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Breast cancer is a heterogeneous disease. Approximately 70% of breast cancers

are estrogen receptor (ER) positive. Endocrine therapy has dramatically improved

the prognosis of ER-positive breast cancer; however, many tumors exhibit de

novo or acquired resistance to endocrine therapy. A thorough understanding of

the molecular mechanisms regulating hormone sensitivity or resistance is

important to improve the efficacy of and overcome the resistance to endocrine

therapy. The growth factor receptor signaling pathways, particularly the

phosphatidylinositol 3-kinase (PI3K) ⁄Akt ⁄mammalian target of rapamycin (mTOR)

pathway can mediate resistance to all forms of endocrine therapy. In contrast,

FOXA1 transcription factor is a key determinant of ER function and endocrine

response. Intriguingly, a link between hormone resistance induced by the

PI3K ⁄Akt ⁄mTOR pathway and the function of FOXA1 has been suggested. In this

review, we focus on the PI3K ⁄Akt ⁄mTOR pathway and functions of FOXA1 in

terms of the molecular mechanisms regulating the hormone sensitivity of breast

cancer.

B reast cancer is a heterogeneous disease. Approximately
70% of breast cancers are estrogen receptor (ER) positive.

The ER drive tumor growth in response to their natural
ligands, estrogen, and ER expression indicates the degree of
estrogen dependence of breast cancer.(1) Endocrine therapy is
the most efficacious treatment for ER-positive breast cancer,
which is achieved by antagonizing the ligand binding to ER
(tamoxifen and other selective ER modulators), downregulating
ER (fulvestrant) or blocking estrogen biosynthesis (aromatase
inhibitors [AI] and luteinizing hormone–releasing hormone
agonists).
Many tumors exhibit de novo or acquired resistance to

endocrine therapy, although it has dramatically improved the
prognosis of ER-positive breast cancer. Multiple mechanisms
of endocrine resistance have been proposed, including the
deregulation of components of the ER pathway itself, altera-
tions in the cell cycle and cell survival signaling molecules
and the activation of escape pathways.(2–5) Activating ESR1
mutations were reported as a new factor mediating endocrine
resistance.(6,7)

Understanding the molecular mechanisms regulating the
hormone sensitivity or resistance is important to improve the effi-
cacy of and overcome the resistance to endocrine therapy. Many
studies have shown that the growth factor receptor (GFR) signal-
ing pathways, particularly the phosphatidylinositol 3-kinase

(PI3K) ⁄Akt ⁄mammalian target of rapamycin (mTOR) pathway,
can mediate resistance to all forms of endocrine therapy.
Recent studies using a new technology that combines chro-

matin immunoprecipitaion (ChIP) with high-throughput
sequencing (ChIP-seq) have identified a complex network
formed by the ER and its coregulators, and their genome-wide
DNA binding patterns, the cistrome.(8) These studies revealed
that a transcription factor, FOXA1, is a key determinant of ER
function and endocrine response.(9) Intriguingly, a link between
hormone resistance induced by the PI3K ⁄Akt ⁄mTOR pathway
and the function of FOXA1 has been suggested.(10) In the pres-
ent review, we focus on the PI3K ⁄Akt ⁄mTOR pathway and
functions of FOXA1 in terms of the molecular mechanisms
regulating the hormone sensitivity of breast cancer.

ER Signaling

There are two different forms of ER encoded by distinct genes,
ERa and ERb.(11) ERa is responsible for estrogen-induced
mitogenic signaling in epithelial cells in the breast, uterus and
ovaries and plays a crucial role in breast cancer initiation and
progression. In the present review, “ER” refers to ERa unless
stated otherwise.
When estradiol (E2) binds to ER, ER undergoes conforma-

tional changes and forms dimers. The ER dimers bind to the
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estrogen response element sequence within the promoter of
target genes and attract a complex of co-factors (co-activators
and co-repressors).(4,12) This classic function of ER is its
nuclear function, also called its genomic activity (Fig. 1). The
E2-ER complexes affect the expression of hundreds of genes
involved in proliferation, differentiation, survival, invasion,
metastasis and angiogenesis, which are particularly relevant for
cancer. The ER can also bind to other transcription factors,
such as activator protein-1 and specificity protein-1, at their
specific sites on DNA and its transcriptional activity is modu-
lated by this binding.(4) In addition, the ER signaling pathway
is also regulated by membrane receptor tyrosine kinases
(RTK), including epidermal GFR, HER2 and insulin-like
growth factor receptor (IGF1-R).(4) These membrane RTK acti-
vate signaling pathways such as the PI3K ⁄Akt ⁄mTOR pathway
and the mitogen-activated protein kinase pathway, which
eventually result in phosphorylation of ER, thus leading to ER
activation (Fig. 1).

