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Abstract: The neuroanatomy of autism spectrum disorder (ASD) shows highly heterogeneous de-
velopmental trajectories across individuals. Mapping atypical brain development onto clinical
phenotypes, and establishing their molecular underpinnings, is therefore crucial for patient stratifica-
tion and subtyping. In this longitudinal study we examined intra- and inter-individual differences
in the developmental trajectory of cortical thickness (CT) in childhood and adolescence, and their
genomic underpinnings, in 33 individuals with ASD and 37 typically developing controls (aged
11–18 years). Moreover, we aimed to link regional atypical CT development to intra-individual
variations in restricted and repetitive behavior (RRB) over a two-year time period. Individuals
with ASD showed significantly reduced cortical thinning in several of the brain regions functionally
related to wider autism symptoms and traits (e.g., fronto-temporal and cingulate cortices). The spatial
patterns of the neuroanatomical differences in CT were enriched for genes known to be associated
with ASD at a genetic and transcriptomic level. Further, intra-individual differences in CT correlated
with within-subject variability in the severity of RRBs. Our findings represent an important step
towards characterizing the neuroanatomical underpinnings of ASD across development based upon
measures of CT. Moreover, our findings provide important novel insights into the link between
microscopic and macroscopic pathology in ASD, as well as their relationship with different clinical
ASD phenotypes.

Keywords: autism spectrum disorder; cortical thickness; restricted and repetitive behaviors; genetics

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized
by impairments in (1) social communication and interaction, (2) repetitive and restricted
behaviors and interests, and atypical sensory responses (DSM-5, 2013; [1]). However,
the clinical phenotype of ASD is highly heterogeneous both within (e.g., across age) and
between (e.g., in terms of the severity and profile of core and associated symptoms [2])
individuals. Similarly, there exists large inter-individual heterogeneity in the neurobiology
of ASD, including in the neuroanatomy and genetics [2,3]. For example, while neuroimag-
ing studies in ASD agree on an atypical developmental trajectory of brain maturation in
affected individuals ([2,4,5]), the reported spatial distribution of these differences reveal a
high level of diversity across development [6]. Moreover, ASD has been linked to hundreds
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of genetic variants. This suggests that ASD is not a single gene disorder, but has a highly
complex (poly)genetic architecture [7]. Combined, these findings highlight inherent diffi-
culties in linking differences in the brain structure to etiological factors, and determining
their impact on clinical outcomes in ASD.

While a wealth of studies have explored the neural networks underpinning ASD [8],
the reported differences vary in terms of the specific patterns and sign (i.e., direction) [2].
Moreover, the patterns of differences vary for different morphometric features, including
volumetric and geometric measures of the neuroanatomy [9–11]. One of the morpholog-
ical parameters in which atypicalities in ASD have been reported most consistently, is
in the cortical thickness (CT); i.e., the closest distance between the outer (i.e., pial) and
inner (i.e., white matter) boundary at each vertex on the tessellated surface [12]. It is well
established that the developmental trajectory of CT in ASD deviates from the neurotypical
trajectory, even though reports vary with regard to the direction of the difference. For
example, in a longitudinal study by Zielinski et al. (2014), ASD was characterized by
an overgrowth of the cortical mantle during early childhood, followed by an accelerated
decline in mid-childhood, and a phase of ‘normalization’ during adulthood [5]. Con-
trarily, Wallace et al. (2010) reported an accelerated—rather than decelerated—cortical
thinning during adulthood in a cross-sectional sample of ASD individuals [11]. These
studies highlight some of the inconsistencies of neuroanatomical findings derived from
longitudinal and cross-sectional studies designed to investigate age-related changes in the
neuroanatomy of ASD. Hence, further longitudinal studies are required to replicate and
validate these earlier findings.

Despite these differing results, studies agree that fronto-temporal and fronto-parietal
brain regions [13–15] are particularly affected in ASD, and display the most atypical
neurodevelopmental trajectory relative to other brain regions. Overall, neuroanatomical
differences in ASD have been reported in (1) fronto-temporal and fronto-parietal brain
networks including the medial, orbitofrontal (OFC) and inferior frontal (IFG) cortices,
the posterior parietal cortex, the superior temporal sulcus (STS) and the fusiform gyrus;
(2) limbic brain regions such as the amygdala–hippocampal complex, the thalamus, and
cingulate regions; (3) the fronto-striatal circuitry including parts of the basal ganglia, the
anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC); and (4)
the cerebellum [2,8]. Most of these brain regions are integral parts of the so-called ‘social
brain’ that underpins higher socio-cognitive functioning [16]. However, less is known
about the neuroanatomical underpinnings of restricted and repetitive behaviors (RRBs),
which, with the most recent edition of the DSM-V, have only recently become the focus of
attention. [1]. Emerging research suggests that the severity of repetitive behaviors in ASD
may be correlated with differences in subcortical structures, particularly in parts of the
fronto-striatal circuitry (e.g., the volume of the caudate nucleus in the basal ganglia [17,18]).
However, few studies have investigated the association between repetitive behaviors and
cortical neuroanatomy (e.g., CT) across time. Due to the crucial role of the cortex in fronto-
striatal pathways [19], it is important to not only assess brain–behavior correlations at a
subcortical level, but to furthermore analyze changes in cortical measures and their impact
on fronto-striatal connectivity.

