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Abstract: This study aims to provide an overview of multivariable prognostic modelling studies
developed for coronary heart disease (CHD) in the general population and to explore the optimal
prognostic model by comparing the models’ performance. A systematic review was performed using
Embase, PubMed, Cochrane, Web of Science, and Scopus databases until 30 November 2019. In
this work, only prognostic studies describing conventional risk factors alone or a combination of
conventional and genomic risk factors, being developmental and/or validation prognostic studies of
a multivariable model, were included. A total of 4021 records were screened by titles and abstracts,
and 72 articles were eligible. All the relevant studies were checked by comparing the discrimination,
reclassification, and calibration measures. Most of the models were developed in the United States
and Canada and targeted the general population. The models included a set of similar predictors,
such as age, sex, smoking, cholesterol level, blood pressure, BMI, and diabetes mellitus. In this study,
many articles were identified and screened for consistency and reliability using CHARM and GRIPS
statements. However, the usefulness of most prognostic models was not demonstrated; only a limited
number of these models supported clinical evidence. Unfortunately, substantial heterogeneity was
recognized in the definition and outcome of CHD events. The inclusion of genetic risk scores in
addition to conventional risk factors might help in predicting the incidence of CHDs; however, the
generalizability of the existing prognostic models remains open. Validation studies for the existing
developmental models are needed to ensure generalizability, improve the research quality, and
increase the transparency of the study.

Keywords: systematic review; coronary heart disease; prognostic models; genetic risk factors;
conventional risk factors

1. Introduction

Coronary heart disease (CHD) is a leading cause of morbidity, mortality, and disability
in developed and developing countries [1,2]. The WHO estimates that by 2030, the number
of annual deaths caused by cardiovascular diseases (mainly from CHD and stroke) will
reach almost 23.6 million [3,4]. CHD is the greatest cause of mortality and loss of disability-
adjusted life years (DALYs) worldwide, accounting for 7 million deaths and 129 million
DALYs annually [5]. A wide range of preventive interventions for CHD are available for
high-risk individuals through effective medication and comprehensive modification of
risk factors such as elevated LDL cholesterol levels, heavy smoking, unhealthy diet, and
physical inactivity [6–10]. Both types of interventions can be significantly improved by
accurate risk assessment [7]. Accurate risk identification allows medical professionals to
intervene in managing risk factors prior to the onset of more critical conditions, thereby
improving the quality of life of the patient [11]. Accurate risk assessments can improve
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their effectiveness. Accurate risk identification allows medical professionals to intervene
early before the developments of the diseases, thus improving the quality of life of the
patient [12,13]. Risk assessment of CHD requires thoroughness, completeness, and accuracy
in obtaining information and measurements for identifying subgroups with elevated risk
and predicting the timing of disease onset [13,14].

Prognostic models are used to estimate the probability of developing a particular out-
come in the future with the aim of assisting clinicians in disease prediction and enhancing
informed decision-making with the patient [11–15]. These models, in general, use two
types of performance measures: discrimination (the ability of the model to distinguish
individuals who develop events from those who do not) and calibration (how accurately
the model prediction matches the overall observed event rates) [16]. Prognostic models
are more likely to be reliable and useful in practice when they are developed using a large,
high-quality data set, based on a study protocol with a sound statistical analysis plan,
and externally validated by using independent data sets [17]. Despite the importance of
predicting future CHD among initially healthy adults, the predictive accuracy of the models
has often seemed disappointing because most individuals who eventually suffer a cardio-
vascular disease event were previously at average risk rather than high risk [18]. Data from
the cohort (retrospective and prospective), nested case-control, or case-cohort studies are
recommended for prognostic modelling studies (developmental and/or validation) [15].

Over the past year, abundant prognostic models have been developed to estimate
the risk of developing cardiovascular diseases, such as the Framingham, SCORE, QRISK,
QRISK2, and ASSIGN models [10,19–21]. Most of the existing models are based on the
Framingham model [20]. The original Framingham model included age, sex, LDL choles-
terol, HDL cholesterol levels, blood pressure level, hypertension medication, smoking,
and diabetes mellitus [2–10,20,21]. Different markers were then added to this model as a
response to deficiencies in improving performance, such as coronary artery calcification
score, C-reactive protein, fibrinogen, homocysteine, and apolipoprotein [22–28]. Previous
studies found that all three models based on the Framingham score—the Framingham
Adult Treatment Panel (ATP) III model, the Framingham Wilson model, and pooled cohort
equations (PCE)—provide an incomplete prognosis of CHD events [29]. Framingham
functions have overestimated the CHD risk in some populations (British and European
natives), leading to a concern that it may not be appropriate for other populations [30–32].
However, two problems remain: first, there is no consensus about the most suitable and
optimal model for predicting CHD in the general population, and second, it is not clear
which biomarkers or event genetic markers should be incorporated in the risk model in
addition to conventional factors.

For any novel CHD risk factor to be useful in a clinical setting, it must significantly
enhance event prognosis based on easily measurable conventional risk factors (CRFs) such
as age, cholesterol level, blood pressure, or body mass index; thus, any such factor(s) must
have a major impact on risk [13,14].

It is now universally accepted that CHD risk is known to be modified by interaction
of both multiple genetics and environmental components [33]. Genome-wide association
studies (GWAS) have so far identified a hundred loci associated with many cardiovascular
diseases and traits [34]. Out of these, more than 97 single-nucleotide polymorphisms (SNPs)
have been associated with CHD risk and myocardial infarction [34–39].

