ples from 10 pediatric patients with severe respiratory failure. We expected that all microorganisms including 
viruses could be detected by conducting both DNA- and RNA-sequencing; indeed, a significant number of bac-
terial or viral sequencing reads was detected in eight of 10 patients. Furthermore, candidate causative pathogens 
of respiratory failure were detected in three cases (patients 3, 7, 8) in which pathogenic microorganisms were not 

Figure 1.  Comparison of DNA extraction kits for preparing DNA libraries to detect pathogen-derived reads. 
DNA libraries were prepared using DNA extracted with the QIAamp DNA Microbiome kit (MB kit) or the 
QIAamp UCP Pathogen Mini kit (Path kit) from bronchoalveolar lavage fluid (BALF) samples. The composition 
of sequence data in each DNA library was compared. Each bar represents the composition of sequence reads 
including adapter, trimmed reads, human genome, bacteria, virus, eukaryotes, and others (A). Numbers of 
sequencing reads assigned to each bacterial species or cytomegalovirus (CMV) are shown (B). RPM: reads per 
million.
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identified by conventional methods. To the best of our knowledge, this is the first study to use NGS to comprehen-
sively investigate both bacteria and viruses from BALF specimens in pediatric patients with respiratory failure.

In the present study, we first verified two DNA extraction kits to improve efficiency in bacteria detection 
from BALF samples, and showed that the QIAamp DNA Microbiome kit was more suitable. The QIAamp DNA 
Microbiome kit is a “microbial enrichment” DNA extraction kit. After the human cell lysis step, exposed nucleic 
acids are degraded with Benzonase nuclease, whereas the bacterial cells theoretically remain intact. In this exper-
iment, this microbial enrichment procedure resulted in an approximately 100-fold increase in the number of 
bacterial reads compared with the other DNA extraction kit.

A discrepancy in the results between NGS and the culture test was observed in some cases. In patient 1, the 
number of reads annotated to S. maltophilia was much higher than that of P. aeruginosa, which was the only 
bacterial strain isolated from aspirated sputum by culturing. In contrast, no significant bacterial read of isolated 
bacteria was identified with NGS in patient 5 or 6. Bacterial culturing with samples from these patients was 
performed using transtracheal aspirated sputum obtained on the same day as BALF. Therefore, the discrepancy 

Figure 2.  Comparison of the coverage plots of bacterial genomes. Sequencing reads detected in each 
bronchoalveolar lavage fluid (BALF) sample were mapped against the reference genome of S. aureus 
(NC_007795) in BALF-1 and S. mitis (NC_013853) in BALF-2. DNA for library preparation was extracted using 
the QIAamp DNA Microbiome kit (MB kit) or the QIAamp UCP Pathogen Mini kit (Path kit). Blue and dark 
blue colors in the bacterial genome alignment represent average and maximal coverage in the aggregated 1-kbp 
region, respectively.

Pt 
No. Age Sex Underlying disease

Respiratory 
failure

Circulatory 
failure

X-ray 
findings of 
pneumonia

ICU 
LOS 
(days)

Mechanical 
ventilation 
(days) ECMO Outcome

1 5y 9m F Cerebral palsya + + + 12 7 − Recovered

2 28d M none + + − 14 5 − Recovered

3 0y 11m F TFO, Bronchomalacia + + − 10 6 + Recovered

4 0y 4m F 21 trisomy + − − 8 4 − Recovered

5 16d M none + + − 9 4 − Recovered

6 0y 3m F none + + − 13 9 − Recovered

7 4y 11m M none + − − 7 6 − Recovered

8 8y 10m F none + − + 8 6 − Recovered

9 0y 1m F none + + + 59 52 + Recovered

10 7y 0m F none + + − 15 12 + Recovered

11 2y 5m F IIPsb − − − − − − −

Table 1.  Patient characteristics. Abbreviation: ECMO, extracorporeal membrane oxygenation; ICU, intensive 
care unit; IIPs, idiopathic interstitial pneumonias; LOS, length of stay. TFO, Tetralogy for Fallot. aA patient with 
cerebral palsy after bacterial meningitis. She had undergone ventriculoperitoneal shunt placement procedure 
for hydrocephalus. bA patient with chronic phase of IIPs used for negative control.
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between NGS and the culture test results may reflect the difference in the specimens, and some of the isolated bac-
teria from aspirated sputum could be colonizing bacteria in the upper respiratory tract. Unfortunately, because 
the culture test using BALF was not performed in some patients, a comparison of the results of NGS and culturing 
was difficult. Furthermore, sufficient amounts of BALF were not available in some cases, which may have resulted 
in a false negative NGS-based result. On the other hand, a discrepancy between NGS and the bacterial culture 
results of BALF or other specimens was observed in a previous study21.