Therefore, in this study we compared changes in the CT of children and adolescents
with ASD to those of typically developing (TD) controls, and examined the relationship of
CT differences with variations in repetitive behavior (as measured by the Restricted and
Repetitive Behavior Scale-Revised (RBS-R) [20,21]) over time. We focused on RRB because
most neuroanatomical studies to date have examined brain–behavioral correlations with
social impairments, leaving RRB largely unexplored. Furthermore, RRBs are known to
be associated with sensory symptoms (e.g., hyperresponsive behaviors; [22]), which have
been highlighted as promising new candidates for subtyping ASD individuals [23]. In
contrast to most previous studies that have examined neurodevelopmental trajectories in
CT during early to mid-childhood [4,13,24–27], we focused on the developmental changes
in CT during late childhood and adolescence based on a narrower age range (11–18 years).
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This allowed us to investigate a crucial stage in development during which CT growth
curves in ASD and TD controls typically overlap [5], even though ASD symptoms persist
across the human life span. Last, using the spatial gene expression data provided by the
Allen Human Brain Atlas (AHBA; [28]), we tested the hypothesis that brain regions with
atypical CT development during adolescence in ASD are enriched for genes that have
previously been linked to ASD on the genetic and transcriptomic level.

2. Materials and Methods
2.1. Participants

This study used data provided by an ongoing longitudinal study examining brain
development during adolescence in individuals with ASD and in TD controls at two
timepoints separated by ~2 years (see Figure 1). The total sample consisted of n = 70
individuals of between 11 and 18 years at timepoint 1, out of which n = 33 participants
had a diagnosis of ASD, and n = 37 were TD controls. Groups were matched for age, sex,
and full-scale IQ (FSIQ; see Table 1). ASD was assessed using gold-standard diagnostic
tools, i.e., the German version of the Autism Diagnostic Interview-Revised (ADI-R; [29,30])
and the second edition of the Autism Diagnostic Observation Schedule (ADOS-2; [31,32]).
Repetitive behaviors were examined in all participants using the German version of the
Repetitive Behavior Scale-Revised (RBS-R) at both assessment timepoints [20,21]. In ac-
cordance with Kästel et al. (2014), we used a four-factor model, containing persistent (F1),
stereotyped (F2), self-injurious (F3), and compulsive (F4) behaviors to compute the RBS-R
subscales. A full list of inclusion and exclusion criteria and the clinical characteristics of
the sample is provided in the Supplementary Materials (see Supplementary Methods 1
and Supplementary Table S1). All participants (guardians of participants below 18 years of
age), gave informed written consent. The study was approved by the Ethics Committee of
the Faculty of Medicine of Goethe University, Frankfurt.
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Figure 1. Interscan Interval (ISI) of the ASD and control group. Time between the two scanning
timepoints in the ASD group (blue) and the control group (red). Dashed lines represent mean scores
of ISI, solid lines represent the median scores of ISI.
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Table 1. Sample Characteristics.

ASD (n = 33) TD Controls (n = 37)
Group Comparison

t x2 p

Age [years]
T1 14.48 ± 2.51 13.76 ± 2.36 1.25 0.22
T2 16.61 ± 2.47 15.89 ± 2.45 1.21 0.23

Interscan-Interval (ISI) [years] 2.07 ± 0.28 2.06 ± 0.20 0.17 0.87
Sex (male/female) 27/6 30/7 <0.001 1.00

Full-scale IQ (FSIQ) 101.38 ± 13.19 107.07 ± 11.52 −1.91 0.06
Handedness (right/left) 29/4 34/3 0.025 0.87
ADI-R Social Interaction 17.06 ± 4.96 -
ADI-R Communication 13.06 ± 4.12 -

ADI-R Repetitive Behaviors 4.76 ± 2.50 -
ADOS CSS

T1 5.79 ± 2.71 -
T2 1 5.95 ± 2.22 -

RBS-R total
T1 25.18 ± 18.80 2.11 ± 3.67 6.9 <0.001 ***
T2 22.48 ± 17.21 2.30 ± 4.07 6.58 <0.001 ***

∆(T2-T1) −2.70 ± 16.00 +0.19 ± 3.01 −1.02 0.3148
RBS-R persistent

T1 16.88 ± 11.26 1.59 ± 2.85 7.59 <0.001 ***
T2 14.97 ± 10.39 1.81 ± 03.23 6.98 <0.001 ***

∆(T2-T1) 1.91 ± 9.43 −0.22 ± 2.27 1.26 0.22
RBS-R stereotyped

T1 3.06 ± 3.18 0.30 ± 0.62 4.91 <0.001 ***
T2 2.70 ± 3.66 0.08 ± 0.28 4.09 <0.001 ***

∆(T2-T1) 0.36 ± 3.63 0.22 ± 0.67 0.23 0.82
RBS-R self-injurious

T1 0.88 ± 2.16 0.05 ± 0.23 2.18 <0.001 ***
T2 1.06 ± 1.84 0.03 ± 0.16 3.22 <0.001 ***

∆(T2-T1) −0.18 ± 2.51 0.03 ± 0.29 −0.48 0.64
RBS-R compulsive

T1 4.36 ± 5.17 0.16 ± 0.60 4.64 <0.001 ***
T2 3.76 ± 4.57 0.38 ± 1.14 4.14 <0.001 ***

∆(T2-T1) 0.61 ± 3.17 −0.22 ± 0.71 1.46 0.15
Total Brain Volume [l]

T1 1.18 ± 1.00 1.24 ± 0.94 −2.60 <0.05 *
T2 1.17 ± 0.10 1.23 ± 0.10 −2.49 <0.05 *

∆(T2-T1) −0.01 ± 0.02 −0.01 ± 0.02 −0.20 0.8445
Total Surface Area [m2]

T1 0.18 ± 0.015 0.19 ± 0.02 −2.33 <0.05 *
T2 0.18 ± 0.16 0.19 ± 0.02 −2.28 <0.05 *

∆(T2-T1) −0.02 ± 0.002 −0.002 ± 0.002 −0.16 0.877
Mean Cortical Thickness [mm]

T1 2.75 ± 0.10 2.78 ± 0.08 −1.15 0.2555
T2 2.68 ± 0.08 2.70 ± 0.08 −0.81 0.4221

∆(T2-T1) −0.07 ± 0.05 −0.08 ± 0.04 0.89 0.3759

Note: Data expressed as mean ± standard deviation; Abbreviations: ASD: Autism Spectrum Disorder, TD: Typical Developing, T1:
timepoint 1, T2: timepoint 2, ADI-R: Autism Diagnostic Interview-Revised [29], RBS-R: Repetitive Behavior Scale-Revised [20,21], ADOS:
Autism Observation Schedule, CSS: Calibrated Severity Score [33], mm: millimeter, l: liter, m2: square meter, t: t-value, x2: Pearson’s
chi-squared test, p: p value, ***: p < 0.001, *: p < 0.05; 1 data based on n = 21 individuals.

