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OBJECTIVE—Nur77 is an orphan nuclear receptor with pleo-
tropic functions. Previous studies have identified Nur77 as a
transcriptional regulator of glucose utilization genes in skeletal
muscle and gluconeogenesis in liver. However, the net functional
impact of these pathways is unknown. To examine the conse-
quence of Nur77 signaling for glucose metabolism in vivo, we
challenged Nur77 null mice with high-fat feeding.

RESEARCH DESIGN AND METHODS—Wild-type and Nur77
null mice were fed a high-fat diet (60% calories from fat) for 3
months. We determined glucose tolerance, tissue-specific insulin
sensitivity, oxygen consumption, muscle and liver lipid content,
muscle insulin signaling, and expression of glucose and lipid
metabolism genes.

RESULTS—Mice with genetic deletion of Nur77 exhibited in-
creased susceptibility to diet-induced obesity and insulin resis-
tance. Hyperinsulinemic-euglycemic clamp studies revealed
greater high-fat diet–induced insulin resistance in both skeletal
muscle and liver of Nur77 null mice compared with controls.
Loss of Nur77 expression in skeletal muscle impaired insulin
signaling and markedly reduced GLUT4 protein expression.
Muscles lacking Nur77 also exhibited increased triglyceride
content and accumulation of multiple even-chained acylcarnitine
species. In the liver, Nur77 deletion led to hepatic steatosis and
enhanced expression of lipogenic genes, likely reflecting the
lipogenic effect of hyperinsulinemia.

CONCLUSIONS—Collectively, these data demonstrate that loss
of Nur77 influences systemic glucose metabolism and highlight
the physiological contribution of muscle Nur77 to this regulatory
pathway. Diabetes 58:2788–2796, 2009

T
he NR4A family includes three highly homolo-
gous isotypes, NR4A1, NR4A2, and NR4A3, also
known as Nur77, Nurr1, and Nor1, respectively
(1). Although these receptors possess a putative

ligand-binding domain, X-ray crystallography studies sug-
gest that the ligand-binding pocket is occluded by bulky
hydrophobic residues and is unable to accommodate
ligands (2,3). Instead, NR4A activity is regulated primarily
at the transcriptional level by stimuli that signal through
the cAMP pathway as well as posttranslational modifica-
tion. NR4A receptors have been implicated in a range of
biological processes, including apoptosis, dopaminergic
neuron development, and tumorigenesis (4–6).

Several members of the nuclear receptor superfamily
function as downstream regulators of metabolic pathways
in response to nutritional perturbations. In particular, the
ligand-responsive nuclear receptors of the peroxisomal
proliferator–activated receptors (PPARs) family, liver X
receptors, and glucocorticoid receptor have been charac-
terized as transcriptional coordinators of specific meta-
bolic programs (7–10). In addition, ligand-independent
orphan nuclear receptors, such as estrogen-related
receptor-�, chicken ovalbumin upstream transcriptional
factors, and retinoic acid receptor–related orphan recep-
tors have also been implicated in metabolic regulation
(11–14). In recent years, the NR4A family of orphan
nuclear receptors has also joined the cadre of nuclear
receptors involved in metabolic regulation.

Work by our group and others have pointed to NR4A1
(Nur77) as a transcriptional regulator of glucose metabo-
lism in liver and skeletal muscle (1,15–17). Ectopic expres-
sion of Nur77 in vivo enhances hepatic glucose production
and elevates plasma blood glucose (16). In skeletal mus-
cle, Nur77 regulates the expression of a battery of glucose
utilization genes, including GLUT4 and multiple genes
involved in glycolysis (17). However, whether Nur77-
mediated changes in the expression of muscle-glucose
utilization genes are sufficient to modulate systemic glu-
cose metabolism is unknown. Furthermore, the relative
contribution of liver versus muscle Nur77 to maintaining
systemic glucose homeostasis has not been explored
previously.

