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Abstract

Low egg quality and embryonic survival are critical challenges in aquaculture, where assis-

ted reproduction procedures and other factors may impact egg quality. This includes Euro-

pean eel (Anguilla anguilla), where pituitary extract from carp (CPE) or salmon (SPE) is

applied to override a dopaminergic inhibition of the neuroendocrine system, preventing

gonadotropin secretion and gonadal development. The present study used either CPE or

SPE to induce vitellogenesis in female European eel and compared impacts on egg quality

and offspring developmental competence with emphasis on the maternal-to-zygotic transi-

tion (MZT). Females treated with SPE produced significantly higher proportions of floating

eggs with fewer cleavage abnormalities and higher embryonic survival. These findings

related successful embryogenesis to higher abundance of mRNA transcripts of genes

involved in cell adhesion, activation of MZT, and immune response (dcbld1, epcam, oct4,

igm) throughout embryonic development. The abundance of mRNA transcripts of cldnd,

foxr1, cea, ccna1, ccnb1, ccnb2, zar1, oct4, and npm2 was relatively stable during the first

eight hours, followed by a drop during MZT and low levels thereafter, indicating transfer and

subsequent clearance of maternal mRNA. mRNA abundance of zar1, epcam, and dicer1

was associated with cleavage abnormalities, while mRNA abundance of zar1, sox2, foxr1,

cldnd, phb2, neurod4, and neurog1 (before MZT) was associated with subsequent embry-

onic survival. In a second pattern, low initial mRNA abundance with an increase during MZT

and higher levels persisting thereafter indicating the activation of zygotic transcription.

mRNA abundance of ccna1, npm2, oct4, neurod4, and neurog1 during later embryonic

development was associated with hatch success. A deviating pattern was observed for

dcbld1, which mRNA levels followed the maternal-effect gene pattern but only for embryos

from SPE treated females. Together, the differences in offspring production and perfor-

mance reported in this study show that PE composition impacts egg quality and embryogen-

esis and in particular, the transition from initial maternal transcripts to zygotic transcription.
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Introduction

The aquaculture sector has expanded rapidly and further development relies on diversification

and on closing the life cycle for aquatic species in captivity [1,2]. However, high variability in

egg quality and low survival during embryonic development pose a challenge to captive off-

spring production in fish aquaculture [3–6].

In oviparous teleosts, embryonic and early larval development is influenced by intrinsic

properties of the gamete, as well as extrinsic factors, e.g. ambient conditions during egg incu-

bation and larval culture [4,7,8]. While the influence of maternal nutrition and egg nutrient

composition on offspring quality is well established, studies of embryogenesis continue to

uncover vital functions of different cytoplasmic factors such as messenger RNAs (mRNAs)

that also are incorporated into the developing oocyte [5,9]. Thus, these maternal mRNA tran-

scripts deposited into the egg during oocyte development have proven to be essential drivers

of zygotic and early embryonic development until the mid-blastula transition [7,9,10]. At this

stage, developmental control is taken over by the embryo through transcriptional activation of

the zygotic genome [11,12]. In this context, the maternal mRNA abundance and activation of

the maternal-to-zygotic transition (MZT) are vital for the molecular ontogeny and develop-

ment of the embryo, including the activation of zygotic transcription and the clearance of

maternal mRNA [13–17].

Studies of molecular ontogeny during early embryogenesis have documented a tight rela-

tionship between the abundance of specific maternal mRNA transcripts, egg quality, and

embryonic developmental competence [18–23]. Embryogenesis is mainly governed by mater-

nal transcripts until MZT, when embryonic mRNA transcripts take over accompanied by

clearance of maternal RNA. Examples of maternal transcripts include genes involved in cell

cycle progression (ccna1, ccnb1, ccnb2, npm2), cell division (foxr1, cea), cell adhesion (cdhr2,

cldnd, dcbld1, epcam), microRNA regulation (dicer1), pluripotency regulation, cell signaling,

and activation of MZT (zar1, oct4, sox2, phb2) [9,10,17]. These so called maternal-effect genes

often exhibit early transcript accumulation with subsequent decrease, once the related early

developmental processes are completed [24–27]. Also, maternally-derived immune factors

