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Abstract
In the inkjet printing process, the droplet experience two phases, namely the jetting 
and the impacting phases. In this review article, we aim to understand the physics of 
a jetted ink, which begins during the droplet formation process. Following which, we 
highlight the different impacts during which the droplet lands on varying substrates 
such as solid, liquid, and less commonly known viscoelastic material. Next, the 
article states important process-specific considerations in determining the success 
of inkjet bioprinted constructs. Techniques to reduce cell deformation throughout 
the inkjet printing process are highlighted. Modifying postimpact events, such as 
spreading, evaporation, and absorption, improves cell viability of printed droplet. 
Last, applications that leverage on the advantage of pixelation in inkjet printing 
technology have been shown for drug screening and cell–material interaction studies. 
It is noteworthy that inkjet bioprinting technology has been integrated with other 
processing technologies to improve the structural integrity and biofunctionality of 
bioprinted construct.

Keywords: Inkjet printing; Material jetting; Bioprinting; Additive manufacturing; 
Hydrogel; Functional material

1. Introduction
Three common material processing technologies have been developed for bioprinting 
of engineered tissue for biological applications[1-9]. These technologies are material 
extrusion, material jetting, and vat polymerization printing (VPP). Material extrusion is 
a technique that dispenses materials through a nozzle using either a pneumatic[10-21] or a 
mechanical pump[22,23]. Material jetting, a technique which dispenses droplets of material, 
has variation in the actuation module, such that material is expelled either by a vibrating 
piezo crystal (as in piezoelectric inkjet printer) or based on vaporized volume of fluid 
(as in thermal inkjet printer)[24-29]. Alternatively, in the process of laser-induced forward 
transfer (LIFT), a pulsed laser source directs heat onto a coated quartz ribbon, which 
causes displacement of microdroplets onto a receiving substrate[30-33]. Last, the process 
of VPP is characterized by a photopolymer-filled tank that contains cell suspension. The 
cell-laden photopolymer is later selectively cured to form 3D structures[34-40].
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The droplet-based bioprinting approach is gaining 
attention with its advantages, such as contactless and 
drop-on-demand printing. Moreover, material jetting 
enables precise control over the deposition pattern and 
material volume[24,25,41]. Understanding the physics behind 
inkjet printing processes is beneficial to leverage on the 
advantages of jetting processes for biological applications. 
This article discusses the process of inkjet droplet-based 
printing at two phases, jetting and impacting (Figure 1). 
The impact phase is further separated into nonpenetrative 
impact, such as interaction with a solid substrate; and 
penetrative droplet impact, such as interaction with a liquid 
pool. A key aspect of this article is to discuss the effect of 
hydrogel semi-solid substrates on the impact phase. Last, 
we discuss the use of jetting processes in applications that 
involve immobilized biomolecules, cell-based assays, and 
needleless drug delivery system.

2. Droplet formation
Both Newtonian and non-Newtonian fluids with the right 
fluid properties for jetting may be used in inkjet bioprinting. 
For inkjet bioprinting, composite microcapsules with 
a relatively high solids content can also be developed[42]. 
Therefore, it is crucial to understand droplet formation of 
both fluid types.

The dimensionless number, Z, is used to describe 
droplet formation during the jetting phase. Z, which is 
the inverse of the Ohnesorge number, is used to assess the 
stability of drop formation[43]. Oh is the ratio between the 
Reynolds and Weber number. The balance between surface 
energy and viscous dissipation determines how droplets 
form. For Newtonian liquids, dimensionless numbers such 
as Reynolds number (Re DV= ρ

η  ratio of inertial to viscous 
forces), Weber number (We DV= ρ

σ

2

, ratio of kinetic energy 

to surface energy) and Ohnesorge number (Oh We
Re=

1
2 ) are 

useful for describing droplet formation and jet behavior. 
Droplet with range values of 2 < Wej < 25 forms stable jet 
formation. Capillary forces inhibit drop ejection at the 
lower range, whereas the onset of satellite drop production 
is indicated above the range. Satellite droplets are artifacts 
formed due to Rayleigh instability. These artifacts 
negatively impact printing resolution.