The PI3K ⁄Akt ⁄mTOR Pathway

Activation of the PI3K ⁄Akt ⁄mTOR pathway. The PI3K ⁄Akt
⁄mTOR pathway is frequently activated in various malignan-
cies and plays key roles in the development, progression and
therapeutic resistance of cancer. The PI3K ⁄Akt ⁄mTOR path-
way is now considered to be an attractive and promising target
for cancer therapy and many agents targeting this pathway
have been developed.(13,14)

One of the major mechanisms underlying the activation of
the PI3K ⁄Akt ⁄mTOR pathway is the activation of the mem-
brane RTK. Among them, HER2-containing heterodimers,
especially HER2–HER3 heterodimers strongly activate the
PI3K ⁄Akt pathway.(15) Akt activation is positively associated
with HER2 overexpression in breast carcinomas obtained from
human materials.(16–18)

Cellular activation of Akt is dependent on the generation of
inositol-containing membrane lipids phosphorylated by Class I
PI3K composed of a catalytic subunit (p110) and an adaptor ⁄
regulatory subunit (p85). Mutations of PIK3CA, which encodes

p110, are the most common genetic alterations of this pathway
in breast cancer.(19) Akt is activated by the phosphorylation at
Thr308 and Ser473 and it then phosphorylates its substrates.(20)

This pathway is negatively regulated by phosphatase and ten-
sin homolog deleted on chromosome 10 (PTEN) and inositol
polyphosphate-4-phosphate, type II.(21)

Akt is critical for cell survival, cell cycle regulation and pro-
tein synthesis via its phosphorylation of many kinds of pro-
teins, including FOXOs, glycogen synthase kinase-3b (GSK3b)
and mTOR.(22–25) mTOR forms the mTORC1 complex with
raptor, which controls protein synthesis and cell growth by
activating ribosomal protein S6 kinase (p70S6K1) and inhibit-
ing the elongation-initiation factor 4E-binding protein (4E-BP).
p70S6K can also phosphprylate ER (Figs 1,2).(26) mTOR also
forms the mTORC2 complex with rictor, which phosphorylates
and activates Akt at Ser473, whereas Akt is phosphorylated at
Thr308 by PDK1.(27)

The PI3K ⁄Akt ⁄mTOR pathway and endocrine resistance. The
PI3K ⁄Akt ⁄mTOR pathways activated by RTK signaling inter-
act with ER both directly and indirectly. The phosphorylated
ER by Akt or p70S6K promotes the transcription of genes
encoding growth factors (GF), RTK and other target genes
(Fig. 1). This crosstalk between ER and the PI3K ⁄Akt ⁄mTOR
pathway increases estrogen-induced, tamoxifen-induced and
ligand-independent ER transcriptional activity, which confers
resistance to tamoxifen, fulvestrant and estrogen deprivation in
ER-positive breast cancer cells.(2)

The ER-positive ⁄progesterone receptor (PR)-negative breast
cancers do not respond as well to tamoxifen compared with
ER-positive ⁄PR-positive tumors.(28) The predictive value of
PR expression has long been attributed to the dependence of
PR expression on ER activity, with the absence of the PR
reflecting a non-functional ER. However, a recent study
revealed that PR expression is inhibited in breast cancer cells
via the PI3K ⁄Akt ⁄mTOR pathway, not via a reduction in ER
levels or activity.(29) Therefore, a low PR status may serve
as an indicator of activated GF signaling and resistance to
endocrine therapy. We also reported that HER2 overexpression
and loss of heterozygosity at the PTEN gene locus was associ-