2.2. MRI Data Acquisition

All MRI data were acquired at the Brain Imaging Centre (BIC), Frankfurt using a
contemporary MRI scanner operating at 3 Tesla (Magnetom Trio, Siemens Medical Systems,
Erlangen, Germany). High-resolution structural ADNI MPRAGE sequences were acquired
with full head coverage using an 8-channel head coil (slice thickness = 1.0 mm, in-plane
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resolution = 1.0 × 1.0 mm2, repetition time (TR) = 2300 ms, echo time (TE) = 2.2 ms, flip
angle = 9◦, field of view = 26.5 cm, slice number = 176).

2.3. Cortical Surface Reconstruction Using FreeSurfer

Image processing and cortical reconstruction for all MRI scans was performed using
FreeSurfer v6.0.0 software (https://surfer.nmr.mgh.harvard.edu/, accessed on 11 Novem-
ber 2020). Here, models of the cortical surface are created for each T1-weighted image,
i.e., one image per subject and timepoint, by implementing well validated and fully au-
tomated procedures. These have been extensively described in previous studies [34–36].
The reconstructed scans were further processed using FreeSurfer’s longitudinal stream to
derive estimates of the vertex-wise change in CT [34]. Here, an unbiased within-subject
template (i.e., ‘base’ image) is initially created using cubic spline interpolation reflecting
the average anatomy of each subject across time to reduce the confounding effect of inter-
individual morphological variability [37,38]. Subsequent processing steps of the single
timepoints, including skull stripping, Talairach transforms, and atlas registration, are then
based upon this common information from the within-subject template. This significantly
improves the reliability and statistical power [34]. More information on the quality assur-
ance procedures is provided in the Supplementary Materials (see Supplementary Methods
2). CT was calculated based on the longitudinal scans as the closest distance from the
outer (i.e., pial) to the inner (i.e., white matter) boundary at each vertex on the tessellated
surface [12]. Vertex-wise estimates of the longitudinal CT change were expressed as the
Symmetrized Percent Change (CTspc) within the framework of FreeSurfer’s longitudi-
nal stream (https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalTwoStageModel,
accessed on 11 November 2020), which is calculated as

CTspc = 100 ∗ rate
average

With the rage = 0.5 ∗ (CTT1 + CTT2), and rate = CTT2 − (CTT1
ISI ). Hence, this parameter

represents change the in CT of individuals from T1 to T2 at each vertex, while accounting
for the average thickness across the cortex and intra-individual noise. Vertex-wise estimates
of CTspc were registered to a common space surface template (i.e., fsaverage in FreeSurfer)
and smoothed using a 10-mm surface-based smoothing kernel, to increase the ability to
detect population changes.

2.4. Statistical Analyses

Surface-based statistical analyses were performed using the SurfStat toolbox (http:
//www.math.mcgill.ca/keith/surfstat, accessed on 11 November 2020) for Matlab (R2021a;
MathWorks), and R (version 4.0.5) for the Statistical Computing (www.r-project.org, ac-
cessed on 16 December 2020). Missing data in RBS-R (maximum 3 out of 43 items per
person) was input by predictive mean matching using the ‘mice’ package in R [39]. Between-
group differences in age at both timepoints, ISI, sex, FSIQ, handedness, ASD symptom
severity, total brain measures at both timepoints and their change, were assessed via t-test
or χ2-test (see Table 1). We initially applied a step-up model selection procedure using a
nested model comparison to identify the general linear model (GLM) that best fitted our
CT data (for more information see Supplementary Methods 3). Based on the best-fitting
model, vertex-wise between-group differences in CTspc (Y) were subsequently examined
by applying a GLM with the diagnostic group and sex as the fixed-effects factors, and the
linear and quadratic age at T1, FSIQ, and ISI as the continuous covariates, i.e.,

γi = β0 + β1Group + β2Sex + β3AgeT1 + β4Age2
T1 + β5FSIQ + β6ISI + εi (1)

where εi is the residual error at vertex i. Between-group differences were estimated from
the coefficient β1, and normalized by the corresponding standard error.

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalTwoStageModel
http://www.math.mcgill.ca/keith/surfstat
http://www.math.mcgill.ca/keith/surfstat
www.r-project.org
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In a second analysis step, we examined the association between the developmen-
tal change in CT (CTspc) and developmental changes in the severity of general autism
symptoms and repetitive behaviors across adolescence, which was quantified as the intra-
individual change in the RBS-R total score from T1 to T2 (∆RBS-R(T2-T1)). The employed
GLM was derived using a step-up model selection procedure that assessed the goodness-
of-fit upon inclusion of the ∆RBS-R(T2-T1) and the ∆RBS-R(T2-T1)-by-group interaction (see
Supplementary Methods 3). Based on the model comparison, the following model was
fitted

γi = β0 + β1Group + β2Sex + β3AgeT1 + β4Age2
T1 + β5FSIQ + β6ISA + β7∆RBSR(T2−T1) + εi (2)

We did not covary for the mean CT across the cortex, as this is already accounted for in the
computation of CTspc. Since variance in ∆RBS-R(T2-T1) was mainly driven by individuals
within the ASD group (see Supplementary Figure S1), brain-behavioral correlations were
examined both in the total sample and within the ASD individuals. The main effect of
∆RBS-R(T2-T1) on CTspc was then calculated from the respective coefficient β7. In the ASD
group, associations between regional deviations from the neurotypical developmental
trajectory of CT and developmental changes in autism symptoms and repetitive behaviors
were further examined via Pearson correlation.