The printability of inks for droplet-based printing, 
such as inkjet printing, is determined by a dimensionless 
Z value. Z value captures the relative magnitudes of 
inertial, viscous, and capillary effects of free-surface fluid 
mechanics[44]. The minimum velocity for drop ejection is 
determined by the minimum energy required to overcome 

surface tension at the nozzle tip (vmin d= ( )4
1 2

.
.

/
σ

ρ )[45].

Deborah number (De t p
= λ , where tp is the time for 

observation) describes viscoelasticity of a fluid. The tp 
depends on the Ohnesorge number of the fluid[46]. If 
the inertial effect is dominant (Oh < 1), the time for 
observation is Rayleigh timescale (tc

D= ρ
σ

3

). If the viscous 
effect is dominant (Oh > 1), the visco-capillary time scale 
(tv

D= η
σ ) is used instead. While the Deborah number and 

Weissenberg number are often used interchangeably, they 
are not the same parameter[47].

The formation of viscoelastic droplet from inkjet 
printing can be categorized into three types depending 
on the viscoelasticity of the fluid[48] (Figure 2). At low 
viscoelasticity, the fluid behaves closer to a Newtonian 
fluid. When the Deborah number is increased, satellite 
droplets will form due to Rayleigh instability. By continuing 
to increase the viscoelasticity of the fluid, the droplet will 
form a tail when ejected, which at optimal viscoelasticity 
it will merge back into the droplet. Further increasing 
the Deborah number will result in satellite droplet again, 
and at some point, the droplet will not be ejected, and a 
pullback effect will happen.

During the jetting phase, the main objective is to 
control and reduce satellite droplet formation. Hardware 
modification such as having a superhydrophobic sieve 
is an approach to create a satellite-free single droplet for 
printing[49]. Another approach is to change the rheology 
of ink through adding polymers such that drops can 
remain connected by thin threads during the jetting 
phase[50-52]. Inertial, capillary, viscous and viscoelastic 
forces result in generation of droplet from viscoelastic 
fluid. Weissenberg number Wi V

D= λ  incorporates the fluid’s 
characteristic relaxation time of fluid, λ, to account for the 
viscoelastic behavior of non-Newtonian fluids. Polymer 
relaxation time is a function of molecular weight and 
polymer concentration. The elastic effects from polymers 

Figure 1. The process of material jetting can be studied at two phases, i.e., 
jetting and impacting.
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significantly affect filament thinning, break-up time, and 
droplet speed, hence minimizing formation of satellite 
droplets[53]. A bioink with a slow filament elongation and 
long rupture time has slower droplet velocity[54].

Pneumatic systems are used in microvalve bioprinting 
to make it easier to print materials with higher viscosity so 
that tear-off speed for droplet formation can be reached[55]. 
In other jetting system setup, such as the nozzle-free LIFT, 
the vapor bubble dynamic is influenced by rheological 
characteristics, such as surface tension and viscosity[31-33]. 
The vaporization rate is slower for a substance with higher 
viscosity, thus reduces the jet velocity.

The droplet enters the impact phase upon interaction 
with receiving substrate. Droplet impact on solid and 
liquid substrates has been well studied and the phenomena 

can be broadly categorized based on the two types of 
substrates above. Droplets striking solid surfaces can 
bounce, spread, and splash, whereas droplets impacting on 
liquid surfaces can be seen to bounce, coalesce, and splash. 
The following section discusses the phenomena based on 
the outcome of impact, nonpenetrative versus penetrative 
(Figure 3), and the use of droplets to fabricate substrates 
with heterogeneous wettability.