Fig. 1. A schematic diagram of estrogen receptor
(ER) signaling. Estrogen (E)-bound ER binds to DNA
sequences in the promoter regions of target genes
at estrogen response elements (ERE) and works as a
transcription factor in the nucleus. The ER can also
bind to other transcription factors, such as activator
protein-1 (AP-1) and specificity protein-1 (SP-1) at
their specific sites on DNA. The ER signaling
pathway is also regulated by membrane receptor
tyrosine kinases (RTK). These RTK activate signaling
pathways such as the PI3K ⁄Akt pathway and the
mitogen-activated protein kinase (MAPK) pathway
that eventually result in phosphorylation of ER,
leading to ER activation.
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ated with Akt activation and a lack of PR expression in breast
cancer.(30) Recent research using reverse-phase protein arrays
and a gene-expression array revealed that tumors with low
PI3K activation have high ER levels and vice versa.(31,32)

Thus, RTK and their downstream pathways can also reduce
estrogen dependence by downregulating the expression of ER
and PR.
So far, the only mechanism of resistance to endocrine ther-

apy for which clinical data exist is HER2 positivity, with
HER-2-positive metastatic breast cancer found to be less
responsive to all types of endocrine treatment by a meta-analy-
sis.(33–35) However, because fewer than 10% of hormone
receptor-positive breast cancers are HER2 positive,(35) the
mechanism(s) underlying endocrine resistance remain to be
elucidated for the majority of ER-positive breast cancers.
Therefore, various factors related to activation of the PI3K
⁄Akt ⁄mTOR pathway are considered to be potential causes of
endocrine resistance. A recent study showed that treatment
with fulvestrant resulted in increased HER3 expression and
PI3K ⁄mTOR signaling, while the depletion of HER3 in fulve-
strant-treated tumor cells reduced PI3K ⁄mTOR signaling,
tumor cell survival and tumor growth, suggesting that upregu-
lation of HER3 causes resistance to fulvestrant.(36) Miller
et al.(32) also reported that long-term estrogen-deprived
(LTED) ER-positive breast cancer cells exhibited increased
PI3K ⁄AKT ⁄mTOR signaling, with hyperactivation of IGF-1R
and ⁄ or the insulin receptor.
Clinically, the activation of Akt has been shown to be asso-

ciated with worse outcomes in endocrine-treated patients with
breast cancer.(16,17,37) We also reported that Akt activation was
associated with resistance to endocrine therapy in metastatic
breast cancer.(38)

The prognostic and predictive value regarding endocrine
resistance of PIK3CA mutations in ER-positive breast cancer
remains unclear. PIK3CA mutations have been shown to result
in in vitro activation of the PI3K ⁄AKT ⁄mTOR pathway.(39)

However, in luminal tumors there are no significant relation-
ships between PIK3CA mutations and pAkt, p70S6K and
p4EBP1, which indicate activation of the PI3K ⁄Akt
pathway.(40,41) In addition, PIK3CA mutations did not have a

significant effect on outcome after adjuvant tamoxifen therapy
in hormone receptor-positive breast cancer patients.(41)

Targeting the PI3K ⁄Akt pathway to overcome endocrine resis-

tance. The combination of endocrine therapy and targeted
therapy directed against the PI3K ⁄Akt pathway has been
developed to overcome endocrine resistance. The combination
treatment of ER-positive ⁄HER2-positive breast cancer cells
with trastuzumab and tamoxifen significantly inhibited their
growth(42) and treatment of Akt-activated breast cancer cells
with mTORC1 inhibitors, rapamycin and temsirolimus led to
similar growth inhibition.(43) The growth of LTED cell lines
in the absence of estrogen was inhibited by treatment with the
PI3K ⁄mTOR dual inhibitor, BEZ235, or with the TORC1
inhibitor, everolimus.(32) Intriguingly, ER is required for
acquired hormone-independent breast cancer cell growth in
some LTED cell lines and therefore combined downregulation
of ER and inhibition of PI3K induces a regression of tumors
comprising these cells.(44)

Clinically, some large studies have shown the efficacy of
inhibiting the PI3K ⁄Akt ⁄mTOR pathway to overcome
endocrine resistance. For ER-positive ⁄HER2- positive breast
cancers, the utility of the combined use of trastuzumab or
latatinib with AI has been shown.(45,46) In both trials, progres-
sion-free survival and the clinical benefit rate were superior
in the combination arms. The efficacy of mTORC1 inhibitors
was investigated in patients with ER-positive ⁄HER2-negative
tumors relapsed following previous treatment with AI. In the
BOLERO-2 trial, patients were randomized to groups receiv-
ing everolimus or placebo, combined with exemestane.(47) In
the TAMRAD (GINECO) study, patients were randomized to
tamoxifen combined with everolimus or tamoxifen alone.(48)