(e.g. c3, igm, il1β) appear to play a role in early protection and organogenesis of the embryo

and larva until the adaptive immune system is fully developed [28–31]. On the other hand,

genes related to processes such as organogenesis often begin transcription during later stages

of the embryonic development [26,32]. This may include molecular mechanisms that regulate

processes of neurogenesis (e.g. neurod4, neurog1) to establish the nervous system during

embryonic stages, which to date have been mainly studied in the model species zebrafish

(Danio rerio) [33–35].

The incorporation of these maternal transcripts into the cytoplasm occurs during oocyte

development. In oviparous female teleosts, the reproductive developmental processes are regu-

lated by gonadotropins (GTH), i.e. follicle stimulating hormone (FSH) and luteinizing hor-

mone (LH), in combination with maturation-inducing steroid (MIS), and maturation-

promoting factor (MPF) [36]. Here, the production of FSH and LH by the pituitary is regu-

lated by the brain that also stimulates their release through the action of gonadotropin-releas-

ing hormone (GnRH). After being released into the bloodstream, LH and FSH target the

ovaries, regulating the production of sex steroids and vitellogenesis. However, these endocrine

processes, which need to be triggered and sustained for successful oocyte production, may be

impeded. Thus, while some fish species reproduce naturally in captivity under suitable culture

conditions, the breeding capability of other is inhibited. Manipulation of extrinsic factors,

such as photoperiod and temperature, is sufficient to initiate successful gametogenesis and

reproduction in some species, whereas in others hormonal therapy is required. Such assisted
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reproduction treatments may target different regulatory mechanisms along the brain-pitui-

tary-gonad pathway, depending on the impeded state of the reproductive cycle [6]. This hor-

monal manipulation of reproductive functions may impact gamete quality, thereby affecting

fertilization success, molecular ontogeny, and developmental competence of the embryo.

Anguillid eels belong to the group of aquaculture species, which do not reproduce in captiv-

ity. In particular, the European eel (Anguilla anguilla) and the Japanese eel (A. japonica) are

high-value species in aquaculture and the development of hatchery technology for closed-cycle

production would be of great value. Their complex diadromous life cycle, including long

migrations to their spawning area, makes this difficult. During the silvering process that marks

the onset of the spawning migration, intrinsic inhibitory mechanisms at the brain-pituitary

level arrest puberty at an early stage [37], with this inhibition being released when approaching

the spawning area. As yet, the endocrine mechanisms remain unresolved and in captivity this

pre-pubertal blockade prevents natural reproductive development and spawning. Captive off-

spring production requires assisted reproduction protocols, with administration of exogenous

gonadotropins to induce sexual maturation and sustain gamete development [6,38]. While

such assisted reproduction protocols have led to stable production of viable eggs and larvae

reaching the first-feeding stage for European eel [39–41], and production of glass eels for the

Japanese eel [42,43], shortcomings in egg quality and offspring survival persist with a major

bottleneck during the embryonic development [44].

For female eels, assisted reproduction protocols commonly use pituitary extracts (PE) from

carp (CPE) or salmon (SPE) as source of FSH and LH to induce vitellogenesis, while follicular

maturation is completed by administration of a MIS, e.g. 17α,20ß-dihydroxy-4-pregnen-3-one

(DHP) [38,45]. The protocols using PE to induce vitellogenesis have varied greatly over time,

both regarding product and dose. The first successful treatments leading to egg fertilization

and larval hatch used SPE for the Japanese eel, while CPE was used for the European eel, apply-

ing constant and increasing doses, respectively [46,47]. Constant dosages refer to a weekly

treatment with PE relative to initial female body weight (BW), e.g. 18.75, 20, or 25 mg kg-1 BW

[39,48,49], while increasing dosages start at a low dose and increase over time, e.g. 10 mg kg-1

BW (week 1–3), 20 mg kg-1 BW (week 4–6), 30 mg kg-1 BW (week 7–9), and 40 mg kg-1 BW

(week 10–16) [50,51]. Many studies adopted the constant dose SPE protocol used for Japanese

eel [52], including the American eel (A. rostrata) [53], and the New Zealand longfin eel (A.

dieffenbachii) [54] or used both PE types, as in Australian shortfin eel (A. australis) [54,55]. In

spite common use of these assisted reproduction protocols with either SPE or CPE, there are

few comparative studies on their effects [56,57]. Pituitary glands are not standardized products

and may vary in the levels of gonadotropins and other pituitary hormones they contain, which

may affect follicle development, egg quality, and offspring developmental competence.