Here, we show that mice lacking Nur77 develop hepatic
steatosis and exacerbated insulin resistance in both skel-
etal muscle and liver when challenged with a high-fat diet
(HFD). In addition to diminished expression of GLUT4 and
glycolytic genes, Nur77 null mice demonstrated impaired
muscle insulin signaling and increased intramuscular lipid
content. Our findings highlight the importance of skeletal
muscle Nur77 in the regulation of systemic glucose
metabolism.
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RESULTS

Nur77 null mice develop worsened glucose tolerance
after high-fat feeding. Prior work has shown that Nur77
regulates metabolic pathways that have opposing effects
on peripheral glucose clearance. In the liver, Nur77 is a
transcriptional modulator of gluconeogenesis (16). In skel-
etal muscle, Nur77 regulates the expression of a panel of
genes that promote glucose utilization (17). To investigate
the net functional outcome of Nur77 activity on systemic
glucose metabolism, we performed metabolic analysis on
Nur77 null mice. Global Nur77 knockout mice (4), devoid
of Nur77 in both skeletal muscle and liver, exhibited no
obvious difference in glucose tolerance when fed a stan-
dard rat diet (data not shown). To determine whether
Nur77 affected the development of diet-induced obesity
and diabetes, we challenged male control and Nur77 null
mice with a HFD (60% calories from fat; Research Diets,
New Brunswick, NJ) for a period of 3 months. As shown in
Fig. 1A, Nur77 null mice exhibited slightly greater body
weight at baseline and continued to gain more weight than
wild-type controls over the course of the high-fat feeding,
despite similar food intake (Fig. 1B). After 1 month of
high-fat feeding, Nur77 null mice had worsened glucose
tolerance compared with wild-type controls (Fig. 1C). In
addition, Nur77 null mice displayed markedly higher fast-
ing insulin levels (Fig. 1D), indicating that the glucose
intolerance observed was attributable to insulin resistance
rather than insulinopenia. This difference in fasting insu-
lin level was reproduced in a separate cohort of high-
fat–fed Nur77 null mice despite comparable body
weight, adiposity, and adiponectin level (Fig. 1E, sup-
plementary Table 1 and supplementary Fig. 1, available

in an online appendix at http://diabetes.diabetesjournals.
org/cgi/content/full/db09-0763/DC1), suggesting that the
insulin resistance we observed was not entirely attrib-
utable to differences in adiposity.
Nur77 null mice have reduced oxygen consumption.

To determine the effect of Nur77 deletion on energy
expenditure, we subjected high-fat–fed Nur77 knockout
mice to indirect calorimetry. Mice were housed individu-
ally in the Comprehensive Lab Animal Monitoring System
(CLAMS, Columbus Instruments, OH) and were fed ad
libitum. As shown in Fig. 2A, Nur77 null mice showed
reduced oxygen consumption (a measure of energy expen-
diture) during both light and dark cycles. This reduction in
energy expenditure may contribute to the increased weight
accretion in Nur77 null mice on a HFD, despite comparable
ambulatory activities (Fig. 2B) and food intake. Although
Nur77 regulates the expression of glycolytic genes in skeletal
muscle, there was no significant effect of Nur77 deletion on
substrate preference based on comparable respiratory ex-
change ratios between the genotypes, either during fasting or
fed states (data not shown).
High-fat feeding elicits insulin resistance in both
skeletal muscle and liver of Nur77 null mice. To
determine tissue-specific contributions to the impaired
insulin sensitivity of Nur77 null mice, we performed
hyperinsulinemic-euglycemic clamps. In diet-fed animals,
there was no difference in basal glucose turnover between
wild-type and Nur77 null mice in the fasted state (Table 1
and Fig. 3B). Furthermore, Nur77 null and wild-type
control mice had comparable insulin-stimulated glucose
disposal rates (IS-GDR), reflecting similar skeletal muscle
insulin sensitivity (Fig. 3A). In contrast, Nur77 null mice
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FIG. 1. Nur77 null mice develop diet-induced obesity and insulin resistance on a HFD. Body weight (A) and food intake (B) of wild-type (WT, E)
and Nur77 knockout (KO, F) mice. C: Intraperitoneal glucose tolerance test (1 g/kg) performed after 1 month of HFD. D and E: Fasting plasma
insulin concentrations 6 weeks after high-fat feeding. A–D: Male, n � 8–9, 11- to 14-week-old mice. E: male, n � 7–10, 17–18 weeks old at the start
of high-fat feeding. *P < 0.05, **P < 0.01.
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subjected to high-fat feeding exhibited marked reduction
in IS-GDR, indicative of impaired skeletal muscle insulin
sensitivity (Fig. 3C). Thus, these results highlight Nur77 as
an important regulator of insulin sensitivity in skeletal
muscle.