In this study, a significant number of viral reads was detected in seven of 10 patients. Among them, reads 
of more than 10,000 RPM were annotated to each virus reference genome in four patients, suggesting that 
BALF contains abundant reads of pathogenic viruses for respiratory infections. Because NGS does not require 
virus-specific primers, the NGS-based approach is especially useful for detection of RNA viruses, which have 
much higher mutation rates than DNA viruses16. The pathogenicity of the detected viruses has already been 
established in immunocompetent pediatric patients25–30. In general, HRV is considered to have relatively weak 
virulence, although it sometimes causes severe respiratory disease, especially in patients with immunodeficiency 
or anatomical abnormalities of the airway30. HRV is classified into three subtypes, HRV-A, -B, and -C, based on 
gene sequence analysis. The detection rate of HRV-B is lower than the other subtypes. Whether the severity of 
clinical symptoms is related to HRV subtypes remains inconclusive30–32. Patient 3, in whom HRV-B was detected, 
had congenital tracheomalacia as an underlying disease, suggesting that HRV-B may have been a causative path-
ogen or trigger of respiratory failure.

EV-D68 was identified in two patients without underlying diseases (patients 7 and 8). EV-D68 can cause 
severe lower respiratory illness and asthma exacerbation, mostly in children29,33. EV-D68 infections are more 
likely to be associated with severe and life-threating respiratory diseases than other enterovirus genotypes29. In 
2014, a large-scale outbreak of severe respiratory infection caused by EV-D68 was reported in the US and other 
countries29,33. In Japan, EV-D68 outbreaks coincided with spikes in acute asthma exacerbations and acute flaccid 
myelitis in 201534, and another epidemic of EV-D68 was reported in 201835. Phylogenetic analysis suggested that 
the EV-D68 sequences identified in this experiment belong to subclade B3 and are related to epidemic strains that 
spread worldwide in 201636,37. These results indicate that the NGS-based approach enables us not only to com-
prehensively detect the causative virus, but also to specify genotypes of the detected virus in a single test, which 
would contribute to molecular epidemiological studies. In patient 1, HMPV was detected with NGS and the 
antigen test, but it was not detected with PCR. The primer sequences may not have been appropriate for detection 
of the HMPV strain in this patient.

Co-infection with bacteria and viruses was observed in four of 10 patients. Using NGS, S. maltophilia, P. 
aeruginosa, and HMPV were detected in patient 1, and H. influenzae and HRSV were detected in patient 2. HRSV 
was identified with NGS in patients 5 and 6, whereas S. pneumoniae and H. influenzae were isolated in patient 
5 and patient 6, respectively, by culturing. Although concurrent bacterial infection in infants with HRSV or 
HMPV infection is relatively uncommon, co-infection may worsen the clinical symptoms of virus infection28,38. 
Therefore, respiratory failure may have been induced by co-infection with bacteria and the respiratory viruses in 
these patients. Conversely, because viral shedding of HRSV may continue for as long as 3 to 4 weeks, especially in 
young children39, detection of a small number of HRSV reads may reflect its presence as a bystander.

In our study, neither a significant number of bacterial reads nor viral reads were detected in two patients by 
NGS. Patient 10 was diagnosed with fulminant myocarditis with respiratory failure. In this patient, an antigen test 
using a nasopharyngeal swab sample was HMPV positive, whereas HMPV was not detected in BALF, neither with 
NGS nor PCR. Although HMPV may be a trigger of development of fulminant myocarditis, a false-positive result 
of the HMPV antigen test should be considered. In patient 9, a discrepancy between NGS and CMV PCR results 
was observed. Insufficient host genome digestion may have decreased the sensitivity of detection of CMV DNA 

Figure 3.  Genus composition of BALF samples from patients with severe respiratory failure. Each bar 
represents taxa at the genus level of taxonomic hierarchy. Bacterial reads with fewer than 10 reads or without 
annotations at the genus level were classified as “Others”. Pt 1-10 and NTC 1-3 indicate libraries prepared from 
bronchoalveolar lavage fluid (BALF) and distilled water, respectively.
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Pt No.

NGS results Conventional method results

DNA-sequencing RNA-sequencing

Bacterial culture
Viral 
antigen PCRTotal reads Detected pathogen

Number of 
reads RPM Total reads

Detected 
pathogen

Number of 
reads RPM

1 2,603,238
S. maltophilia 100,083 38,446

2,303,752 HMPV 322 140 P. aeruginosa (±) HMPV —
P. aerginosa 16,947 6,510

2 2,631,210 H. influenzae 103,738 39,426 2,937,810 HRSV-A 342 116 H. influenzae 
(2+) HRSV HRSV-A