CHD risk stratification for primary prevention based only on conventional risk factors
seems to be less than efficient. The genetic risk score computed from the recently discovered
genetic variants might offer a potential solution in cardiovascular primary prevention. It
was found that GRS-based risk stratification performed on large populations, followed
by lifestyle changes (e.g., physical activity, diet) or statin therapy, are associated with a
significant 40% to 50% reduction in cardiac events in the high-genetic-risk group [40–42].
Formerly, the association between some SNPs (e.g., gene encoding for ion-channel subunits,
and in coronary blood flow regulation), and coronary microvascular function independently
from coronary artery disease was defined; specifically, the role of adenosine triphosphate-
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sensitive potassium channels (ATP), which are the end effectors of several regulatory
mechanisms for coronary flow reserves [43].

Recognizing the need for larger studies, we performed a systematic review to provide
an overview of multivariable prognostic models developed to predict the risk of CHD
in the general population, to find the optimal models by assessing their performance in
estimating CHD risk and to provide researchers with prognostic models by describing
the optimal combination of predictors, including conventional risk factors, genetic risk
scores, and biomarkers. We hypothesized that adding the genetic risk score to conventional
risk-factor-based models would improve the ability of these models to predict CHD events
in the general population.

2. Materials and Methods

Our present study was registered in PROSPERO (ID: CRD42021234224). We conducted
our systematic review based on the PRISMA guidelines by following the recently published
Cochrane Prognosis Methods Group guidelines [44] by using the Checklist for critical
Appraisal and data extraction for the systematic review of prediction Modelling Studies
(CHARMS) statement for assessing the quality of the prognostic modelling studies [15]. The
Genetic Risk Prediction Studies (GRIPS) Statement was used to assess genetic prognostic
modelling studies [45]. We used five databases—Embase, PubMed, Cochrane, Web of
Science, and Scopus—and we applied a human filter on 30 November 2019 to identify
original articles of the developmental and/or validation of prognostic models describing
the combination of conventional and genomic risk factors for incident CHD. We searched
the databases using the following key search terms: (“validation” OR “prediction” OR
“predict” OR “risk” OR “prognosis”) AND (“ROC” OR “area under the curve” OR “c-
statistic” OR “c statistic” OR “discrimination” OR “discriminate”) AND (“coronary heart
disease” OR “CHD” OR “coronary disease”). The detailed protocol can be found in the
Supplementary Material (see pages 1–2).

3. Eligibility Criteria

We included all original articles describing the estimation of risk associated with
CHD morbidity or mortality in individuals, developmental and/or validation modelling
studies (internal/external), and the models’ performance for predicting CHD in the general
population (performance measures regarding calibration, discrimination, and reclassifi-
cation are available). Two study designs were included: (nested) case-control and cohort.
Articles describing clinical models with intervention (treatment) and studies describing the
prediction models of CHD in individuals with certain health conditions, such as HIV, HBV,
diabetes, and kidney failure, were excluded.

4. Selection Process

Initially, two reviewers (N.M.G and O.A.) independently screened the titles and
abstracts of all studies identified according to the keywords and inclusion criteria, and
then duplicates were removed. After consensus, full-text articles were then obtained and
examined for quality. If there was any disagreement regarding the article’s inclusion, a
third-party evaluation was performed to reach a consensus. We compared the work of the
reviewers using the Epi Info7 program developed by the Centre’s for Disease Control and
Prevention (CDC) to minimize biases. The Preferred Reporting Items for Systematic Review
and Meta-Analysis (PRISMA) flow chart summarizes the selection process (Figure 1).

We categorized the eligible full-text articles into three groups: (1) Developmental
studies—such models commonly aim to identify important predictors by selecting predic-
tors, combining them into a multivariable model, and then developing a final model and
quantifying the predictive performance and validating this model internally using forms
such as bootstrapping or cross-validation; (2) validation studies with or without updating
such a model, aimed at assessing and comparing the predictive performance of an existing
prognostic model using new participant data that were not used to develop the prognostic
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model and possibly adjust or update the model in case of poor performance based on the
validation data; and (3) developmental studies with external validation in independent
data [15].
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Figure 1. Flow chart of the selection process of coronary heart disease risk prognostic models.

5. Data Extraction and Critical Appraisal

The list of extracted items was based on the CHARMS and GRIPS Statement for
reviewing the prognostic modelling of conventional and genetic studies [44,45]. The full
list of extracted articles is available in the Supplementary Material (see references list of the
included studies in the Supplementary Material from page 23).

6. Results

The search strategy identified 7187 potential articles; 2328 duplicates were removed
automatically by Endnote X7 software, and 838 articles were removed after exporting
the Endnote file to the CSV file (to create a new output style, removing the punctuation,
lowering the case, and sorting the file). A total of 2658 articles were excluded based on title
and abstract not being related to conventional or/and genetic risk modelling of CHD (re-
views, editorial comments, and nonhuman and irrelevant studies) or prognostic modelling
studies with subjects having comorbidities (HIV, HBV, diabetes mellitus, congenital heart
disease, Chagas heart disease, and kidney failure). In total, 477 full texts were included
after the exclusion of 405 other studies, such as case-control studies, cross-sectional stud-
ies, poor-quality studies, pooled analyses, and diagnostic/prognostic modelling studies
on symptomatic or suspected patients (see Supplementary Table S1 for details). Finally,
72 eligible articles were included in this review (Figure 1, Tables S8 and S9 include the
full list of the studies) [6,23–27,32,46–109]. We identified (n = 48) articles concerning the
developmental CHD risk prognostic models; 14 articles described the external validation
of the models, and 10 articles described the combinations of developmental and external
validation (Figure 1, Supplementary Figure S3) The description of study populations, set-
tings, periods of recruitment, length of follow-up, and methods of data collection of the
reviewed model can be found in Supplementary Table S2.
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The number of developmental modelling studies (including genetic risk models)
increased over the period 1997–2020, while the number of external validation and develop-
mental validation modelling studies declined (Figure 2).
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Figure 2. Numbers of publications on prognostic models included per year.