Although muscle insulin sensitivity was unchanged in
diet-fed Nur77 null mice, Nur77 deletion enhanced liver
insulin sensitivity. As shown in Fig. 3B, insulin suppressed
hepatic glucose production more effectively in diet-fed
Nur77 knockout mice, reflecting enhanced hepatic insulin
sensitivity. The increased hepatic insulin sensitivity is also
supported by a higher glucose infusion rate required to
maintain euglycemia during the clamp (Table 1). This result
confirmed our previous finding that Nur77 regulates hepatic
gluconeogenesis (16). Surprisingly, however, the protective
effect of Nur77 on hepatic insulin sensitivity was not pre-
served during high-fat feeding, as Nur77 null mice showed a
blunted suppression of hepatic glucose production (HGP) by
insulin (Fig. 3D). When integrating both diet and genotype in
two-way ANOVA, high-fat–fed Nur77 null livers actually
exhibited worsened insulin sensitivity.
Impaired insulin receptor phosphorylation in Nur77
null mice. We performed immunoblot analysis on quadri-
ceps muscle from HFD fed mice to examine insulin-
signaling pathways. Caveolin 3, a muscle-specific plasma
membrane protein (18), was used as a loading control. As
shown in Fig. 4A, GLUT4 protein level was markedly
reduced in Nur77 null muscle, consistent with our previ-

ous finding that GLUT4 is a direct transcriptional target of
Nur77 (17). We found that insulin receptor phosphoryla-
tion was reduced in Nur77 null muscle (Fig. 4A). Insulin
receptor phosphorylation was unaffected in Nur77 null
livers (supplementary Fig. 2). Both the reduced GLUT4
protein level and insulin receptor phosphorylation would
be predicted to contribute to the observed impairment in
muscle insulin sensitivity. Interestingly, Akt phosphoryla-
tion was not appreciably altered in Nur77 null mice.
Although this result was unexpected, dissociation be-
tween insulin resistance and diminished Akt phosphoryla-
tion has been reported in several models of insulin
resistance (19–21). As well, the level of insulin-regulated
aminopeptidase, a GLUT4 vesicle protein (22), was un-
changed, thus confirming the specificity of Nur77 regard-
ing genes of glucose utilization.
Nur77 stimulates glycolysis in C2C12 muscle cells.
The observation that Nur77 null mice display impaired
insulin-stimulated glucose disposal is concordant with our
previous finding that Nur77 regulates the expression of
glycolytic genes in skeletal muscle (17). Indeed, the ex-
pression of several glycolytic genes (enolase 3, 2,3-
bisphosphoglycerate mutase, phosphoglycerate kinase 1)
was reduced in tibialis anterior muscle of Nur77 null mice
on a HFD (Fig. 4B). This defect would be expected to
diminish insulin-stimulated glycolysis and glucose dis-
posal. We found that the expression of lipin1 was reduced
in Nur77 null muscle. Although the physiologic function of
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FIG. 2. Indirect calorimetry of Nur77 null mice on HFD. Oxygen consumption (A) and ambulatory activity (B) of wild-type (WT) and Nur77
knockout (KO) mice after 3 months of high-fat feeding. Mice were fed ad libitum, male, n � 7–8. *P < 0.05.