3. Droplet–substrate interaction
3.1. Droplet impacting into penetrative substrate
Neumann’s law establishes the contact angle between a 
liquid surface drop and a droplet in a quasistatic or steady 
state[61,62]. The relative difference in surface tension between 
the droplet and the pool determines the flow pattern and 

Figure 2. Schematic for droplet formation from inkjet with respect to viscoelasticity of the fluid. (a) and (b) are the ejection and stretching of the droplets 
which is common to all fluids. (c) to (i) is the breakup of droplet from Newtonian fluid. (j) to (m) is non-Newtonian fluid with intermediate viscoelasticity. 
(n) to (q) is non-Newtonian fluid with high viscoelasticity. Reprinted with permission from [49]. Copyright (2010), The Society of Rheology.
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direction of forces. The surface flow is driven inward, 
and the droplet is injected deep into the pool when the 
droplet’s surface tension is greater than that of the pool. 
On the other hand, the droplet spreads across the pool 
surface when the surface tension is lower. The droplet may 
penetrate the pool if it has the same surface tension as the 
water. Inhibiting direct contact and coalescence between 
droplet and receiving substrate results in droplet bouncing 
on miscible/same liquid[63].

Droplet impact on another liquid surface may result in 
floating, bouncing, coalescence, or splashing, as described 
in a previous study and demonstrated in Figure 4[64]. A 
floating drop will usually disappear after a few seconds 
into the liquid. Bouncing of the droplet can occur when 
the impact velocity and the size of a single droplet is small 
enough[65]. If floating or bouncing of the droplet did not 
occur post collision, the impact will result in coalescence 
or splashing. Coalescence of the droplet in the liquid can be 
partial or full. In partial coalescence, some of the droplets 
merge into the liquid before “pinch off ” occurs, where a 
secondary droplet is created and bounces off the surface just 
like splashing. A critical Ohnesorge number determines 
where partial and full coalescence phase boundaries lie, 
Oh* = 0.026 ± 0.001, while weakly associated with Bond 
number, Bo g D= ρ

σ

2
[66].

Splashing produced by drop impact on liquid is 
distinguished from splashing caused by droplet contact 

on solid surfaces through the formation of jet based on 
the impact[65]. The transition between the coalescence and 
splashing can be predicted using a combination of Weber 
number and Froude number, Fr V gD=

2

σ . The transition from 
coalescence to short thick jet occurs when We = 34.7 Fr 0.145[67].  
The lower limit for large bubble entrapment zone with 
short thin jet is We = 41.3  Fr 0.179[68]. This shift into the 
small bubble entrapment zone with long thin jet occurs at 
We = 48.3 Fr 0.247. Upper limit for small bubble entrapment 
is We = 63.1 Fr 0.257, in which splashing with long thick jet 
happens without bubbles[69].

The velocity at which a droplet penetrates into the liquid 
is weakly dependent on the liquid’s viscosity[70]. This is due 
to the air film that exists between the droplet and the liquid, 
which primarily serves to cushion droplet penetration into 
the liquid. From conservation of energy, the penetration 
velocity is both calculated and experimentally verified to be 
roughly half of the droplet impact velocity by Tran et al.[70].  
The penetration depth of a droplet impact into liquid, h, 
is proportional to We [71]. In the case of bioprinting, a 
droplet contains particles, such as cells, which are jetted 
onto a receiving substrate. When Park et al.[58] injected cell-
laden droplets into a well containing cell culture media, 
they noticed that the cells sank to the bottom and attached 
to the liquid-filled substrate.

In tissue engineering and bioprinting, hydrogel is 
frequently employed as a carrier or substrate material for 

Figure 3. Droplet–substrate interaction classified based on the penetrative and nonpenetrative impact. The penetrative impact on non-Newtonian 
materials such as PEGDA[56] and gelatin[57]; penetrative impact on Newtonian material such as cell media[58] and water[57]. Nonpenetrative impact on 
viscoelastic substrate such as PDMS[59], and rigid materials such as glass slides and plasticware[60]. Figures are reproduced under the terms of the Creative 
Commons Attribution 4.0 International License.
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transferring cells[21,72,73]. Due to their hydrophilic properties 
resembling biological tissue, hydrogels are polymeric 
materials that have found extensive use in drug delivery 
systems[74], implants, and tissue engineering[75,76]. The state 
of hydrogel is dynamic with its sol–gel transition elicited 
by interactions such as covalent and noncovalent bonding, 
electrostatic interaction, temperature, pH changes, ionicity, 
oxidation state, and enzyme addition[77,78]. Since hydrogel is 
comprised mainly of water, it may seem natural that water 
should spread on this substrate as it is soft and permeable. 
Water droplets, on the other hand, have a nonzero contact 
angle with a hydrogel surface due to the presence of free 
polymer chains at the gel interface[79]. It has been observed 
that the interaction between sessile droplet and the 
hydrogel surface develop a contact line that exhibits both 
pinned and receding regimes.