6.1. Studies Describing the Developmental Type of CHD Prognostic Models
6.1.1. Frequency of Models, Study Designs, and Study Populations

In general, 58 articles (developmental plus developmental validation) described more
than 157 different models (based on Framingham models plus the novel models created
by the researchers). Most of the prognostic models (n = 68, 5%) were developed using
data from cohort studies. Most of the models originated in the United States and Canada
(n = 32, 45%) or Europe (n = 26, 36%); few studies originated from Asia (n = 14, 19%), and
no developmental modelling studies originated from African countries. Framingham risk
models developed for the US population were used multiple times to derive a novel model
for different populations and countries. The model developed by Framingham, Wilson,
and D’Agostino was used in 30 articles, and Framingham Adult Treatment Panel III (2001
and 2002) was used in 9 articles. The SCORE risk-estimation model developed for the
European population was used eight times (see the other less-frequently used models in
Table 1).

The study populations, eligibility, setting, and recruitment method are described
in Supplementary Tables S2 and S8. In general, there was variation between the study
populations regarding the age groups: seven models (10%) were developed for people
with ages ranging from 30 to 74 years, and eight (11%) models were developed for the
subjects with ages between 45 to 64 years, while the majority (n = 57, 79%) of the models
used several different age groups (see Supplementary Table S2).

Most of the models (n = 53, 74%) targeted the general population (men and women),
few models (n = 17, 23%) were developed for men, and only two (3%) models were available
for women. Regarding the inclusion and exclusion criteria in most studies (n = 47, 71%),
the researchers stated that participants with a history of coronary heart diseases (including
a history of unstable angina or acute myocardial infarction, recorded ECG, stroke, heart
attack), other diseases such as cancer (n = 6, 9%), diabetes mellitus (n = 10, 15%), or chronic
medical conditions were excluded. Participants who were taking lipid-lowering medication
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or aspirin were also excluded from several studies. Additionally, few studies (n = 7, 5%)
excluded participants because of race/ethnicity status, and one model had no information.
In the modelling studies with genetic parameters, the investigators explicitly stated that
they excluded study participants with no genotypic data (n = 11, 15%).

Table 1. List of the models that were developed and validated for predicting coronary heart diseases
in the general population.

No Name of the Models
Frequency of the Models

Developmental Validation Total

1 Framingham–Wilson–D’Agostino, 1998 11 9 20

2 SCORE 2003 5 2 7

3 Framingham–ATP III, 2002 6 0 6

4 Framingham–Anderson, 1991 2 3 5

5 Framingham–Kannel, 1979 2 3 5

6 Framingham–Wilson, 1998 4 1 5

7 Framingham–ATP III, 2001 1 2 3

8 PROCAM–Assmann, 2002 3 1 4

9 Framingham–D’Agostino, 2008 3 0 3

10 QRISK2–Hippisley-Cox, 2008 0 2 2

11 PROCAM–Assmann, 2007 0 1 1

12 Framingham–Splansky, 2007 0 1 1

13 Framingham–Kannel, 1959 0 1 1

14 Framingham–Kannel, 1986 1 0 1

15 Framingham–Polak, 2011 1 0 1

16 Framingham–Wilson, 1991 1 0 1

17 Framingham–Wang, 2006 1 0 1

18 Framingham–Wilson, 2005 0 1 1

19 Framingham–Ridker, 2002 1 0 1

20 Framingham–Franklin 1 1 2

21 Framingham–ARIC, 2003 1 0 1

22 Framingham–Rotterdam 2 0 2

23 Framingham–MESA, 2002 1 1 2

24 Framingham–Lee, 2016 1 0 1

Framingham (not specified) 19 4 23

Total 67 33 100

6.1.2. Definition and Method for Measurement of Outcome

We observed a large variation in the definition of the population outcomes. The
majority (n = 42, 58%) of the prognostic models defined CHD events as an incident of CHD
with no categorization, while some models (n = 27, 38%) specified the definition of the
outcome as (fatal or nonfatal) myocardial infarction, stable or unstable angina, percutaneous
coronary revascularization or bypass grafting, or death due to CHD. Additionally, the
international classification codes showed heterogeneity (n = 27, 38%) (see Supplemental
Table S3). The definition of outcomes showed considerable heterogeneity; there were more
than 20 different definitions for coronary heart disease outcomes. Other outcomes were
identified, such as fatal/nonfatal CVD events (n = 1, 1%), and three models (n = 3, 4%) with
no information (Supplemental Table S4).
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6.1.3. Time Span of Prognostic Models

The follow-up time period in the prognostic models reviewed ranged between 3–30
years, 4 models (6%) predicted the incidence of CHD for less than 5 years, 33 models (56%)
predicted CHD outcomes for 5–10 years, a longer (>10–15 years) follow-up was described
in 29 models (40%), and the length of follow-up was longer than 15 years in a few models
(n = 6, 8%).