TABLE 1
Metabolic parameters

Diet-WT Diet-KO P HFD-WT HFD-KO P

n 8 7 7 7
Age (weeks) 16.7 � 0.39 17.4 � 0.18 0.12 27.1 � 0.1 28.4 � 0.3 0.001
Body wt (g) 29.1 � 0.8 30.6 � 0.70 0.08 39.4 � 0.80 43.6 � 0.90 0.004
Fasting blood glucose (mg/dl) 109 � 3.5 113 � 5.9 0.58 119 � 3.4 126 � 1.9 0.07
Clamp blood glucose (mg/dl) 106 � 1.8 108 � 2.4 0.59 114 � 1.7 117 � 2.1 0.35
Basal insulin (ng/ml) 0.39 � 0.04 0.41 � 0.04 0.72 1.5 � 0.2 2.6 � 0.3 0.007
Basal glucose turnover (mg � kg�1 � min�1) 20 � 1.6 20 � 1.6 0.9 18 � 0.9 18 � 1.0 0.9
Hepatic glucose production (mg � kg�1 � min�1) 5.8 � 1.2 3.8 � 0.8 0.007 6.1 � 0.8 8.6 � 1.5 0.156/0.013*
GIR (mg � kg�1 � min�1) 52 � 2.3 58 � 1.7 0.04 40 � 2.2 18 � 4.4 0.001
Clamp insulin (ng/ml) 9 � 2 8 � 2 0.68 11 � 2 16 � 2 0.11
Basal FFA (mM) 0.87 � 0.04 0.77 � 0.06 0.21 0.82 � 0.03 0.88 � 0.06 0.41
Clamp FFA (mM) 0.20 � 0.02 0.21 � 0.03 0.73 ND ND

All comparisons done by Student t test except as noted. *Two-way ANOVA of interaction between diet and genotype. FFA, free fatty acid;
GIR, glucose infusion rate; KO, knockout; ND, not done; WT, wild type.
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lipin1 in skeletal muscle remains unclear, our finding is
consistent with the observation that muscle lipin1 expres-
sion is reduced in other models of insulin resistance (K.
Reue, unpublished results).

At least in the Nur77 null model, regulation of glycolytic
genes by Nur77 appears to be specific to skeletal muscle, as
there was no appreciable loss of glycolytic gene expression
in other metabolically active tissues such as brain and heart
(supplementary Fig. 3), although we cannot exclude the
potential compensatory actions of the remaining two NR4A
receptors. In the liver, the expression of these enzymes was
upregulated in high-fat–fed Nur77 null mice (supplementary
Fig. 3). However, as most glycolytic enzymes also catalyze
the reverse gluconeogenic reactions, the induction of these
enzymes may reflect excessive gluconeogenesis observed in
the high-fat–fed Nur77 knockout mice (Fig. 3D and supple-
mentary Fig. 4). Interestingly, we also observed an increase
in muscle Nur77 expression in response to HFD feeding
(supplementary Fig. 5).

To test the hypothesis that Nur77-dependent regulation
of glycolytic gene expression is sufficient to alter glycolytic
activity, we expressed Nur77 in mouse C2C12 muscle cells
with an adenoviral vector and measured in vivo glycolytic
activity 3 days after infection. Glycolysis was measured by
the Extracellular Flux Analyzer (Seahorse Bioscience,
Chicopee, MA). Lactate accumulation during glycolysis
lowers extracellular pH; extracellular acidification rates
reflect glycolytic activity (23). Glycolytic activity can be
further augmented by the addition of an uncoupling agent
such as 2,4-dinitrophenol (DNP). As shown in Fig. 4C,
Nur77-expressing cells exhibited enhanced glycolysis both
at baseline and after DNP treatment. The specificity of
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FIG. 3. Muscle and liver insulin sensitivity of Nur77 null mice. A and B:
IS-GDR and HGP of diet-fed wild-type (WT) and Nur77 knockout (KO)
mice; male, n � 7–8. C and D: Basal state, white bars; postclamp, black
bars. IS-GDR and HGP of mice on HFD for 3.5 months; n � 7, male.
**P < 0.01 by one-way ANOVA; †P < 0.05 by two-way ANOVA.