In all GLMs, the continuous covariates were mean centered across groups to improve
interpretability of the coefficients. In the subanalysis of individuals with ASD, mean cen-
tering was performed across all included participants with ASD. Corrections for multiple
comparisons across the whole brain were performed using ‘random field theory’ (RFT)-
based cluster analysis for nonisotropic images with a cluster-forming and cluster-based
significance threshold of p < 0.05 (2-tailed; [40]).

2.5. Gene Expression Decoding Analysis

To identify the potential genetic underpinnings of the observed neuroanatomical
findings, we used the spatial gene expression data provided by the Allen Human Brain
Atlas (AHBA; [28]) to perform a gene expression decoding analysis (GEDA; [41]). Here,
a total of 20,787 protein coding genes were statistically tested for a spatial pattern of
expression that was similar to the spatial pattern of neuroanatomical differences highlighted
by the vertex-wise analyses of CT, e.g., the t-map for the between-group difference in CTspc.
The resulting gene list was thresholded at p < 0.05 (see Figure 2a; for more information
on the methodological approach further see Supplementary Methods 4). This liberal
threshold was selected as this analysis did not constitute a hypothesis test per se, but
rather a selection step to provide a list of potential candidate genes. Subsequently, the
resultant gene list was tested for enrichment using lists of genes that have previously been
implicated in ASD by genetic and transcriptomic studies [42–46]. At the genetic level, this
included ASD risk genes with de novo and rare variants [44], and GWAS-significant ASD
risk genes with common variants [47]. At the transcriptomic level, this included genes
that are (i) differentially expressed (i.e., upregulated or downregulated) in postmortem
cortical tissue in ASD [43], and in specific neuronal cell types in ASD [45], and (ii) genes
of differentially expressed coregulated modules in ASD [42,48]. We also included the
ASD-gene list compiled by the SFARI gene database (categories S,1,2,3 downloaded 11
November 2020 from https://gene.sfari.org/).

https://gene.sfari.org/
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Figure 2. Vertex-wise between-group differences in cortical thickness (CT). Vertex-wise between-
group differences in Scheme 1 to T2, i.e., the rate of CT change with respect to the average CT, in 
individuals with autism spectrum disorder (ASD) compared to neurotypical controls. (a) t-test sta-
tistic for the contrast ASD minus controls (unthresholded); (b) Positive clusters (orange to yellow) 
indicate significantly less cortical thinning, negative clusters (blue to cyan) indicate significantly 
stronger cortical thinning in ASD (RFT-based cluster corrected, p < 0.05, two-tailed). Abbreviations: 
L: left hemisphere, R: right hemisphere. 

Furthermore, we examined the t-map associated with the main effect of RBS-R vari-
ation over time (see Figure 3a) for enrichment of genes previously linked to repetitive 
behavior in ASD [46]. All enrichment tests were performed using the GeneOverlap pack-
age in R (10.18129/B9.bioc.GeneOverlap, accessed on 20 January 2021), which generated 
enrichment odds ratios (OR), hypergeometric p values, and FDR-corrected p values (padj). 
Only comparisons with padj < 0.05 were interpreted further (more details on the methodo-
logical approach of the enrichment analysis are provided in the Supplementary Methods 
5).  

Figure 2. Vertex-wise between-group differences in cortical thickness (CT). Vertex-wise between-
group differences in Scheme 1 to T2, i.e., the rate of CT change with respect to the average CT,
in individuals with autism spectrum disorder (ASD) compared to neurotypical controls. (a) t-test
statistic for the contrast ASD minus controls (unthresholded); (b) Positive clusters (orange to yellow)
indicate significantly less cortical thinning, negative clusters (blue to cyan) indicate significantly
stronger cortical thinning in ASD (RFT-based cluster corrected, p < 0.05, two-tailed). Abbreviations:
L: left hemisphere, R: right hemisphere.

Furthermore, we examined the t-map associated with the main effect of RBS-R vari-
ation over time (see Figure 3a) for enrichment of genes previously linked to repetitive
behavior in ASD [46]. All enrichment tests were performed using the GeneOverlap package
in R (10.18129/B9.bioc.GeneOverlap, accessed on 20 January 2021), which generated enrich-
ment odds ratios (OR), hypergeometric p values, and FDR-corrected p values (padj). Only
comparisons with padj < 0.05 were interpreted further (more details on the methodological
approach of the enrichment analysis are provided in the Supplementary Methods 5).
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Figure 3. Cluster-wise mean Cortical Thickness (CT) at timepoint 1 (T1) and timepoint 2 (T2). Clus-
ter-wise estimates of  the mean CT of individuals at T1 and T2 for the clusters in which a significant 
between-group difference was observed between individuals with autism spectrum disorder (ASD) 
(marked in blue) and typically developing (TD) controls (marked in red) in the main analysis, i.e., 
the main effect of the group for a developmental change in CT. Displayed are two clusters, (a) cluster 
1 is an example of the first six clusters out of seven, in which, overall, developmental cortical thin-
ning was more pronounced in TD controls as compared to individuals with ASD; and (b) cluster 7, 
which was the only cluster, where individuals with ASD, overall, showed more pronounced devel-
opmental cortical thinning relative to TD controls. Abbreviations: SFG: superior frontal gyrus; 
mOFC: medial orbital frontal cortex; ACC: anterior cingulate cortex. 