6.1.4. The Candidate Predictors

Figure 3 describes the set of predictors used in the prognostic models. In general, more
than 237 different predictors were included. The major categories of the predictors used
were conventional risk factors (number of predictors ranged between 7–20), genetic risk
variables (ranged between 1–153 SNPs) and biomarker variables (ranged between 1–141).
The categories of the predictors described were demographic characteristics, genetics,
biomarkers, comorbidities, behavioural factors, physiological factors, metabolic syndromes,
and reproductive factors (see Supplementary Figure S1). Age and smoking as predictors
for CHD were used in all the studies, total cholesterol level was reported in 67 (93%)
models, HDL cholesterol level was used in 62 (86%) models, diabetes mellitus and systolic
blood pressure were used in 63 (87%) models, gender was included as a predictor in
57 (79%) models, 53 (73%) models used both male and female subjects, 17 (23%) models
were specified for men, and 2 (3%) models were specified for women. Most of the models
(n = 46, 63%) included a set of similar predictors, such as age, sex, smoking, total cholesterol,
blood pressure, BMI, blood cholesterol/HDL cholesterol level, and diabetes mellitus. Other
prognostic models included several different variables, such as hypertension (n = 25, 35%),
family history of CHD and LDL cholesterol (n = 27, 38%), triglycerides (n = 29, 40%), genetic
risk score (n = 17, 23%), C reactive protein (n = 12, 16%), apolipoprotein B (n = 8, 11%), and
coronary artery calcification (n = 6, 8%). Treatment as a predictor for CHD was included
in a few studies (n = 6, 8%), described as the use of antihypertensive/antidiabetic and
lipid-lowering medications.
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Figure 3. The main categories of predictors used in prediction models for CHD diseases. Several
novel predictors were added to the Framingham model for predicting CHD events. Framingham
predictors were used the most commonly (age, sex, smoking, SBP, TC, HDLC, and diabetes) compared
to other predictors.



J. Cardiovasc. Dev. Dis. 2022, 9, 295 8 of 21

6.1.5. Sample Size and Number of Outcomes

The number of participants used to develop and validate the prognostic modelling
studies ranged between 112 and 268,315 (median 4651); almost half of the models (n = 50, 69%)
recruited their participants from multiple centres, while (n = 16, 22%) recruited subjects
from one centre, (n = 2, 3%) recruited from two centres, and 4 models (6%) did not describe
the recruitment method. Regarding the study setting (primary or secondary health care
centres), 45 models described that they selected the participants from primary health care
centres, 4 (6%) models selected the participants from secondary health care centres, and
23 models described that they selected the participants from the communities by using a
random selective sampling procedure. The number of outcomes that occurred during the
follow-up period (CHD events) ranged between 56 and 203,666 (median 467), and two (3%)
models did not report the number of outcomes.

6.1.6. Missing Data

The number of participants with any missing value and whether the subjects were
censored, or whether migration happened to the participant during the follow-up were
described in 27 (37%) models. Methods for handling the missing data were described
for several models. Seventeen models explained that they excluded the participants with
missing data before starting the analysis, whereas four models reported that they used the
imputation resampling technique, and only one reported that they repeated the measure-
ment. Genetic modelling studies reported that they excluded the participant whether they
missed information related to genetic data, ECG, and C reactive protein, blood pressure,
total serum cholesterol, fasting serum glucose, smoking status, and body mass index.

6.1.7. Modelling Method

Regarding the statistical analysis technique, 47 (65%) models used Cox proportional
hazards to develop the prognostic model for CHD; logistic regression was used in 17 (24%)
studies. Furthermore, conditional logistic regression and lifetime survival analysis were
described in some models (n = 6, 8%) (Supplementary Table S5).

6.1.8. Models’ Assumptions and Normality Distribution

Regarding the distributional assumptions about the residuals and whether the re-
searchers selected the right predictors in their models, 18 models reported how they
checked the assumption of the normality distribution using linear regression, seven models
used Schoenfeld residuals to verify the proportional hazard assumption, and two models
reported that they fit the models by Grambsch and Therneau (Supplementary Table S6).

The methods used for selection of the best predictors during multivariable modelling
were a backward approach in 3 (4%) models, forward selection in 3 (4%) different models,
Bayes information criterion (BIC) in 9 (13%) models, Akaike information criterion in
5 (7%) models, likelihood ratio test (LR) in 12 (17%) models, and Shrinkage or penalized
estimation in 3 (4%) models (Supplementary Table S6).