FIG. 4. Effect of Nur77 on glycolysis and insulin signaling. A: Immunoblot of cell lysates prepared from high-fat–fed Nur77 null quadriceps muscle.
B: Gene expression of wild-type (WT) and Nur77 knockout (KO) tibialis anterior muscle from high-fat–fed mice; male, n � 7. C: Glycolytic activity
of Ad-GFP (E)- vs. Ad-Nur77 (F)-infected C2C12 myoblasts. a, 2,4-DNP; b, 2-DG. *P < 0.05, **P < 0.01.
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DNP-stimulated glycolysis was confirmed by inhibiting
glycolysis, using excess 2-deoxyglucose, which is phos-
phorylated by hexokinase but cannot be further metabo-
lized in the glycolytic pathway. These results demonstrate
that Nur77-driven changes in glycolytic gene expression
increase cellular glycolytic function. Conversely, lactate
and citrate content, two byproducts of glycolytic flux, was
reduced in Nur77 null muscles (supplementary Fig. 6).
These data support our hypothesis that impaired muscle
insulin sensitivity in high-fat–fed Nur77 null mice is in part
attributable to attenuated glycolysis.
Nur77 deletion increases intramuscular lipid con-
tent. Increased intramuscular lipid content has been
associated with development of skeletal muscle insulin
resistance in human and rodent models (24,25). Recent
evidence suggests that although intramuscular triglyceride
content correlates with skeletal muscle insulin resistance,
it is the proinflammatory lipid intermediates such as
diacylglycerol (DAG) and ceramides that may contribute
to lipid-induced insulin resistance (26–29). We sought to
determine whether impairment in muscle insulin sensitiv-
ity of high-fat–fed Nur77 null mice was associated with
increased intramuscular lipid accumulation. Intramuscu-
lar triacylglycerol (TAG) and DAG content in tibialis anterior
muscle of Nur77 null mice was increased, whereas ceramide
level was unchanged (Fig. 5A). In addition, as shown in Fig.
5B, Nur77 null mice had increased accumulation of multi-
ple even-chain acylcarnitine species, reflecting accumula-
tion of the cognate acyl CoA species in muscle
mitochondria. Possibly related to this finding, the expres-
sion of lipoprotein lipase was upregulated in Nur77 null
mice (Fig. 5C), suggesting that fatty acid uptake was
increased in Nur77 null muscle. The expression of PPAR�
and other mitochondrial fatty acid metabolism genes
(including carnitine palmitoyltransferase 1b, long-chain
acyl-CoA dehydrogenase, and medium-chain acyl-CoA de-
hydrogenase) was unchanged. Interestingly, the expres-
sion of peroxisomal bifunctional �-oxidation enzyme,
3-hydroxyacyl CoA dehydrogenase (Ehhadh), was reduced
by 54% (P � 0.01) in Nur77 null muscle (Fig. 5C). The
expression of peroxisomal acyl-CoA oxidase also tended
to be lower in Nur77 null mice. The reduction in peroxi-
somal �-oxidation enzyme suggests that long-chain fatty
acid oxidation (�C16) was impaired in Nur77 null mice.
The expression of lipogenic enzymes was largely un-
changed (supplementary Fig. 7). In addition, the expres-
sion of pyruvate dehydrogenase kinase, isozyme 4 (Pdk4),
was reduced in Nur77 null muscle (Fig. 4A). Pdk4 inacti-
vates the pyruvate dehydrogenase complex, limiting the
flux of pyruvate through the Kreb cycle, effectively reduc-
ing carbohydrate oxidation and favoring lipid catabolism
(30). The decrease in Pdk4 and the increase in lipoprotein
lipase may represent attempts to compensate for reduced
glucose uptake and glycolytic activity in Nur77 null mus-
cle, as changes in expression of these genes might en-
hance glucose entry into the trichloroacetic acid cycle and
fatty acid uptake into the cell to provide alternative
sources of energy.
Hepatic steatosis in high-fat–fed Nur77 null mice. In
addition to increased intramuscular lipid content, high-
fat–fed Nur77 null mice also developed hepatic steatosis
(Fig. 6A). Quantitation of liver lipid content confirmed that
liver from Nur77 null mice accumulated more triglyceride
and cholesterol than wild-type mice (Fig. 6B). Not surpris-
ingly, quantitative real-time PCR confirmed that the ex-
pression of lipogenic genes including sterol regulatory