  

Figure 3. Cluster-wise mean Cortical Thickness (CT) at timepoint 1 (T1) and timepoint 2 (T2). Cluster-
wise estimates of the mean CT of individuals at T1 and T2 for the clusters in which a significant
between-group difference was observed between individuals with autism spectrum disorder (ASD)
(marked in blue) and typically developing (TD) controls (marked in red) in the main analysis, i.e., the
main effect of the group for a developmental change in CT. Displayed are two clusters, (a) cluster 1 is
an example of the first six clusters out of seven, in which, overall, developmental cortical thinning
was more pronounced in TD controls as compared to individuals with ASD; and (b) cluster 7, which
was the only cluster, where individuals with ASD, overall, showed more pronounced developmental
cortical thinning relative to TD controls. Abbreviations: SFG: superior frontal gyrus; mOFC: medial
orbital frontal cortex; ACC: anterior cingulate cortex.

3. Results
3.1. Subject Demographics

There were no significant differences between individuals with ASD and TD controls
in their age (t(66) = 1.25, p = 0.22), ISI (t(58) = 0.17, p = 0.87), FSIQ (t(64) = −1.91, p = 0.06),
or in the distribution of sex (χ2(1) < 0.001, p = 1.00) and handedness (χ2(1) = 0.025,
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p = 0.87). Furthermore, there was no significant difference in the mean CT at T1 or T2
(T1 (t(61) = −1.15, p = 0.26); T2 (t(68)meanCTT2 = −0.81, p = 0.42)), or in the overall CT
change between T1 and T2 (∆(T2-T1): t(62) = 0.89, p = 0.38). However, we observed
a significant between-group difference in the total brain volume (T1: t(66)CVT1 = −2.6,
p < 0.05; T2: t(67)CVT2 = −2.49, p < 0.05; ∆(T2-T1): t(68)∆CV = −0.2, p = 0.85) and total
surface area (SA) at both timepoints (T1: t(66)SAT1= -2.33, p < 0.05; T2: t(66)SAT2 = −2.28,
p < 0.05; ∆(T2-T1): t(68)∆SA = −0.16, p = 0.88). There was no significant difference in the
total ∆CV or total ∆SA over time. For further detailed statistical details, see Table 1.

Intra-Individual Differences in RBS-R Total Severity Scores over Time

The majority of ASD individuals (60.1%) showed a decrease in total RBS-R scores
between T1 and T2 (maximum decrease [maxD] = −47), 33.3% had higher RBS-R scores at
T2 (maximum increase [maxI] = +35), and 6% did not change between T1 and T2 (∆RBS-
Rtotal severity(T2-T1) = 0). In contrast, most TD controls (57%) showed no change in RBS-R
over time. Here, 21.6% had a decrease (maxD = −8), while an increase in the RBS-R total
score was observed in 21.2% (maxI= +8; see Supplementary Table S2).

3.2. Between-Group Differences in CTspc

In both groups, we observed widespread cortical thinning across the cortex with
increasing age (i.e., between T1 and T2). However, individuals with ASD showed re-
duced (i.e., decelerated) cortical thinning relative to TD controls, particularly in the fronto-
cingulate and temporal regions. More specifically, individuals with ASD showed significant
reductions in cortical thinning in the bilateral superior frontal gyrus (approximate Brod-
mann areas [BA] 4/6/8/10), the rostral middle frontal gyrus (BA 9/46), the right medial
orbital frontal cortex (BA 11/32), the rostral anterior cingulate cortex (BA 24/33), the left
pars orbitalis (BA 47), the left inferior temporal (BA 20), the middle temporal gyrus (BA 21),
and the fusiform and parahippocampal gyrus (BA 17–19/37). An increased cortical thin-
ning in individuals with ASD as compared to TD controls was observed in the left insula
exclusively (BA 13) (see Figure 2a,b, Figure 3a,b and Table 2).

Table 2. Clusters with significant between-group differences in the estimated developmental change in cortical thickness
(CTspc) from T1 to T2.

Contrast Cluster Region Labels Hemisphere BA Vertices Talairach tmax pcluster

x y z

ASD >
Control

1
Superior frontal gyrus, medial
orbital frontal cortex, rostral

anterior cingulate cortex
R 4, 6, 8, 10, 11, 24, 32, 33 2358 10 50 11 5.07 9.59 × 10−5

2 Lateral orbital frontal cortex,
rostral middle frontal gyrus R 9–11, 45–47 1716 25 44 −10 3.99 8.27 × 10−4

3 Superior frontal gyrus L 4, 6, 8, 10 1662 −16 37 41 3.13 9.83 × 10-−4

4
Fusiform gyrus,

parahippocampal gyrus,
inferior temporal gyrus

L 20, 28, 34–37 1374 −23 −24 16 2.94 4.83 × 10−3

5
Lateral orbital frontal cortex,
rostral middle frontal gyrus,

pars orbitalis
L 6, 8–11, 45–47 966 −22 43 −12 3.32 1.87 × 10−2

6 Middle temporal gyrus L 21 1318 −48 −13 −14 3.01 2.18 × 10−2

ASD <
Control

7 Insula L 13 580 −35 −4 −6 −1.67 3.84 × 10−2

Note: Hemisphere: L: Left, R: Right; BA: approximate Brodmann area(s); ASD: Autism Spectrum Disorder; Vertices: number of vertices
within the cluster; tmax: maximum t-statistic within the cluster; p-cluster: cluster-corrected p value.