According to Kajiya et al.[80], a droplet would initially 
display a pinned contact line. As a result of the solvent 
diffusing into the hydrogel below, the contact angle 
between the liquid and the hydrogel is reduced while the 
slope of the hydrogel’s surface close to the contact line 
increases. The contact line will recede and balance when 
the contact angles are almost equal. The diffusion of water 
into the polymeric surface, which causes the hydrogel to 
swell, can be used to explain how a surface gradient or 
slope forms close to the contact angle[80].

Impact work with viscoelastic substrate has been 
conducted using solid spheres such as silica[81], copper 
substrate[57], and steel[82]. In general, the elasticity of a 
substrate influences the cavity formation when a projectile 
strikes a viscoelastic substrate, such as gelatin. Gelatin, a 
viscoelastic material, is often used as an analogous material 
for understanding a ballistic projectile. When studying the 
projectile of a copper sphere impacting gelatin with varying 

concentrations, the sphere either rebounds or penetrates 
the gelatin substrate depending on concentration[57]. The 
projectile striking the substrate causes a fracture in both 
situations.

An example of a liquid projectile penetrating a 
viscoelastic substrate occurs during jet injection as shown 
in needleless drug delivery models[56,83,84]. The main 
determinant of whether a projectile is penetrative or not 
is whether the jet velocity exceeds a critical value. As 
described by Park et al.[85], jet injection consists of three 
phases: jet impingement, flow into skin, and dispersion 
under skin. The jet creates a hole on the viscoelastic 
substrate when impact pressure is greater than the strength 
of substrate. For a typical skin strength of 20 MPa, velocity 
of projectile  vp ~ 15 m/s is sufficient to create an impact 
on the skin[85-87]. The depth of the jet’s penetration is 
determined by the Young’s modulus, critical stress for 
failure, fracture toughness, and hardness of the substrate, 
such as skin and its equivalents.

The kind of laser, the energy of the laser pulse, and 
the capillary width all affect the jet power and velocity 
for optical-based jetting systems. Continuous wave lasers 
deliver jet in the range of 20–100 m/s, while jet velocity 
of pulsed lasers are higher and in ranges from 100 to 
300 m/s[84]. Mechanical and electromechanical inputs such 
as spring (100–150 m/s), compressed gas (100–400 m/s), 
and piezoelectric (20–400 m/s) have been explored as 
energy sources for jetting[84]. Comparatively, droplet 
velocity from inkjet technology ranges from 1 to 20 m/s, 
depending on the composition of ink and types of actuating 
system[60,88].

Impact velocity, with relative to the substrate, mainly 
determines the outcome whether the projectile is 
penetrative or nonpenetrative as demonstrated in the 

Figure 4. Result of droplet impact on liquid surface.
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needleless drug delivery system. The goal in needleless 
drug delivery is to have targeted drug delivery with certain 
penetration depth. Leveraging on the rapid firing rate in 
jet systems, small-volume drugs are delivered into deeper 
depth using repetitive jetting[56]. Hydrogels, such as gelatin 
and agarose, have been used in these studies to simulate 
stiffness of human skin tissue. Similarly, hydrogel has been 
widely used in bioprinting as both the ink formulation 
and receiving substrate. There is limited understanding 
of droplet impact by jetting at the sol–gel transition 
of hydrogel, as most ballistic studies are conducted on 
crosslinked hydrogel surfaces or using solid spheres, which 
does not translate to the viscoelastic nature of cells and 
cell-laden hydrogel.