6.1.9. Predictive Performance of the Studies

The performance of a statistical prognostic model’s assessment showed considerable
heterogeneity, and the discrimination measures of predictive performance were reported for
72 (100%) models (See Supplementary Table S9). Most of the models used the concordance
index (Harrell’s C statistic) or area under the receiver operating characteristic curve (n = 57,
79%); seven (10%) models used the D statistic; and lifetime risks for CHD were reported in
six (8%) models, and only one model described the log rank (Table 2). Calibration measures
were reported in 29 (45%) different models, calibration slope and intercept were measured
in 3 (4%) models, calibration plots were reported in 2 (3%) models, Hosmer–Lemeshow
was used to assess the differences between the observed and expected rates in 20 (28%)
models, and Grønnesby and Borgan was used to test the goodness of fit of 5 (7%) models
(see Table 2). Classification measures were used to evaluate risk predictions in 54 (75%)
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models, sensitivity and specificity measures were used in 24 (33%) models, net reclassi-
fication improvement (NRI) was reported in 28 (39%) studies, integrated discrimination
improvement (IDI) was used in 16 (22%) models to quantify how close prognostics were to
the actual outcome, and clinical NRI was calculated to assess the improvement between
the basic and extended models in 3 studies (4%). Regarding other methods, Kaplan–Meier
survival curves were used in sixteen (22%) models. In total, 45 (63%) of the 72 models
were developmental (internally validated), most often using a random split of the dataset
(n = 18), bootstrapping (n = 21), or cross-validation (n = 5), and few models (n = 6) used
multiple imputation to impute the missing values on all predictors.

Table 2. The performance measures reported for the developed and validated models.

No Discrimination Measures Developmental Validation Total

1 C statistic/AUC 54 9 63

2 D statistic 2 1 3

3 Log rank 0 1 1

4 Lifetime risks for CHD 3 2 5

Calibration measures:

5 Calibration slope and
intercept 0 3 3

6 Calibration plot 0 2 2

7 Hosmer–Lemeshow test 11 9 20

8 Grønnesby–Borgan χ2 test 4 1 5

Classification measures:

9 Sensitivity, specificity 14 10 24

Predictive value 5 2 7

10 Net reclassification
improvement (NRI) 19 9 28

11 Integrated discrimination
improvement (IDI) 10 6 16

12 Clinical NRI 0 3 3

Others:

13 R2 2 0 2

14 Kaplan–Meier estimates 11 5 16

15 Bootstrap resampling 16 5 21

16 Cross-validation 2 2 4

7. Validation Modelling Studies

Validations of the models were performed in only 24 models: 10 (16%) models were
developmental validation studies, and 14 models were external validation studies. How-
ever, the ten models had been developed and validated in the same research using different
populations. Of these 10 models, 3 included genetic risk scores, while the other 14 were
validated internally. Framingham models were the most common models used by re-
searchers: Framingham developed by Wilson and D’Agostino in 1998 was reported in
33 models, Framingham of Adult Treatment Panel III 2002/2001 was described in 9 models,
Framingham developed by Anderson in 1991 and Framingham developed by Kannel in
1979 were reported in 5 different studies. Our review identified other different models that
were used to predict CHD development, such as SCORE (2003), which was described in
seven models. PROCAM (developed by Assmann in 2002) was reported in three different
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studies. QRISK2 (2008) was used in two models, while 20 other studies did not specify
which reference models were used (see Table 2).

There was considerable heterogeneity in the external validation modelling studies
(specifically the developmental validation types) regarding the eligibility criteria used
for the participants included. The different age groups were used for developing and
validating the models. Most of the models measured the discrimination ability using the
c-statistic only, and few models described the calibration measure (n = 5, 7%).

Our review identified that only two validation models compared the performance abil-
ity in different populations. The first model was a genetic risk modelling study based on the
Framingham risk score, which measured the performance using discrimination, calibration,
and reclassification in three different populations of the ARIC (Atherosclerosis Risk in Com-
munities) study, Framingham Offspring Study, and Rotterdam Study (Netherlands) [46].
This work revealed conflicting results regarding model performance: the discrimination
ability and reclassification showed significant improvement in the developed model but
not in the validated models. The second study examined whether the model performance
could be improved by adding coronary artery calcification as a marker predicting CHD
risk [47].

The model compared three different populations of the Multi-Ethnic Study of Atheroscle-
rosis, Heinz Nixdorf Recall Study, and Dallas Heart Study. These models measured the
performance using discrimination and calibration, and the results of the study showed
significant improvements in risk prediction by adding coronary artery calcification to con-
ventional risk factors. Additionally, evidence of very good discrimination and calibration
was provided.

8. Genetic Risk Prognostic Modelling Studies

The genetic risk modelling studies identified in this review were used to examine
whether the inclusion of genetic factors improved the CHD risk prognosis in addition
to conventional risk factors based on the Framingham score. Most of the models were
developed in healthy populations in longitudinal cohort studies (n = 16), while one study
used a nested case-control design.

Most of the genetic modelling studies originated in Europe (n = 11) and the United
States (n = 5), and only one model was from Asia (China). The European modelling
studies included four studies from the United Kingdom and one model each from Sweden,
Denmark, Spain, Switzerland, the Netherlands, and Scotland. Most of the models (n = 11)
were developed using Caucasian populations (white non-Hispanic).

The healthy participants of the genetic models were recruited from multiple centres
(n = 12). The periods of recruitment ranged between 1987 and 2007; seven models recruited
participants from 1987 to 2001, five models reported that the participants were recruited
from 2003 to 2007, and two models provided no information. Regarding the age group,
most of the models (n = 11) were developed for people aged 45–75 years, three models
were developed for people aged 25–64 years, and two models had no information.

Most of the studies were developed using healthy Caucasian populations of both sexes
with complete genetic information. The authors excluded all the participants with missing
genotype data, individuals who had prevalent CHD or stroke, and individuals with no
follow-up data. The number of participants ranged from 840 to 51,954, and the number of
events ranged between 183 and 3217.