Statistically significant increases in progression-free survival
were revealed following the addition of everolimus to the
endocrine agents in both trials. In the TAMRAD study, only
the secondary endocrine-resistant tumors received a benefit
from everolimus.(48) In contrast, adding temsirolimus to
letrozole did not improve progression-free survival as first-line
therapy in patients with AI-na€ıve advanced breast cancer.(49)

These results suggest that the strategy of co-targeting the
PI3K and ER pathways may work particularly well in patients
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Fig. 2. A schematic diagram of the signaling of the
phosphatidylinositol 3-kinase (PI3K) ⁄Akt pathway
involved in human cancers. Akt is activated by Class I
PI3K, composed of two subunits, p110 and p85.
Akt is activated by phosphorylation at Thr308 by
PDK-1 and at Ser473 by mTORC2. This pathway is
negatively regulated by phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) and
inositol polyphosphate-4-phosphate, type II (INP
P4B). Activated Akt phosphorylates its substrates,
then regulates a wide range of target proteins and
has multiple cellular functions, including effects on
cell survival, cell cycle progression, cell growth and
other processes.
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whose tumors have acquired resistance to previous endocrine
therapy. The key results of these studies are shown in
Table 1.
An important finding of the previous trials of combination

therapy was the observation that there was an increase in Akt
activation in everolimus-treated tumors.(13) p70S6K, a mole-
cule downstream of mTORC1, suppresses IGF-1R signaling
via suppression of IRS1. The blockade of mTORC1 and the
resulting inhibition of p70S6K reduce the negative feedback
loop effect and the IGF-1R becomes activated, which results
in increased PI3K ⁄Akt ⁄mTOR activation. The activation of
this compensatory pathway could be, at least in part, responsi-
ble for the limited activity of this class of agents. Inhibiting or
preventing activation of this compensatory pathway might
improve the response to treatment.(13)

FOXA1

The functions of FOXA1. The network of the transcription
factors, ER, GATA-binding protein 3 (GATA-3) and FOXA1
had attracted increasing attention, because the normal function
of this network has been suggested to be required for hormone
sensitivity in breast cancer.(50) FOXA1 mRNA is expressed in
luminal subtype tumors, along with several other discrimina-
tory genes, including ER and GATA-3.(51) GATA-3 regulates
the lineage determination and differentiation of many cell
types,(52) as well as playing a crucial role during mammary
gland development.(53)

FOXA1, a member of the forkhead family of transcription fac-
tors, is expressed in many organs and plays a key role in devel-
opment, chiefly in the lung and liver.(54) FOXA1 is also

Table 1. Major published clinical trials of the combination of endocrine agents with RTK-targeting therapies for metastatic breast cancer

RTK-

targeting

therapy

Study design Patients Key results Reference

Anti-HER2 therapy

Trastuzumab ANA vs ANA + TRAS

randomized phase III

(TAnDEM study)

n = 207 PFS: ANA + TRAS 4.8 month; ANA 2.4 month; HR, 0.63;

95% CI, 0.47–0.84; P = 0.016

OS: ANA + TRAS 28.5 month; ANA 23.9 month;

P = 0.325

70% of patients in the ANA arm crossed over to TRAS

after progression

OS: without crossover usage of TRAS

ANA + TRAS 28.5 month; ANA 17.2 month; P = 0.048

CBR: ANA + TRAS 42.7%; 95% CI, 33.0–52.9%; ANA

27.9%; 95% CI, 19.5–37.5%; P = 0.026

Kaufman

et al.(45)

Lapatinib LET vs LET + LAP

randomized phase III

Overall, n = 1286

HER2 positive,

n = 219

HER2+ cases

PFS: LET + LAP 8.2 month; LET + placebo 3.0 month;

HR, 0.71; 95% CI, 0.53–0.96; P = 0.019

OS: LET + LAP 33.3 month; LET + placebo 32.3 month;

HR, 0.74; 95% CI, 0.5–1.1; P = 0.113

CBR: LET + LAP 48%; LET + placebo 29%; OR, 0.4; 95%

CI, 0.2–0.8; P = 0.003

Johnston

et al.(46)

mTOR inhibitors

Everolimus TAM vs TAM + EVE

randomized phase II

(GINECO study)