3.2. Droplet impacting on nonpenetrative substrate
Jetted droplet formation dissipates kinetic energy upon 
impacting a surface. Surface energy interaction of the 
jetted droplet with its substrate influences the spreading 
morphology of droplet on the nonpenetrative surface. 
A high-speed droplet impacting on a solid substrate 
undergoes three phases: (i) rapid spread along the substrate, 
(ii) take-off from the surface to create the beginning of 
splash, and (iii) splashing and fragmenting into satellite 
droplets.

Factors, such as droplet rheology, droplet size, and 
impact velocity, affect the droplet impact on a substrate[54]. 
The drop height, air resistance, and ink viscosity have an 
impact on the droplet’s impact velocity[54,89]. Aerodynamic 
effects are typically disregarded in the inkjet printing 
process due to the short drop distance (1 mm) between 
the printing nozzle and the receiving substrate[90]. Thus, 
inertial force and capillary force, as represented by the 
Weber number (We

v dp=
ρ

σ

2
0 �, where ρ is the density of the 

fluid, vp is its impact velocity, d0 is the droplet diameter, 
and σ is the surface tension) best describe the behavior of 
droplet impact. Weber number will typically be higher for 
high-velocity droplet with large diameter, which implies 
that the droplet is experiencing higher inertial force than 
the capillary force. Low-velocity droplets (We < 5) will 
generally adhere to the substrate upon impact, whereas 
droplets with 5 < We < 10 usually rebound from a substrate 
that is smooth and hydrophobic. In other words, the 
rebound is also the result of a surface characteristic, such as 
wettability or roughness. The mode of droplet impact upon 
nonpenetrative substrate is summarized in Table 1[91].

When a droplet impacts the surface with no splashing 
or rebounding, the droplet will spread across the surface 
until its maximum drop radius is reached[90]. Thereafter, 
the drop will either recede from its maximum radius 
to form a smaller drop or maintain its drop radius. The 
differences between the cases are dependent on the 

surface property of the substrate. The maximum spreading 
droplet diameter, Dmax, and the initial droplet diameter, 
D0, are used to calculate the spreading ratio β = D

D
max

0
. The 

maximum diameter is a balance between inertial forces 
with capillary and viscous forces. Various models have 
suggested the relation D

D
max f Re We

0
= ( ), , in which Laan 

et al.[92] suggested the interpolation of two scaling models 
between the capillary regime ( for small We, D

D
max We

0

1
2∝ ,  

and viscous regime ( for small Re, D
D
max Re

0

1
5∝ . Generally, 

high-speed droplet will cause splashing[93]. In comparison 
to the buoyancy force and stirring force caused by the 
striking droplet, the surface tension force may produce the 
strongest flow.

Postimpact, nonpenetrative droplets pin onto the 
surface with its contact line described by Young’s law on 
surface energies. The spreading and retraction behavior of 
impact droplets on nonpenetrative viscoelastic substrate 
is dependent on elasticity of substrate[94]. The dynamic 
wettability of soft viscoelastic surfaces, such as PDMS, 
affects the damping coefficient of sessile drop[59,94]. Similar 
to PDMS surfaces, many natural and synthetic biomaterials 
exist as soft and deformable films/fibers. Differences 
between the rigidity and permeability of surfaces influence 
the droplet–substrate interaction.

For substrates consisting of soft materials, Young’s 
law, which determines the surface energy and contact 
angle, is no longer valid. Surface tension of the liquid, the 
stiffness of the material, and the apparent contact angle of 
the droplet together affect how significantly the contact 
line between the sessile droplet as well as the elastomeric 
substrate deforms[95]. The FEM simulation by Tirella 
et al.[96] showed an inverse effect on substrate stiffness in 
absorbing the strain energy, which in turns influences 
droplet remodeling.