Genetic risk scores (GRSs) with various numbers of SNPs were included in the mod-
els reviewed. The total number of SNPs reported in the articles was 230. It ranged
between 1–156 SNPs per article: four models utilized a relatively low number of SNPs
(1–19), and thirteen models included a relatively high number of GRSs ranging between
38–156 SNPs. The most reported SNPs were rs17114036 (PLPP3) reported in 12 articles;
rs1122608 (SMARCA4) and rs3184504 (SH2B3) reported in 7 articles; rs9818870 (MRAS),
rs67258870 (DHRSX), and rs501120 (unknown) in 6 articles; and rs7692387 (GUCY1A1),
rs12413409 (CNNM2), rs9515203 (COL4A2), rs11556924 (ZC3HC1), rs11206510 (unknown),
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rs273909 (SLC22A4, MIR3936HG), rs12190287 (TCF21), rs2048327 (SLC22A3), rs12526453
(PHACTR1), rs4252120 (PLG), rs2505083 (JCAD), rs974819 (unknown), and rs9982601 (un-
known) in 5 articles. Other SNPs were less commonly used (see Supplementary Table S7).
These SNPs were associated with well-known phenotypic traits or biomarkers that were
associated with systolic blood pressure, total cholesterol, LDL-C, HDL-C, apolipoprotein-B,
lipoprotein (a), plasma C reactive protein, health behavioural factor (smoking), and family
history. Most of the selected SNPs (n = 9) were identified in genome-wide association
studies and the CARDIoGRAMplusC4D (n = 4) study. One model described that they
included SNPs based on a literature review.

Heterogeneity was observed in the genotyping technique used for analysis, which
included Illumina MetaboChip in three different models, Affymetrix GeneChip (n = 2),
custom-designed Affymetrix Axiom arrays and genome-wide arrays (n = 1), TaqMan technol-
ogy in three models and MassARRAY (n = 1), and the other models had information reported.

Regarding the calculation of weighted GRS in the models reviewed, most (n = 12) of
the models weighted the GRS by multiplying the participants’ allele score (1, 0, −1) by the
SNP beta coefficient, while two models reported that they weighted the GRS by multiplying
the number of risk alleles with the ‘combined beta’ of the CARDIoGRAMplusC4D meta-
analysis and summing the products.

The GRS variables in the developed models were categorized as tertiles, quartiles, and
quantiles. Most of the models n = 11 used the quartile as low GRS (quartile 1), intermediate
(quartiles 2 and 3), and high (quartile 4) risk categories; tertiles were described in (n = 5)
models such as low GRS (tertile 1), intermediate (tertile 2), and high (tertile 3) risk categories;
only one model used quantiles including low GRS (quintile 1), intermediate GRS (quintiles
2 to 4), and high GRS (quintile 5).

The follow-up time of the models ranged from 5 to 19.4 years. Seven models predicted
CHD outcomes in >10–15 years, six models described the follow-up time as 5–10 years, two
models described a follow-up period of less than 5 years, and another two models reported
that the length of follow-up was longer than 15 years. Most of the models (n = 12) reported
that they collected the data using questionnaires, physical examinations, and laboratory
diagnostics. Genotype imputation was performed in five models, and bootstrapping was
described for n = 5 models.

Most of the studies (n = 6) estimated the ten years of CHD risk using the Framingham
risk function described by Wilson et al., the Framingham Adult Treatment Panel III was
used in (n = 3) models, and other models did not specify which Framingham model
was used.

The performance of genetic modelling studies was reported in (n = 16) models, dis-
crimination measures using the concordance index (Harrell’s C statistic) or area under
the receiver operating characteristic curve were reported in (n = 13) models, calibration
measures were reported in (n = 10) models, Hosmer–Lemeshow goodness of fit was re-
ported in (n = 5) models, and Grønnesby and Borgan was reported in (n = 2) models.
Classification measures were reported in (n = 10) models, and calibration measures using
the net reclassification improvement (NRI) were reported in (n = 10) models.

9. Discussion

This review shows that numerous prognostic models have been developed for CHD
risk prediction in the general healthy population, and the predictors are based mainly on
Framingham models, but there is still no consensus about the best model(s). Our review
adds some new and structured knowledge about CHD prognostic modelling studies by
including models with genetic risk components in addition to traditional models.

Although the number of publications on clinical prognostic modelling studies combin-
ing multiple predictors for CHD has increased in the medical literature [17], the translation
of the knowledge gained is missing, and limited evidence is available on the application of
genomic results in health and public health practice [110]; consequently, the trend of CHD
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mortality and morbidity is still increasing consistently over the years, especially in low-
and middle-income countries [111].

We hypothesized that adding the genetic risk score to conventional risk-factor-based
models would improve the predictive ability of these models regarding CHD events in the
general population. However, we identified that most of the genetic modelling studies had
not yet been externally validated in different populations, with the exception of a distin-
guished model [52]. Most of the genetic studies have shown improvement in performance
(discrimination and calibration ability) without further external validation [40–44,46–52].
Demonstrating the good performance of the models developed is not sufficient without
confirming improvements in different populations for the generalizability of the models.

Healthcare providers and policymakers believe that the reduction in deaths and
disability due to CHD will be more influenced by prevention, not treatment, and this
requires robust reduction of risk factors through the accurate estimate of the population at
risk [112]. Clinicians are also willing to find suitable guides for quick decisions in everyday
medical practice to improve patient outcomes as much as possible [113]. One recommended
solution would be the validation of the existing models instead of building several new
models; however, the translation and dissemination of results into practice is challenging,
and no prognostic application is ready for implementation in routine daily practice.