3.3. Brain–Behavioural Correlations

To examine the association between cortical thinning and variability and measures of
symptom severity over time, we correlated the mean CTspc of individuals from clusters
with significant between-group differences, with the severity of autism symptoms at T1
(i.e., total and subdomain scores of the ADOS, ADI-R, and RBS-R; see Supplementary
Figure S2). We observed a significant negative correlation between CTspc in the right
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lateral orbital frontal cortex and right rostral middle frontal gyrus (cluster 2 in Table 2)
and a change in self-injurious behavior as measured by the RBS-R. We also observed a
significant negative correlation between CTspc and a change in stereotypic behavior in the
left middle temporal gyrus (cluster 6 in Table 2). Hence, a reduction in cortical thinning was
associated with stable or worsening symptom severity from T1 to T2. However, none of
these correlations remained significant following FDR correction for multiple comparisons;
hence, our findings should be interpreted as preliminary.

3.4. Association between a Longitudinal Change in CT and a Change in Repetitive Behaviors

When examining the main effect of RBS-R∆ in the entire sample (i.e., individuals with
ASD and TD controls), we identified six clusters where a change in RBS-R was significantly
associated with a change in CT (RFT-based cluster correction, p < 0.05, 2-tailed). These clus-
ters included the right superior frontal gyrus (BA 4/6/8/10), the caudal anterior cingulate
cortex (BA 24/33), the supramarginal gyrus (BA 40), the precuneus cortex (BA 7/31), the
isthmus cingulate cortex (BA 29/30), the superior temporal gyrus (BA 22/42), the middle
temporal gyrus (BA 21), as well as the lingual and fusiform gyri (BA 17/18/19/37) (see
Supplementary Table S3). In these brain regions, cortical thinning between T1 and T2 was
associated with less severe RBS-R symptoms over time (Supplementary Figure S4). These
associations did not differ significantly by group, i.e., including an RBS-R change-by-group
interaction term did not significantly improve the model fit (see Supplementary Figure S3).
Because the main effect of RBS-R change on CTspc was mainly driven by variability within
ASD individuals, we also repeated the analysis within the ASD group. Here, a reduction
in RBS-R was related to a decrease in CT in three significant clusters, including the right
superior temporal gyrus (BA 22/42), the middle temporal gyrus (BA 21), the inferior
parietal cortex (BA 39), the banks superior temporal sulcus (BA 22/42), the lateral occipital
cortex (BA 17–19), the transverse temporal cortex (BA 41), the precuneus cortex (BA 7/31),
the isthmus cingulate cortex (BA 29/30), the supramarginal gyrus (BA 40), the postcentral
gyrus (BA 1/2/3), and the right insula (BA 13) (see Figure 4a,b).

3.5. Gene Set Enrichment Analyses

To link the observed differences in the CT trajectory in ASD to the potential genetic
underpinnings, we performed a gene expression decoding analysis of our main output
maps. The t-map of between-group differences in CTspc (see Figure 1a) was significantly
correlated with the pattern of expression of N = 2589 genes (nominal p < 0.05). Within
this gene set, we found an enrichment for ASD candidate genes, and for genes that are
differentially expressed during childhood and adolescence in ASD (see Figure 5a). More
specifically, the t-map showed an enrichment for gene coexpression modules that are
known to be downregulated in ASD, namely ASD.DEG.down [43], CTX.down.M4 [42],
CTX.down.M10 [42], and CTX.down.M16 [42]. According to the international data base of
the bioinformatics initiative, ‘Gene Ontology’ (GO), these coexpression modules represent
genes involved in receptor signaling (ASD.DEG.down; [43]) and synaptic transmission
(CTX.M4, CTX.M10, CTX.M16; [42]) [49,50]. We found no enrichment of the expression
modules known to be upregulated in ASD. Furthermore, we observed an enrichment
for ASD risk genes known to affect synaptic signaling, both in excitatory and inhibitory
neurons [44] (see Figure 5a). We also performed a cell-type enrichment analysis for the
t-map of between-group differences in CTspc. We observed a significant enrichment for
genes that are dysregulated in excitatory neurons in cortical layers L2/L3 and in L4 synaptic
function and transcription factors [45] (see Figure 5b). The odds ratios for all modules and
adjusted p values are displayed in Figure 5.
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Figure 4. Main effect of a change in restricted and repetitive behaviors (RRBs) on vertex-wise
differences in the change in Cortical Thickness (CTspc). A significant main effect of developmental
changes in the total severity in RRBs was quantified as the difference in the total severity on the RBS-R
between timepoint 1 and timepoint 2 ∆RBSRtotal severity(T2-T1)], on vertex-wise differences in the
developmental change in CT (CTspc) across the total sample [upper figures in (a) and (b)], and only
within individuals with ASD [bottom figures in (a) and (b)]. The unthresholded t-maps are displayed
in (a) and the random field theory (RFT)-based, cluster corrected (p < 0.05, 2-tailed) difference maps,
determined following multiple comparisons are in (b). Associations between increases in the RBS-R
severity from T1 to T2 with vertex-wise changes in CT were marked in yellow to red (left panel),
respectively, and in red to yellow (right panel), and associations between decreases in RBS-R severity
from T1 to T2 with vertex-wise changes in CT were marked in cyan to purple (left panel), respectively,
and in blue to cyan (right panel). Abbreviations: L: left hemisphere, R: right hemisphere. The green
to red color scale indicates regions with an increased CT in the ASD group relative to the control
group, while the blue to violet color scale indicates vertices with a decreased CT in the ASD group
relative to the control group.
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Figure 5. Genomic and cellular underpinnings of neurodevelopmental deviations in the change in Cortical Thickness (CTspc)
in ASD. The enrichment analysis of genomic underpinnings of the symmetrized percent change in CT (CTspc) was based on
the t-map of statistical between-group differences in the developmental change in CT during adolescence in individuals
with autism spectrum disorder (ASD), relative to neurotypical controls (Figure 2a) and various gene sets. (a) The significant
odds-ratios (OR) at an FDR-rate p value of < 0.05 resulting for genes expressed in the t-map. Gene sets were subdivided into
sets with differential gene expression in ASD (ASD.DEG) and into sets containing ASD risk genes (ASD.risk.gene). Gene set
annotation (set.annot) and labeling were determined by their original publication [42–45]. Abbreviations: up: upregulated
expression in ASD, down: downregulated expression in ASD, CTX: cortex, DEG: differential gene expression, **: significant
odds-ratios at an FDR-rate p value of < 0.05. (b) The set with an enrichment of genes particularly expressed in the upper
layer cortex neurons and crucial for brain development, as reported by Velmeshev et al. (2019). Annotations were defined
by the three cell types: astrocytes (AST), excitatory neurons (EN), and inhibitory neurons (IN). Abbreviations: L2–6: cortical
layers, CC: cortico-cortical, SST: somatostatin, PV: parvalbumin, PP: protoplastic, FB: fibrous.