After prior AI, n = 111 CBR: TAM + EVE 61%; TAM 42%; P = 0.045

TTP: TAM + EVE 8.6 month; TAM 4.5 month; HR, 0.54;

95% CI, 0.36–0.81; P = 0.0002

Exploratory subgroup analysis in patients with

secondary hormone resistance

CBR: TAM + EVE 74%; TAM 48%

TTP: TAM + EVE 14.8 month; TAM 5.5 month; HR, 0.46;

95% CI, 0.26–0.83; P = 0.0087

Bachelot

et al.(48)

EXE vs EXE + EVE

randomized phase III

(BOLERO-2 clinical

trials)

Previously treated with

NSAI in the adjuvant

setting or for

advanced disease (or

both), n = 724

Asian patients,

n = 143

Median PFS:

Local assessment: EXE + EVE 6.9 months; EXE + placebo

2.8 month; HR, 0.43; 95% CI, 0.35–0.54; P < 0.001

Central assessment: EXE + EVE 10.6 months;

EXE + placebo 4.1 month; HR, 036; 95% CI, 0.27–0.47;

P < 0.001

Asian patients: EXE + EVE 8.48 month; EXE + placebo

4.14 month; HR, 0.62; 95% CI, 0.41–0.94; P < 0.001

Baselga et al.(47)

Temsirolimus LET vs LET + TEM

randomized phase III

AI na€ıve, first-line,

n = 1112

PFS: LET + TEM 8.9 month; LET + placebo 9 month; HR,

0.90; 95% CI, 0.76–1.07; P = 0.25

OS: both NE; HR, 089; 95% CI, 0.65–1.23; P = 0.50

Wolff

et al.(49)

Where available, P-values are indicated. AI, aromatase inhibitors; ANA, anastrozole; CBR, clinical benefit rate; CI, confidence interval; EVE, everol-
imus; HR, hazard ratio; LAP, lapatinib; LET, letrozole; mTOR, mammalian target of rapamycin; NE, not estimable; NSAI, non-steroidal aromatase
inhibitor; OR, odds ratio; OS, overall survival; EXE: exemestane; PFS, progression-free survival; RTK, receptor tyrosine kinase; TAM, tamoxifen;
TEM, temsirolimus; TRAS, trastuzumab; TTP, time-to progression.
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necessary in the postnatal development of the mammary gland
and prostate.(55,56) The expression levels of FOXA1 and GATA-
3 showed a significant positive correlation. A ChIP study sug-
gested that GATA-3 may function upstream of FOXA1.(53)

Although FOXA1 and GATA-3 seem to interact, they have dis-
tinct functions. A deficiency of FOXA1 causes a defect in hor-
mone-induced mammary ductal invasion associated with a loss
of terminal end bud formation and ER expression.(9,57)

FOXA1 and ER signaling. The mechanisms responsible for
ER-mediated transcription are very complex.(58) Recent studies
using ChIP with ChIP-seq has identified a complex network
composed of ER and its coregulators and, on activation by
estrogen, ER is recruited to thousands of sites across the gen-
ome of human breast cancer cells, defining its cistrome.(8) The
ER frequently binds distal enhancers and FOXA1 is necessary
for ER-chromatin interactions (Fig. 3).(8,9,59,60) FOXA1 works
as an important pioneer factor for the interactions between ER
and androgen receptor (AR) and chromatin.(9,55,56,59–61) Pio-
neer factors have the capacity to associate with condensed
chromatin independently of other factors and can directly
modulate chromatin accessibility.(62) FOXA1 interacts with the
cis-regulatory regions of heterochromatin and enhances the
interaction between ER and chromatin.(8,63)

These studies also revealed that GFR signaling results in the
redirection of ER binding. The GF-stimulated ER cistrome is
different from that induced by estrogen. Interestingly, the
GF-dependent, ligand-independent ER cistrome regulates a set
of genes found to be overexpressed in HER2-positive

tumors.(64) This GF-stimulated ER cistrome might be related
to endocrine resistace.