3 2,071,836 — — — 2,676,318 HRV-B 50,138 18,734 — — HRV

4 2,754,852 M. catarrhalis 2,428 881 2,946,090 — — — M. catarrhalis 
(2+) — —

5 3,608,962 — — — 2,402,562 HRSV-A 1,612 671 S. pneumoniae 
(±) — HRSV-A

6 1,489,176 — — — 1,685,054 HRSV-B 83,212 49,382 H. influenzae 
(2+) HRSV HRSV-B

7 1,660,692 — — — 1,531,292 EV-D68 115,343 75,324 — — —

8 1,419,054 — — — 1,549,278 EV-D68 784,380 506,287 — — —

9 1,373,122 — — — 1,478,618 — — — — — CMV

10 1,581,982 — — — 1,517,564 — — — — HMPV —

11a 1,252,872 — — — 1,431,422 — — — — — —

Table 2.  Sequence results using NGS for detection of pathogens from BALF samples. Abbreviation: CMV, 
cytomegalovirus; EV-D68, enterovirus D-68; HMPV, human metapneumovirus; HRSV, human respiratory 
syncytial virus; HRV, human rhinovirus; Pt, patient; RPM, read per million. aA patient with chronic phase of 
idiopathic interstitial pneumonias used for negative control.

Figure 4.  Coverage plots of bacterial genomes detected in patients with severe respiratory failure. Sequencing 
reads detected in bronchoalveolar lavage fluids of each patient were mapped to the reference genome of S. 
maltophilia, P. aeruginosa, H. influenzae, and M. catarrhalis. Blue and dark blue colors in the bacterial genome 
alignment represent average and maximal coverage in the aggregated 1-kbp region, respectively.
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because the concentration of extracted DNA was relatively higher than that of other specimens. Another reason 
for the discrepancy may be that CMV particles that are latent in human cells were simultaneously digested with 
Benzonase nuclease at the time of DNA extraction. Considering the above, more sequence depth may be required 
to detect DNA viruses with NGS.

Some limitations of our NGS-based approach for detecting pathogens should be discussed. First, the microbial 
enrichment procedure increased the number of bacterial reads, but still, 92.9–99.6% of trimmed NGS reads were 
derived from human DNA. More efficient methods to remove host nucleic acids are desirable to improve the 

Figure 5.  Coverage plots of viral genomes detected in patients with severe respiratory failure. Sequencing 
reads detected in bronchoalveolar lavage fluids of each patient were mapped to the reference genome of human 
metapneumovirus (HMPV), human respiratory syncytial virus (HRSV)-A, human rhinovirus (HRV)-B, 
HRSV-B, and enterovirus (EV)-D68. Light blue, blue, and dark blue colors in the viral genome alignment 
represent minimal, average, and maximal coverage in the aggregated 10-bp region, respectively.
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Figure 6.  Phylogenetic analysis of enterovirus D68. Phylogenetic trees of full genomes (A) and VP1 sequences 
(B) of enterovirus D68 (EV-D68) consensus sequences obtained from patients 7 and 8 are shown. The 
phylogenetic relationships of the registered sequences of EV-D68 were estimated using the neighbor-joining 
method with 1,000 replicates using MEGA743. The percentage of replicate trees in which the associated taxa 
clustered together in the bootstrap test is shown next to the branches. The tree is drawn to scale, with branch 
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The 
evolutionary distances were computed using the p-distance method and are in units of the number of base 
differences per site. Clades were defined previously based on VP1 sequences37,50,51. GenBank accession number, 
strain name, country of origin, and year of detection are shown for each strain. Scale bars show the genetic 
distance.

https://doi.org/10.1038/s41598-019-49372-x


9Scientific Reports |         (2019) 9:12909  | https://doi.org/10.1038/s41598-019-49372-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

sensitivity of detecting pathogen-derived genomes and to reduce the cost of the NGS procedure. Second, NGS 
can identify fungi in clinical samples21, but we could not validate whether our NGS procedure could detect fungal 
DNA. Third, we considered more than 10 RPM of bacterial or viral reads as significant in this study. However, 
determining a threshold read count was difficult. Furthermore, detection of viral or bacterial reads with NGS 
does not always indicate the presence of viable or pathogenic microorganisms. Finally, we utilized MePIC v2.0 
(National Institute of Infectious Disease, Tokyo, Japan)40 as a metagenomic pathogen identification tool in this 
study. This pipeline incorporates the MEGABLAST program for a homology search against known nucleotide 
sequences registered in the NCBI nt database. Therefore, microorganisms whose sequences are unknown or not 
registered in the database cannot be detected. In addition, reproducibility issues in bioinformatics may occur due 
to several reasons such as the short half-life of the bioinformatics software, the complexity of the pipelines, and 
the incompleteness in workflow description41.

In conclusion, we demonstrated the utility of the NGS-based approach for detection of pathogens in BALF 
from pediatric patients with severe respiratory failure. Although further improvement of NGS workflow may be 
required, NGS can be applied for molecular diagnostics as well as surveillance of pathogens in the field of infec-
tious diseases.