We also tested for an enrichment of gene sets by examining the main effect of RBS-R
change in ASD (see Figure 3a), which revealed a set of N = 711 significant genes. However,
this gene set was not significantly enriched for genes that have previously been associated
with RBS by Tao et al. (2016; [46]; see Supplementary Figure S6).

4. Discussion

The aim of this study was to compare the longitudinal neurodevelopmental trajectories
of CT in adolescents with ASD to those in TD controls, and to examine their association with
intra-individual variation in repetitive behaviors. Moreover, to move towards bridging the
gap between macroscopic and microscopic pathology, we examined the spatial patterns
of between-group differences in CT for enrichment in (i) genes known to be associated
with ASD, and (ii) genes that have previously been linked to repetitive and stereotyped
behavior. We identified significant between-group differences in CTspc, particularly in
frontotemporal regions and the cingulate cortex. These brain regions were also enriched for
ASD risk genes, and gene expression modules that are known to be downregulated in the
cortex of ASD individuals. Additionally, we observed a significant enrichment for genes
underpinning cell transmission processes in specific cell types, particularly in the excitatory
neurons of the L2, L3 and L4 cortical layers [45]. Taken together, our findings suggest
that differences in the development of CT in ASD are associated with genetic variations
in the genes known to be implicated in this condition. Moreover, our study revealed an
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association between developmental changes in CT (in fronto-temporal, fronto-parietal,
and cingulate regions) and intra-individual changes in the severity of repetitive behaviors
across adolescence in ASD individuals. Hence, our study extends previous reports of
atypical brain development in ASD and links these developmental differences to specific
autism symptoms.

In contrast to previous studies examining CT development in ASD [13,14,27,51], we
observed a reduced cortical thinning in the ASD group compared to the TD controls. This
is line with the fact that, depending on the examined age group, in ASD the existing struc-
tural neuroimaging studies of regional developmental differences in CT in cross-sectional
and longitudinal samples remain highly inconsistent. Further longitudinal studies are
hence required to replicate, validate, and add onto these earlier findings. While some
studies report an increased (i.e., accelerated) thinning, others report decreased (i.e., slowed
down) thinning of the cortex in ASD over time [2]. More specifically, during childhood and
adolescence, cross-sectional studies mostly reported enhanced thinning in ASD relative
to the neurotypical trajectory [11,15,26], although the importance of subdividing the neu-
rodevelopmental trajectory into different developmental stages has also been noted. For
example, one prior longitudinal study classified individuals into distinct age groups [5].
Here, the period of early childhood was marked by cortical thickening, followed by ac-
celerated thinning in adolescence, and decelerated thinning in early adulthood. Hence,
the CT growth curves of ASD and TD controls intersected between childhood and adoles-
cence (10–20 years), during which time no significant differences were observed. Based
on these findings, CT differences in the age range we examined in our sample (i.e., 11–18
years) could be expected to ‘pseudonormalize’ in ASD, i.e., few or no differences between
groups might be observed when examining between-group differences at T1 and/or T2 [5].
Nonetheless, we observed significant differences in CT development between these times
points; i.e., we observed one cluster with an accelerated decrease in CT (the left insula),
and several clusters with decelerated cortical thinning in ASD (e.g., in the right and left
fronto-temporal regions and the right cingulate cortex). Such discrepancies with other stud-
ies might be partially explained by differences in the sample characteristics and analytical
approaches. For example, in comparison to Zielinski et al. (2014), the age range examined
in our study was narrower (11–18 years vs. 3–36 years, respectively), and we also included
female participants [5].