Prompt splash occurs when the inertial forces of the 
droplet overcome the capillary effect of the surface[97]. This 
phenomena can be simplified and predicted by a “splashing 
parameter”[98], defined as Kc = A.  Oha.  Web. There are 
many studies done for the value of A, a, and b at various 

Table 1. Classifying different modes of drop impact based on We

Mode of droplet impact Criteria

Stick We < 5

Rebound 5 < We < 10

Spread 5 < We < 18 02
0

0 5 0 25 0 75.
. . .d v fρ

σ( )
Splash We > 18 02

0

0 5 0 25 0 75.
. . .d v fρ

σ( )
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conditions, such as varying velocity, impact angle, surface 
roughness, and liquid film thickness. The value is relevant 
to inkjet bioprinting during the prewetting phase when 
depositing materials of the first few layers. These scenarios 
are summarized in Table 2.

In bioprinting, cell compatibility is a major 
consideration when choosing the appropriate printing 
technology and formulating bioink for printing. For 
instance, in droplet-based printing, the splashing of 
droplet onto substrate has direct impact on cell viability 
in cell-laden droplet. Ng et al.[60] demonstrated the inverse 
relationship between droplet impact velocity and cell 
viability. A decrease in droplet impact velocity of cell-laden 
droplets increases cell viability when jetted against solid 
surface such as glass slide or petri dishes. The group used 
HP D300e Digital Dispenser to deposit cell-laden droplet 
with varying cell concentrations. The HP D300e, a thermal 
inkjet (TIJ) system, works by vaporizing a small amount 
of fluid through rapid heating and subsequent generation 
of a gas bubble that expands to eject precise amounts of 
fluid. When jetting cells are suspended in a fluid, a higher 
concentration of cells reduces the splashing of pool from 
subsequent droplets.

Nooranidoost et al.[103] investigated the impact of a 
cell-laden droplet on a surface to understand the effect 
of the droplet impingement and droplet spreading on cell 
viability. The authors determined that the accumulation 
of stress within the droplet upon impacts deformed cells 
within the droplet. Additionally, this simulation study 
demonstrated how enhancing bioink viscoelasticity 
enhances cell survival by lowering cell deformation during 
the impact phase. In droplet-based printing methods like 
inkjet bioprinting, it is advised to employ strategies that 
lessen cell deformation during and after the jetting and 
impacting phase of cell-laden droplets.

Another process-specific consideration for droplet-
jetting printing processes, such as inkjet printing and 

aerosol jet printing, lies in the evaporation dynamics of pico- 
to nanoliter droplets. The evaporation dynamics of the ink 
influences the pattern of deposition, therefore determining 
the functionality of ink. A sessile drop’s evaporation is 
complex, which is influenced by a number of variables, 
including the ink properties (e.g., concentration, additives, 
particle morphology)[104], substrate properties (e.g., 
surface roughness, rigidity, permeability, hydrophobicity, 
texture)[105-108], and the ambient conditions (e.g., 
humidity and temperature). Higher evaporation kinetics 
are associated with higher printing resolution, which is 
determined by smaller droplet size. Other factors that 
influence print resolution include wettability of surface[109] 
and suppression of coffee ring effect[110]. Whereas it 
was found that the droplet would lose volume owing to 
penetration of liquid into porous and permeable substrate, 
which occurs faster than evaporation[111]. Substrate 
wettability increases the infiltration rate, which further 
suppresses the coffee ring effect by dominating convective 
flow[111,112]. In inkjet bioprinting, this relation between print 
resolution and droplet size causes challenge for printing 
sensitive materials, such as cell-laden ink. In bioprinting, 
the evaporation dynamics of nanoliter droplets negatively 
affect cell viability of the cell-laden bioink. There is a trade-
off between achieving higher printing resolution and 
reducing cell viability due to droplet evaporation[60].