element binding protein (SREBP-1c), fatty acid synthase,
and stearoyl-CoA desaturase 1 was increased �twofold in
Nur77 null livers. To investigate whether the hepatic
steatosis observed in high-fat–fed Nur77 null mice could
be linked to a direct effect of Nur77 on SREBP pathway,
we overexpressed a dominant-negative form of Nur77
(Nur77-898) (16) using adenoviral vectors in HepG2 cells
and primary murine hepatocytes. As shown in supplemen-
tary Fig. 8, Nur77 overexpression did not suppress
SREBP-1c or stearoyl-CoA desaturase 1 expression. Like-
wise, Nur77 had no effect on lipogenic gene expression
when the liver X receptor was activated by ligand GW3965
(1 �mol/l). To test the effect of Nur77 on SREBP-1c
activity, we also performed transient transfection assays
in HEK293T cells, using the rat fatty acid synthase pro-
moter that contains the SREBP-1c binding site as the
reporter. As shown in supplementary Fig. 8C, cotransfect-
ing Nur77 had little effect on SREBP-1c activity with or
without liver X receptors-� and retinoid X receptor-�.
Collectively, our data suggest that the hepatic steatosis
observed in high-fat–fed Nur77 null mice is not attribut-
able to loss of Nur77 suppression of lipogenesis but rather
the lipogenic effect of hyperinsulinemia.

DISCUSSION

To determine the net effect of tissue-specific Nur77 regu-
lation of glucose metabolism, we studied the effect of
high-fat feeding on Nur77 null mice. We found that Nur77
null mice developed exacerbated skeletal muscle insulin
resistance after high-fat feeding. Skeletal muscle insulin
resistance in Nur77 null mice may be explained by defects
in multiple steps of the glucose utilization pathway (Fig.
7). As Nur77 is a transcriptional regulator of GLUT4 and
multiple glycolytic enzymes, reduction in the abundance
of these glucose uptake and glycolytic genes would be
predicted to diminish insulin-stimulated glucose disposal.
The reduced glucose utilization may contribute to a com-
pensatory increase in lipid uptake in skeletal muscle. In
addition, we found that insulin receptor phosphorylation
was reduced in Nur77 null skeletal muscle, which may in
part be attributed to increased intramuscular lipid accu-
mulation. In the liver, Nur77 deletion was unable to
protect high-fat–fed mice from hepatic insulin resistance.
Rather, Nur77 null livers became more steatotic than
wild-type livers because of increased lipogenesis, likely
secondary to hyperinsulinemia. These findings highlight
skeletal muscle Nur77 as a physiologic regulator of sys-
temic glucose metabolism.

The metabolic benefit of oxidative metabolism in skel-
etal muscle is well established. Studies in patients with
diabetes suggest that insulin resistance correlates with
decreased oxidative enzyme activity in skeletal muscle
(31,32). Muscle-specific overexpression of PPAR	 results
in not only increased abundance of slow-twitch oxidative
fibers but also protects mice from diet-induced obesity and
diabetes (33). On the other hand, the metabolic impact of
glycolytic activity in skeletal muscle is less clear. Recent
evidence suggests that selective fast-twitch/glycolytic
muscle fiber growth also protects mice from diet-induced
obesity and diabetes (34). We have previously shown that
Nur77-mediated regulation of glycolytic genes occurred
selectively in fast-twitch/glycolytic, not slow-twitch/oxida-
tive, fibers (17). Our current finding that Nur77 deletion
exacerbates diet-induced insulin resistance further sup-
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ports the notion that enhancing glycolytic activity in
skeletal muscle is metabolically advantageous.