Previous neuroimaging studies examining brain development during childhood and
adolescence have characterized the developmental trajectory of brain maturation as an ‘in-
verted U-shape’ that reaches its maximum during childhood/early adolescence (e.g., based
on measures of cortical volume and the grey-white matter tissue contrast) [25,52]. The same
curve characteristics have been reported for the developmental trajectory of CT, albeit with
earlier peaks (males = 8.6 years, females = 8.4 years), followed by cortical thinning [53].
Consequently, cortical thinning during late childhood/early adolescence is commensurate
with maturational processes during this stage of development, so the reduced cortical
thinning we observed in our sample might suggest a less rapid or stagnant maturation in
ASD. On the cellular level, cortical thinning has also been related to experience-dependent
(i.e., learning dependent) synaptic pruning. For example, it is known from histological
studies, that the synaptic density in the middle frontal gyrus, where we found less cortical
thinning in ASD, shows a postnatal increase in density until the age of around 7 years,
followed by a period of synaptic pruning until early adulthood [54]. Synapse elimination
is important for the development of complex neural systems, and is paralleled by cortical
thinning during brain development [55,56]. Our findings indicate that the cortex in ASD
might mature more slowly in specific regions of the brain. Decelerated cortical thinning
in ASD during adolescence has also been reported in a study by Raznahan et al. (2010),
particularly in the left middle temporal and right superior frontal gyrus [57]. In sum,
the macroscopic differences we observe in the brain in ASD might point towards specific
underlying mechanisms, such as selective synaptic elimination and the arborization of
dendrites and axons, which may be dysregulated in ASD.
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Atypical brain development in ASD has previously been related to the severity of
ASD-related symptoms and behaviors [8]. However, most studies to date have focused
on the relationship between atypical cortex development and social impairments in ASD,
commonly measured by ADOS and SRS [58,59]. Meanwhile, investigations of the relation-
ship between neuroanatomy and repetitive/restricted behaviors (RRBs) in ASD remain
under-represented in the literature. In our study, we addressed this issue by adding a
second analysis stream, where we examined the impact of developmental changes in CT
on the severity of RRBs, which are also linked to sensory symptoms that are emerging as
promising candidates for parsing heterogeneity in autism [23]. On the behavioral level,
RRBs can be divided into ‘repetitive sensory motor’ (lower-level) and ‘insistence on same-
ness’ (higher-level) behaviors. Stereotyped movements and the repetitive use of specific
objects define the former, and ritualistic habits and insistence on well-established routines
the latter [60]. Lower-level RRBs (including self-injurious behavior) occur more frequently
in younger children with ASD, and in those with lower levels of intelligence [61,62]. This
was also observed in our sample, where ASD individuals showed minimal self-injurious
behavior (see Supplementary Figure S1) [21,63]. Moreover, in agreement with other stud-
ies, we found that in the severity of RRB symptoms, there was a decrease in the total
severity score between the two examined timepoints in ASD, which is common within
this age range [21,63]. Several studies have reported significant correlations between the
severity of repetitive behaviors and measures of brain anatomy in ASD. To date, such
brain–behavior correlations have mainly been observed in subcortical structures (cau-
date nucleus and basal ganglia), connecting to the frontal cortical regions and forming a
“fronto-striatal circuit” [17,64]. More specifically, an increased volume of the left caudate
nucleus was associated with self-injurious behavior in boys with ASD, while compulsive
and ritualistic behaviors showed significant positive correlations with bilateral caudate
nuclei volumes [64]. Additionally, an increased functional connectivity between the left
nucleus accumbens and a cluster in the right premotor cortex/middle frontal gyrus was
related to more severe symptoms of repetitive behavior in children and adolescents with
ASD [65]. Here, we report there is also an association between intra-individual variations
in RRBs and changes in CT also in cortical regions that include the postcentral, parietal,
frontal, and temporal regions in ASD. Our findings are thus in agreement with previous
results in suggesting a crucial role of the fronto-striatal neurocircuitry in mediating RRB
symptoms across development. We further extend these findings by reporting a correlation
between the cortical aspect of this circuitry, indicating the importance of dysfunctional
cortico-striatal connectivity due to atypical changes in cortical thickness in adolescents
with ASD.

Last, we aimed to link the macroscopic differences we observed at the neuroanatomical
level to potential genomic mechanisms that have previously been linked to ASD. So far,
few studies have examined the genetic and molecular mechanisms underpinning CT
differences in ASD. A recent study by Romero-Garcia et al. (2019) demonstrated that
differences in cortical thickness (CT) during childhood were robustly associated with genes
involved in synaptic transmission pathways, which are known to be downregulated in
the postmortem ASD cortex [42,66]. Similar results were also recently reported by our
group when examining CT differences in ASD in a large and clinically heterogeneous
sample [67]. The present results converge with these previous findings, as we observed an
enrichment for genes and coexpressed modules that are known to be downregulated in
ASD. ASD downregulated modules M16 and M10 are known to be involved in neuronal
activity and synaptic function [42], which may contribute to deficits in synaptic-pruning
and reduced cortical thinning [68]. Moreover, many ASD risk genes are likely to affect
the maturation of excitatory and inhibitory neuronal pathways [44]. Our neuroimaging
findings are also in line with genetic studies reporting a dysregulation of genes involved
in the synaptic transmission of excitatory neurons across cortical layers (L2, L3, L4; [45]),
and substantiate prior reports of an impaired excitatory–inhibitory balance underlying
autism phenotypes [69]. We found no significant enrichment for genes previously linked to
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repetitive behaviors in ASD [46]. However, the RRB gene lists provided by Tao et al. (2016)
are relatively small, and unspecific with regard to their functional involvement [46], and
their functional role in brain development remains to be established. Overall, however,
our finding of an enrichment for ASD-related gene sets adds to the biological plausibility
of our neuroimaging findings, and links atypical CT development to specific etiological
mechanisms in ASD.

Taken together, these three data modalities (CT change in ASD, RRB change in ASD,
gene enrichment in ASD) have predominantly been studied in isolation. Our study is there-
fore among the first to use a longitudinal design to associate CT trajectories in adolescents
with ASD to their development of RRBs, and to add specific genetic, and more precisely
transcriptomic underpinning.

The present study needs to be interpreted in the light of several limitations. First,
our strict exclusion criteria and MRI quality assessment resulted in a comparatively small
sample size. Larger studies of longitudinal samples are therefore needed to replicate our
findings. Moreover, although RRBs are a common clinical feature of ASD, they are not
unique to this condition [70]. Future studies linking developmental changes in repetitive be-
haviors to intra-individual variability in brain structure, using a transdiagnostic approach,
are therefore needed to establish whether the observed brain–behavioral correlations are
specific to ASD or generalized across mental health conditions. Moreover, here we focused
on cortical regions. However, previous studies have also linked RRBs to subcortical regions,
including the striatum [71,72]. Therefore, additional neuroimaging studies should extend
the set of brain regions when characterizing the neuroanatomy underpinning RRBs. Last,
the AHBA currently provides the most extensive source of anatomic and genomic informa-
tion. However, it is based on adult donors. While we examined some adult participants
(up to 18 years at T1 and up to 21 at T2), the AHBA does not fully cover our age range
(11–21 years). We thus acknowledge the importance of repeating our analyses using gene
expression data from young adults, once these become available.
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