Our review identified variation regarding the geographical location of models: most
models were developed and validated in the United States of America, Canada, and
European populations. The WHO stated that more than three-quarters of all CHD deaths
occur in low-income and middle-income countries [111]. Our study confirmed that no
prognostic modelling studies for CHD originated in developing countries, e.g., a prognostic
model for people from Africa had not yet been developed when we conducted the search
for this review. Only a few studies originated from Asia (China, Turkey, Thailand, Japan,
and Korea).

Most participants were recruited from primary health care and community settings,
but the selection process was incompletely reported. Most of the studies did not describe
which sampling technique was used, and few studies described random method selection
of the participants. Sampling techniques are an important method for representative target
populations; researchers should be more accurate in this era to avoid selection bias and to
provide clinicians with valid information. Few studies reported consecutive participant
selection, but in some other previous studies, participants were selected nonconsecutively
and thus increased the risk of bias due to selective sampling [114].

Although age is the most common risk factor considered in CHD risk prediction and
affects the two sexes for developing CHD, there is great variation between the developed
and validated models in terms of the participant age groups; the validation studies were
performed in people outside the age range of the developmental studies, and most of the
developed models predicted the risk in the elderly population compared with the validated
models, which may affect the number of CHD outcomes and may influence the model
performance [115]. Researchers should specify the age group by sex because females have
a lower risk of developing CHD than males [116].

Although disparities of CHD risk depend on factors such as age, gender, and ge-
ographical location of populations, only a few researchers are focusing on females and
middle- and low-income countries possibly due to data availability, population needs, or
priorities. Priorities for studies in developing countries (Africa and Asia) are different from
Europe or America. Developing regions of the world must focus on the leading causes
of death such as malaria, HIV and AIDS, dengue, and tuberculosis [117]. Developmental
validation studies should compare diseases in the same age group in both of the models
developed and validated.

The method of outcome determination should be accurate to provide proper patient
risk stratification and to support personal clinical decision making with the goal of im-
proving patient outcomes and quality of care [118]. Incorrect outcome assessment and
measurement of predictors may inflate the predictive accuracy of the predictors and that of
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the final prognostic model [15]. With respect to CHD definitions reported in the models
reviewed, most models defined the incidence of coronary heart disease as fatal or nonfatal
myocardial infarction, and over 80 different definitions for the disease outcomes were
identified. In addition, most outcomes were not fully defined, and the International Classi-
fication of Diseases (ICD) codes for CHD were described in only a few models. Different
outcome definitions and measurement methods may lead to differences in study results and
are a source of heterogeneity across studies, and thus risk of bias [15]. Overall, heterogene-
ity of definitions of CHD outcome identified in this review may affect the discrimination
ability of the models (overestimate/underestimate): models fail to discriminate between
case and non-case subjects and thus may influence the predictive accuracy of the final
prognostic model [119]. A standard consistent definition of CHD and outcome will increase
transparency in reporting the predicted outcomes and may improve the quality of research.

Several candidate predictors were reported in the models identified. Most models
had the same common predictors, such as age, sex, smoking, blood pressure, and total
cholesterol levels. Many novel predictors, such as genetic risk scores, biomarkers (coronary
artery classification and C-reactive protein), and others (e.g., creatinine, fibrinogen, and
interleukin 6) have been described in a few models. Most of the novel and newly developed
models show good performance in predicting CHD, but the strategies of how the predictors
were selected (backward or forward stepwise regression) and which approaches were
used (plot or multiple linear regression) are still questionable in most studies reviewed
(Supplementary Figure S2).

Regarding the models’ performance, most of the models measured discrimination
ability with less commonly used calibration and classification measures. Therefore, the
performance of these models has not been fully examined, and the discrimination alone
can be insensitive and less useful in evaluating risk prediction of future events. It will
be valuable if it is used for comparing the fit of predictive models using the calibration
statistic and reclassification improvement [120]. It is essential to assess the goodness of fit
and to validate the model to ensure predictive performance. The use of good strategies
for model selection in addition to adequate performance and goodness-of-fit measures is
needed in developing accurate predictions [121]. It is important to ensure that the model is
well-calibrated if the prognostic value is close to the true value of disease outcomes. Model
calibration was assessed via Hosmer–Lemeshow goodness of fit with other measures,
such as adjusted R square, cross-validation, and Akaike’s and the Bayesian information
criterion for small numbers of predictors [122]. If there are a large number of predictors,
then forward stepwise regression can be used [121].

Our review assessed prognostic modelling studies in community-based settings, aim-
ing to summarize the available evidence about the optimal model in predicting CHD events
in healthy populations and to explore whether the inclusion of the genetic risk score in con-
ventional risk factors improves the ability of these models. MESA risk score with coronary
artery calcification, which is described by McClelland et al. (2015) seems to be an optimal
model for predicting CHD risk in the general population [91]. This model is a conventional
modelling study including age, gender, CAC, ethnicity, DM, smoking, family history of
heart attack, TC, HDLC, SBP, and treatment (hypertension and lipid lowering) predictors.
We would recommend this model to be used in low-income counties countries (it is less
expensive compared to GRS models). Genetic risk score (unweighted and weighted) in
the model of Brautbar et al. (2012) might help in predicting CHD risk when integrated to
Framingham [52].