Lipotoxicity has been implicated as a contributor to
insulin resistance in both skeletal muscle and liver, al-
though the relationship between increased lipid accumu-
lation and tissue insulin responsiveness is not always
direct. Increased muscle lipid content, particularly long-
chain acyl-CoAs, DAGs, and ceramides, has been impli-

cated in activation of various kinases that phosphorylate
insulin receptor substrate on serine residues and thereby
impairs insulin signaling (35,36). An implication of these
studies is that decreased fatty acid oxidation contributes
to insulin resistance and impaired glucose metabolism. In
support of this idea, mice with global acetyl-CoA carbox-
ylase 2 deletion have diminished malonyl-CoA levels,
increased CPT-1 activity, and are protected from diet-
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induced obesity and insulin resistance (37). In contrast,
Koves et al. (38) showed that chronic exposure of muscle
to elevated lipids induced �-oxidation of fatty acids with-
out concurrent upregulation of downstream metabolic
pathways such as the trichloroacetic acid cycle and elec-
tron transport chain. This results in incomplete metabo-
lism of fatty acids in the �-oxidation pathway and
exacerbation of insulin resistance (39). Additional evi-
dence supporting this argument includes the diabetic
phenotype of muscle-specific PPAR� transgenic mouse,
which is reversed by pharmacologic inhibition of CPT-1
(40). In HFD-challenged Nur77 null mice, we showed that
loss of Nur77 led to decreased glycolytic flux with reduced
lactate and citrate levels, upregulation of lipoprotein

lipase mRNA, downregulation of PDK4 and peroxisomal
bifunctional �-oxidation enzyme, as well as increased intra-
muscular TAG and DAG. This constellation of findings is
most consistent with a model in which decreased glucose
metabolism leads to compensatory responses, including an
attempt to increase glucose oxidation via PDK4 dowregula-
tion, increased fatty acid uptake into skeletal muscle, dimin-
ished peroxisomal �-oxidation of long-chain fatty acids, and
subsequent accumulation of TAG and DAG, which, if any of
these events contributed to impaired insulin signaling in
Nur77 null mice, remains to be investigated.

Given that Nur77 deletion enhanced hepatic insulin
sensitivity in diet-fed mice, it was somewhat surprising
that Nur77 null mice challenged with a HFD actually
developed exacerbated hepatic insulin sensitivity. This
finding suggests that Nur77 deletion is insufficient to
overcome the metabolic stress of lipid oversupply. It is
conceivable that in response to muscle insulin resistance,
nutritional or humoral factors could alter insulin action in
other tissues, as secondary phenotypes were shown in
muscle-specific GLUT4 knockout mice (41,42). Alterna-
tively, if the hepatic steatosis observed in Nur77 null mice
is a primary result of hepatic Nur77 deficiency, lipotoxicity
may contribute to hepatic insulin resistance. Based on
findings by Pols et al. (43) that Nur77 diminishes
SREBP-1c activity, we investigated whether Nur77 directly
suppresses hepatic lipogenesis. However, we were unable
to demonstrate reduction of lipogenic gene expression
when Nur77 was ectopically expressed in HepG2 cells and
primary murine hepatocytes, nor when SREBP1c activity
was measured in HEK293T cells, suggesting that the
hepatic steatosis we observed may be secondary to the
lipogenic effect of hyperinsulinemia.

One limitation of our analysis of the global Nur77
knockout mouse is the potential for additional metabolic
effects of Nur77 in tissues not studied. We have deter-
mined that loss of hepatic Nur77 does not protect mice
from diet-induced obesity and diabetes. However, the
metabolic effect of Nur77 deletion on other tissues has not
been explored. Our finding that Nur77 null mice have
increased susceptibility for skeletal muscle insulin resis-
tance is nevertheless consistent with the biologic path-
ways Nur77 regulates in muscle (17) and illustrates
specifically the importance of muscle Nur77 in the regula-
tion of whole-body glucose metabolism. The generation of
tissue-specific Nur77 transgenic and knockout mouse
models will be necessary to delineate the physiologic roles
of Nur77 in metabolism.