3.3. Heterogeneous droplet patterning of substrate
In recent years, researchers are also looking into the droplet 
impingement behavior on surface with heterogeneous 
wettability[114,115]. Heterogeneous wettability is created by 
chemical alteration and physical engineering, giving rise 
to nonuniformity in adhesion forces along the surface[116]. 
Unlike dropping on surface with homogenous wettability, 
the droplets that fall on surface with heterogeneous 
wettability can experience a resultant lateral force that 
pushes them sideway because of the asymmetrical force 
distribution around the droplet caused by the different 
surface wettability[117]. Generally, the droplets can 

Table 2. Summary of splashing parameter for dry or wet solid surface in literature

Kc = A. Oha . Web Boundary condition Comment References

A a b

1 −0.37 1 Dry surface with different 
roughness condition

Kc is dependent on roughness. Cossali et al.[100] suggested Kc = 649 + 3.76 RND
-0.63, 

where RND is the nondimensional roughness defined as Ra/D.
[98]

1 −0.4 1 Wetted surface with 
different roughness

Kc = 658, this splashing parameter is independent of roughness due to the 
existence of liquid film as explained by Mundo et al.[100]

[101]

1 −0.4 1 Wetted surface with 
different roughness

Kc = 2100 + 5880 δ1.44, where δ is the nondimensional film thickness defined 
as h/D, with h being the thickness of liquid layer. The splashing parameter is 
experimented within 0.1 < δ < 1.0

[99]

1 −0.17 0.59 Thin liquid film covering a 
solid surface

Kc = 63 = Oh. Re1.17 ≈ √We, where δ = 0.1 [102]
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undergo asymmetric spreading, retracting, detaching, and 
migrating phases when it impacts on a nonpenetrating 
surface with a wettability difference and tends to be 
pushed toward the more hydrophilic area[118]. The high 
wettability contrast can also result in stronger lateral 
rebounding force that leads to longer landing distance of 
the rebounded droplets[119]. However, a different behavior 
has been observed for penetrable surfaces with wettability 
difference as Zhang et al. have shown that the droplets 
can move in both directions on a penetrable surface 
with wettability gradient[113]. The competition between 
the recoil of droplet  on the surface  and the penetration 
of  droplet advancing into the groove defines the bounce 
trajectory. Understanding the trajectory of droplet impact 
on diverse surfaces may help with the construction of 
complex engineered tissue as multimaterial 3D bioprinting 
and integration of various bioprinting and biofabrication 
modalities advance[120,121].

4. Inkjet for biological applications
Spatial control of biological materials, such as cells, 
biomaterials, and biological factors, is provided by the 
inkjet printing system[122]. Interfacial properties of surfaces, 
such as adhesion, wetting, and opacity, can be tuned to 
introduce heterogeneity to the substrate[79]. This opens up 

new possibilities for creating platforms for biochemical 
and biophysical research. For instance, pharmacological 
testing has frequently utilized cell-based high-throughput 
microarrays.

Droplet size of jetted material influences the number 
of cells per printed spot, which has been used for creating 
microarrays of cells with controlled cell density. A single-
cell microarray was fabricated using inkjet printing as a 
proof-of-concept platform for assessing pharmacological 
treatment[123]. Thin layer of chitosan film with thickness of 
70–80 nm was formed when jetted droplets coalesced onto 
a surface-treated glass substrate with higher hydrophilicity. 
Then, to create the nonadhesive and adhesive domains 
on the glass substrate, poly(ethylene glycol) (PEG) and 
collagen droplets were patterned onto the dried chitosan 
film, respectively. Cells are seen at spots with collagen 
droplets when subsequently seeded onto the chitosan/
PEG/collagen film. Spot diameter of cell-adhesive material 
was controlled based on the volume, which correlates 
to the number of cells found in each spot. Park et al.[58] 
leveraged on the pixelation of inkjet printing and printed 
graduated concentration of cells. The team demonstrated 
the concept of pixelation akin to a desktop printer with 
RGB ink cartridge and patterned different ratio of 3 RGB-
labeled cells, giving rise to a heterotypic co-culture model 

Figure 5. Heterogeneous wettability substrate (A) which influenced the morphology and resolution of ink-jetted droplets (Reprinted with permission 
from[109]. Copyright (2014) American Chemical Society) and (B) bounce trajectory of droplet impact on penetrative substrate (Reprinted with permission 
from[113]. Copyright (2016) American Chemical Society).
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for drug response assays. Negro et al.[124] demonstrated 
the capability to control heterogeneity in the z-layers by 
printing several layers of cell-laden hydrogel. Examples 
above showed that heterogeneous inkjet printing of 
biomaterials, biomolecules, and cells of different geometries 
has potential uses in high-throughput drug screening and 
designing complex tissue structures.