Methods
Ethics statement.  This study was performed in compliance with relevant laws and institutional guidelines 
and was approved by the Institutional Review Board of Nagoya University Graduate School of Medicine and 
Aichi Children’s Health and Medical Center. Written informed consent was obtained from all patients or their 
legal guardians.

Patients and samples.  BALF samples were obtained from 10 pediatric patients hospitalized in the pediatric 
intensive care unit with respiratory failure and investigated with NGS for comprehensive detection of pathogens. 
No patients had a history of an immunocompromised state. Patient characteristics are listed in Table 1. BALF was 
obtained during the acute phase of the illness and cryopreserved at −80 °C until use. Until the NGS analysis was 
completed, the researchers who conducted experiments and analyses were not notified of the medical informa-
tion of each patient or of the results of conventional microorganism tests including cultures, viral antigen tests, 
and PCR.

Library preparation and sequencing.  First, we compared two DNA extraction kits: the QIAamp DNA 
Microbiome kit (Qiagen, Hilden, Germany) and the QIAamp UCP Pathogen Mini kit (Qiagen) for efficacy of 
detection of bacterial reads. Based on the results, the QIAamp DNA Microbiome kit was used in further exper-
iments. RNA extraction was performed using the NucleoSpin RNA Blood kit (MACHEREY-NAGEL, Düren, 
Germany). The extracted RNA was immediately converted to cDNA and amplified with the REPLI-g WTA Single 
Cell kit (Qiagen) in accordance with the manufacturer’s instructions. DNA and RNA concentrations were meas-
ured using a Qubit dsDNA HS assay kit (Thermo Fisher Scientific, Waltham, MA, USA) and a Qubit RNA HS 
assay kit (Thermo Fisher Scientific), respectively.

The Nextera XT DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) was used to prepare all the 
libraries from extracted DNA or generated cDNA, as described above. Libraries were also prepared from dis-
tilled water as a preparation control (NTC 1-3). Library quality was analyzed using an Agilent 2200 TapeStation 
(Agilent Technologies, Santa Clara, CA, USA) or Agilent 2100 Bioanalyzer (Agilent Technologies). The library 
concentration was quantified using a Qubit dsDNA HS assay kit (Thermo Fisher Scientific). Then, libraries were 
sequenced on MiSeq (Illumina) with the 2 × 150 bp paired-end protocol.

Processing of sequence data.  For analysis of the sequence data, the FASTQ files were uploaded to and 
processed with MePIC v2.0 (National Institute of Infectious Disease)40. First, unnecessary adapter sequences and 
low-quality bases (Q-score cutoff, 20) were trimmed off in the pipeline. Then, human-derived reads were detected 
using the BWA program and removed from the downstream analysis. For the remaining reads, the MEGABLAST 
program (E-value cutoff, 1e–30) was used to search similar sequences of known nucleotide sequences regis-
tered in the NCBI nt database. Finally, the search result was downloaded and summarized regarding taxonomic 
information using MEGAN6 (University of Tübingen, Tübingen, Germany) (bit score >250 (bacteria)/>50 
(virus))42. The raw sequence data in FASTQ format was also used for alignment with the reference genome with 
CLC Genomics Workbench 9.5 (CLC bio; Qiagen) (length fraction = 0.9 (bacteria)/0.8 (virus); similarity frac-
tion = 0.9 (bacteria)/0.8 (virus); nonspecific reads were ignored).

Full-length consensus sequences of EV-D68 were obtained by assigning the most common nucleotide 
sequence gained in this study to each nucleotide position of the reference genome (KP240936). Phylogenetic 
analysis of the full genome and the VP1 region of EV-D68 was conducted using the neighbor joining method by 
MEGA743.

Real-time PCR.  Real-time PCR for detection of CMV was performed with the QuantiTect Multiplex PCR 
kit (Qiagen), and amplification was conducted using the QuantStudioTM3 Real-Time PCR System (Applied 
Biosystems, Foster City, CA, USA) as previously described44. To confirm the presence of viruses detected by 
NGS, reverse transcription PCR (RT-PCR) was performed with the Cycleave PCR respiratory virus detection 
kit (Takara Bio, Kusatsu, Japan), and amplification was conducted using the QuantStudioTM3 Real-Time PCR 
System in accordance with the manufacturer’s instructions. Real-time PCR for S. epidermidis and E. faecalis was 
performed by a commercial laboratory (TechnoSuruga Laboratory, Shizuoka, Japan) using Rotor-Gene (Qiagen). 
Information about the primers and probes used for PCR is shown in Supplementary Table 244–49.
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Data Availability
Consensus sequences of detected viruses are available in the DNA Data bank of Japan (Accession numbers: 
LC495296, LC495297, LC495298, and LC495299). All other data generated or analyzed during this study are 
included in this article.
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