These findings can help clinicians and decision makers improve the quality of interven-
tions and improve the health of the population at risk. Future validation studies for genetic
modelling studies are needed to ensure the quality and transparency of the developed
model. Methodological assessment of genetic models is required. Most of the genetic
risk scores incorporated into the conventional risk factors improved the discrimination
and reclassification ability in the derivation models. Most genetic modelling studies were
developed using only Caucasian populations; thus, the generalizability of the existing
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prognostic models is questionable. Genetic modelling studies might be used to target
the prevention of CHD if the individual’s genetic risk is comprehensively evaluated. An
accurate assessment of an individual’s risk is fundamental to future efforts in personalized
medicine for the primary prevention and proper management of CHD.

Future validation studies should include genetic application in different geographic
locations, and fully independent validation by independent investigators using alterna-
tive measurements of these risk factors in different population settings may improve the
prognosis of the disease.

Incomplete reporting of information in both conventional and genetic modelling stud-
ies was observed regarding the following methodologies: sampling technique, subject
selection criteria, categories and blinding, genetic information (selection, coding), con-
struction of the final models, classification measures, duration of follow-up, and missing
values of the participants and technique used for handling this issue (bootstrapping, cross
validation, and resampling method). Therefore, simply excluding the participants with
missing values from the analysis reduces the effective sample size and may also lead to
inaccurate estimates of the predictor outcome associations and the predictive performance
of the final model [13]. The performance of a predictive model is overestimated when
simply determined on the sample of subjects that was used to construct the model, and
statistical techniques such as shrinkage and bootstrapping are available to attempt to reduce
over optimism at the model-building stage [17,121]. Comprehensive and valid information
on conventional and genetic models is needed. Researchers should enhance the quality of
their reports by describing and highlighting this important information.

To ensure the generalizability of the prognostic model and the ability of the model
to predict CHD in populations with different characteristics, an external validation study
is needed to evaluate the model performance and to avoid overfitting in prognostic mod-
elling studies. The shrinkage and penalization method should also be applied to reduce
overfitting by readjusting the regression coefficients [13,14].

Our review reveals that only one conventional model was considered a good prognos-
tic model for CHD in the general population (decision analysis) and applicable for use in
clinical practice (classification marker for CHD risk prognosis) [91]. One genetic modelling
study (Brautbar et al., 2012), was externally validated in three different populations and
performed decision analysis but had limitations regarding classification improvement in
the comparator model [52].

For conventional and genetic modelling studies, the identified previous models might
be considered a good and optimal prognostic for CHD risk in the general population
(decision analysis) and applicable for use in clinical practice (classification marker for CHD
risk prognosis). However, the model of Brautbar et al. (2012) was externally validated
in three different populations and performed decision analysis, but this model had limi-
tations regarding the discrimination and classification improvement that occurred in the
developmental group without significance improvement in the comparator groups [52].

There are several reasons why the performance of a prognostic model needs to be
evaluated before its results can be used; most of the models fail to satisfy certain statistical
notions of correctness (statistically invalid), fail to be useful in a clinical setting, or have
invalid prognostic information. Furthermore, the same model might fail according to
one clinical criterion and pass according to another. There were two definitions of the
validation prognostic modelling study. First, a statistically validated model passes all
appropriate statistical checks, including the goodness of fit on the original data set and
unbiased prognosis on a new data set. Second, a clinically validated model performs
satisfactorily on a new data set according to context-dependent statistical criteria [123].

10. Conclusions

Although the heritability of CHD is recognized and confirmed, the understanding of
genetic architecture of CHD is still uncertain, and most of the SNPs’ functions for CHD risk
prediction are unknown or less-known. Our review assessed prognostic modelling studies
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in community-based settings, aiming to summarize the evidence about the optimal model
in predicting CHD events in healthy populations and to explore whether the inclusion of
the genetic risk score alongside conventional risk factors improves the predictive ability of
these models. MESA risk score with coronary artery calcification (CAC) which is described
by McClelland et al. (2015) seems to be an optimal model for predicting CHD risk in
the general population (this model includes age, gender, CAC, ethnicity, DM, smoking,
family history of heart attack, TC, HDLC, SBP, and treatment (hypertension and lipid
lowering) predictors). We would recommend this model for use in low-income countries
(it is less expensive compared to GRS-based models). The genetic risk score (unweighted
and weighted) from the model of Brautbar et al. (2012) was very powerful in predicting
CHD risk when it was integrated into Framingham conventional factors. Our findings can
help clinicians and decision makers to improve the quality of interventions and improve
the health of the population at risk. Future validation of genetic modelling studies is
needed to ensure the quality and transparency of the developed models. Methodological
assessment of genetic models is required. Most of the genetic risk scores incorporated into
the conventional risk-factor-based models improved the discrimination and reclassification
ability. Most genetic modelling studies were developed using only Caucasian populations,
so the generalizability of the existing prognostic models is still questionable. Genetic
modelling studies might be used to target the primary prevention of CHD if the individual’s
genetic risk is comprehensively evaluated. An accurate assessment of an individual’s risk
is fundamental to future efforts in personalized medicine.

11. Strengths and Limitations of This Study

In this study, multiple databases were searched (Embase, PubMed, Cochrane, web of
science, and Scopus), applying a human filter only. Data extraction was performed by one
reviewer and then checked by another one, and characteristics of the individual studies
were provided. Quality assessment was performed in duplicate using CHARM, and GRIPS
statements and the data collected were not suitable for conducting meta-analysis because
of the heterogeneity and the huge number of different predictors identified.
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