Designing biomaterials with biochemical and mechanical 
gradients is important for studying cell-material interaction. 
A platform for studying such interaction should be capable 
of reproducing this heterogeneity in a reproducible manner. 
Phillippi used inkjet technology to control the distribution 
of biochemical cues, thereby inducing multilineage 
differentiation of stem cells[125]. In this fabrication process, 
a single source of autologous adult stem cells can be 
introduced to simultaneously regenerate heterogeneous 
tissue types using a platform patterned with different growth 
factors. Biomechanical cues influence cell behavior in the 
process known as mechanotransduction, where mechanical 
stimuli are transferred into chemical or electrical signal. 
Cells are known to react differentially to various mechanical 
stimulations. This is shown in cell behavioral experiments 
that demonstrate how MSCs differentiate into neurogenic, 
myogenic, and osteogenic cells based on the change of the 
matrix stiffness from soft to stiff to rigid, respectively[126]. 
Epithelial-metastatic transition (EMT), a crucial biological 
program involved in embryogenesis, wound healing, cancer 
cell migration, and metastasis, is yet another illustration[127]. 
Tuning microenvironment is essential for studying 

biological events in cancer progression, wound healing, and 
embryogenesis[128].

Other than patterning cells and biochemical agents in 
planar layers, researchers have developed printing strategies 
to improve shape fidelity of inkjet-printed constructs. One 
approach is to use a support bath containing crosslinking 
agents that react with bioink[129-131]. Multicompartment 
and multicellular structures can be created through 
leveraging pixelation in inkjet printing technology, as well 
as the integration of several manufacturing methods (also 
known as hybrid bioprinting)[132-134]. In the work by Yoon 
et al.[130], crosslinking agents were spray-coated before 
each printing layer. The bioink is a modified gelatin-based 
bioink containing alginate, which reacts with the spray-
coated layer of calcium chloride, forming a 3D laminated 
structure.

Inkjet printing has been applied in planar 2D 
patterning of cells and biomaterials and constructing 3D 
tissue constructs for biological application. This is possible 
through formulating jettable bioinks and designing 
printing strategies compatible with inkjet technologies. 
Moving forward, biological functionality of bioprinted 
constructs is an important criterion in determining the 
efficacy of bioprinted tissue.

5. Conclusion
From the perspective of material jetting technology 
in bioprinting, we have a limited understanding of 

Figure 6. Inkjet printing of cells. (A) Viability of human dermal fibroblast printed through profiling cell proliferation over 7 days[60]. Reproduced under the 
terms of the Creative Commons Attribution 4.0 International License. (B) Heterogeneous patterning of cell population within region of interest forming 
color variation similar to home-based inkjet printers[58]. Reproduced under the terms of the Creative Commons Attribution 4.0 International License. 
(C) Layers of cells patterned with vertical variation[124]. Reproduced under the terms of the Creative Commons Attribution 4.0 International License.
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the substrate–material interaction for non-Newtonian 
materials like cell-laden polymeric systems. In the case 
of cell-laden hydrogels, which are commonly used to 
deliver and deposit materials in bioprinting, increasing 
our understanding of how jetted droplets interact with 
different receiving substrates is essential to understanding 
the impact phase of jetting processes. The concept of 
hybrid bioprinting, which combines the use of multiple 
fabrication processes, adds value to bioprinted construct 
by improving its structural integrity and biological 
function. The key to integrating different manufacturing 
technologies lies in understanding material interactions to 
leverage the distinct advantages of each biomanufacturing 
process and introduce increased form and functionality to 
bioprinted constructs.
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