RESEARCH DESIGN AND METHODS

Animal husbandry. Mice were fed ad libitum and maintained on a 12-h
light-dark cycle and were age and sex matched for all experiments. Intraperi-
toneal glucose tolerance test was performed after a 6-h fast by intraperitoneal
injection of 1 g/kg of dextrose. Animal studies were performed in accordance
with University of California at Los Angeles animal research committees
guidelines.
Tissue culture. Care of C2C12 cells, HEK293T cells, and primary murine
hepatocytes has been previously described (16,17). HepG2 cells (ATCC,
Rockville, MD) were maintained in 10% FBS/DMEM and incubated with 5%
CO2.
Plasma and tissue chemistry. Measurement of fasting mouse insulin, free
fatty acid, triglyceride concentrations, and liver lipids were as described
previously (44,45). Insulin during clamp experiments was determined by
Linco-Millipore RIA kit (St. Charles, MO). Adiponectin concentration was
measured by ELISA kit from B-Bridge International (Mountain View, CA).
Concentrations of adipokines listed in supplementary Table 1 were measured
by the Mouse Serum Adipokine Panel–7-plex kit (Millipore, MA). Total
cholesterol was determined by Cholesterol E kit (Wako, VA). Muscle lipids,
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including DAG and ceramide, were extracted from skeletal muscle and assessed
as previously described (46). TAGs were saponified, and glycerol was assessed
(Free Glycerol Reagent; Sigma-Aldrich, MO). Determination of fatty-acylcarnitine
and organic acid concentrations was described previously (39).
Indirect calorimetry. Mice were individually housed in the CLAMS and
acclimated for 7 h in the cages. Data were collected for the next 48 h, spanning
2 day and 2 night periods. Effective mass coefficient was set at 0.75.
Ambulatory activity level was measured as interruption of dual-axis infrared
beams. Data were analyzed by Oxymax software (Columbus Instruments,
OH).
Body composition. Body composition was determined by dual-energy X-ray
absorptiometry densitometry (PIXImus, Madison, WI).
Insulin sensitivity in vivo. Hyperinsulinemic-euglycemic clamps using an insulin
infusion of 12 mU � kg�1 � min�1 were performed as described previously (47).
Differences in IS-GDR and HGP between treatment groups were detected using
ANOVA, and significance was set a priori at P 
 0.05.
Quantitative real-time PCR. Total RNA preparation and quantitative real-
time PCR were performed as described (17). Expression was normalized to
36B4 expression. Primer sequences are listed in supplementary Table 2 and as
previously described (16,17,48).
In vitro glycolysis. C2C12 myoblasts were plated in V7 plates (Seahorse
Biosciences) 1 day before adenovirus infection. Adenovirus infection was
performed as described (17). On the day of assay, media were refreshed with
freshly made unbuffered Delbecco’ modified Eagle’s medium (plus glutamine
2 mmol/l, sodium pyruvate 1 mmol/l, glucose 25 mmol/l, NaCl 31.7 mmol/l,
Phenol Red 15 mg/l, and pH 7.4); 2,4-dinitrophenol 1 mmol/l and 2-deoxyglu-
cose 200 mmol/l were made in the same media. The XF24 Extracellular Flux
Analyzer (Seahorse Bioscience) (49) was set up with measure:mix:wait cycles
of 3:2:3 min. Protein quantitation was performed using the DC Protein Assay
(BioRad, Richmond, CA).
Immunoblot. Monoclonal anti-GLUT4 antibody 1F8 29 was made in the Pilch
lab, and affinity purified anti–insulin-regulated aminopeptidase polyclonal
antibody was made by 21st Century Biochemical (Hopkinton, MA). Phospho-
insulin receptor antibody was purchased from Cell Signaling (#3021, Beverly,
MA). Other antibodies used were described previously (16,17,50). Mouse
quadriceps muscle and liver were isolated and flash frozen. Tissue lysate and
immunoblots were prepared as described (17).
Histology. Liver sections were fixed in 10% formalin and stained with
hematoxylin and eosin by UCLA Translational Pathology Core Laboratory.
Statistics. Statistical analysis was performed by Student t test unless
otherwise noted.
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