Association of FOXA1 and endocrine response. FOXA1 can
influence various interactions between ER and chromatin and is
required for almost all ER binding events and ER transcription
activity in breast cancer cells. As such, FOXA1 is a major
determinant of the endocrine response in breast cancer cells.(9)

Tamoxifen functions by inhibiting estrogen-ER activity in
breast cancer cells, where tamoxifen-ER is recruited to chroma-
tin.(65) Intriguingly, FOXA1 is required for the action of tamox-
ifen; in tamoxifen-resistant cells, ER binding was independent
of the ligand but depended on FOXA1.(9) Ross-Innes and col-
leagues reported important findings using clinical breast cancer
samples.(10) They analyzed the ER ChIP-seq data from primary
ER-positive breast tumors with a good prognosis (ER positive ⁄PR
positive ⁄HER2 negative) and a poor prognosis (ER positive ⁄PR
positive ⁄HER2 positive or ER positive ⁄PR negative ⁄HER2
negative) and samples from distant metastases. Interestingly,
the signal of ER binding was lowest in the patients with a good
prognosis and highest in the metastatic samples, suggesting that
ER-binding intensity might correspond to disease progression
of ER-positive breast cancer. The tamoxifen-resistant cancers
still recruited ER to chromatin, with the acquisition of unique
ER-binding regions. The increased ER binding in tamoxifen-
resistant cell lines, which have the same motifs observed in the
poor outcome ER-binding events in primary tumors, are proba-
bly due to the FOXA1-mediated reprogramming of ER binding.
The distinctive ER cistrome reveals gene signatures that can

Fig. 3. Estrogen receptor (ER)-mediated transcrip-
tion involving FOXA1. FOXA1 interacts with cis-
regulatory regions in heterochromatin and in
combination with adjacent DNA binding elements,
such as estrogen response elements, to facilitate
the interaction of ER with chromatin. Subsequent
to the association with ER, the recruitment of
cofactors occurs at these distal enhancer sites and
the transcription of the target gene is initiated.
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predict the clinical outcome in ER-positive breast cancers. The
different types of ER binding at distinct cis-regulatory elements
is functionally and biologically relevant, resulting in altered
gene expression profiles that contribute to differences in the
endocrine response and outcome (Fig. 4).(10)

Importantly, the majority of metastases that arise from an
ER-positive breast cancer retain ER and FOXA1 expression,
regardless of the sites of metastasis, which suggests the paral-
lel redistribution of ER and FOXA1 binding events in drug-
resistant cells.(10) These data indicate that FOXA1 plays a key
role in hormone-resistant cancers; therefore, a specific FOXA1
inhibitor might provide a useful clinical tool for the treatment
of ER-positive, hormone-resistant breast cancer.(62)

Interstingly, MCF-7 cells overexpressiong Akt exhibit a
unique ER cistrome related to the Akt-dependent expression
profile.(66) FOXA1 could contribute alteration of the ER cis-
trome induced by GFR signaling, which occurs in ER-positive
breast cancers with acquired endocrine resistance.

Clinical impacts of FOXA1 expression in breast cancer. In breast
cancer, FOXA1 expression positively correlates with that of ER
and another transcription factor, GATA-3.(67,68) The expression
of both GATA-3 and FOXA1 is associated with luminal sub-
types and a good prognosis in patients with ER-positive breast
cancers. Of note, FOXA1 is an independent prognostic factor for
ER-positive breast cancer, probably because the presence of
FOXA1 indicates the presence of a functional ER complex,
which will respond well to endocrine therapy.(67,69–71)

A high expression of FOXA1 in the primary site could pre-
dict a good prognosis of ER-positive breast cancer after adju-
vant endocrine therapy. However, the expression of ER and

FOXA1 is retained in the metastatic sites.(10) This is an inter-
esting and important finding, although the mechanism underly-
ing this finding is still unclear. It would be meaningful to
evaluate the relationships between FOXA1 expression in the
primary and metastatic sites and the levels of downstream pro-
teins, such as the PR and cyclin D1, in future studies.

Conclusions

Endocrine therapy is essential for ER-positive breast cancer. In
the adjuvant setting, it is difficult to determine the necessity of
chemotherapy or the duration of adjuvant endocrine therapy.
In the metastatic setting, the indications for chemotherapy are
dependent on how the endocrine resistance is judged. In order
to resolve these problems, a better understanding of the mecha-
nisms defining the sensitivity or resistance to endocrine ther-
apy is important. Recent research has been unveiling these
factors step by step. The combination of endocrine therapy
with agents that overcome the resistance or improve the sensi-
tivity to endocrine therapy could be expected to maximize the
effects of treatment.
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