Against this background, we aimed to elucidate effects of CPE and SPE on European eel

reproductive success and offspring quality. We compared the effects of constant dose treat-

ment schemes on reproductive parameters including egg characteristics, fertilization success,

occurrence of cleavage abnormalities, embryonic survival, and hatch success in a standardized

experimental design. Gene expression analyses were performed to assess mRNA transcript

abundance of genes in ovary, unfertilized eggs, and embryos at regular intervals throughout

development.

Material and methods

Ethics statements

All fish were handled in accordance with the European Union regulations concerning the pro-

tection of experimental animals (Dir 2010/63/EU). Eel experimental protocols were approved
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by the Animal Experiments Inspectorate (AEI), Danish Ministry of Food, Agriculture and

Fisheries (permit number: 2015-15-0201-00696). Each individual fish was anesthetized before

tagging, biopsy, and stripping of gametes, and euthanized after stripping (females) or at the

end of the experiment (males) using an aqueous solution of ethyl p-aminobenzoate (benzo-

caine, 20 mg L-1, Sigma Aldrich, Germany).

Fish and experimental design

Broodstock establishment. Female silver eels were caught during down-stream migration

and matured in two consecutive trials in 2016 and 2017. In 2016, 25 female silver eels

(length = 76.18 ± 1.23 cm; weight = 879.16 ± 40.49 g) were caught at Lower Bann, Toome-

bridge, Northern Ireland, while in 2017, 26 female silver eels (length = 64.42 ± 1.21 cm;

weight = 535.33 ± 39.93 g) were caught in Klitmøller Å, Lake Vandet, Denmark. The female

eels were transported to the EEL-HATCH experimental facility in Hirtshals, Denmark, using

an aerated freshwater tank. On arrival, fish were randomly distributed into replicated 1150 L

tanks, connected to two Recirculating Aquaculture Systems (RAS), at a density of 10–15

females per tank, where one RAS unit was allocated for each hormonal treatment. In both

years, female eels were equally distributed into the two hormonal treatment groups. Hence, 27

females were allocated to CPE treatment (2016: n = 12; 2017: n = 15) and 24 females to SPE

treatment (2016: n = 13; 2017: n = 11).

In both trials, male eels originated from Stensgård Eel Farm, where they were raised from

glass eels on a formulated diet (DAN-EX 2848, BioMar A/S, Denmark) at a temperature of

~23˚C. In 2016, experiments comprised 60 male eels (length = 38.2 ± 2.1 cm,

weight = 105.5 ± 15.3 g), and in 2017, 88 males (length = 38.5 ± 2.1 cm, weight = 114.7 ± 15.8

g). After transport to the facility, males were randomly distributed in four tanks (485 L) con-

nected to a RAS unit at a density of ~15–22 eels per tank.

For acclimatization to oceanic conditions, salinity was gradually increased from 10 to 36

PSU over 14 days using Blue Treasure Aquaculture Salt (Qingdao Sea-Salt Aquarium Technol-

ogy Co. Ltd. Qingdao, China), while temperature was adjusted from ~16˚C to 20˚C. Subse-

quently, each individual was tagged with a passive integrated transponder (PIT tag) in the

dorsal muscle, while initial length and weight were recorded. During the experiment, male and

female broodstock were maintained at ~20˚C and ~36 PSU under 12 h—12 h light regime,

with a 30 min twilight in the morning and evening to resemble the Sargasso Sea photoperiod.

Assisted reproduction and hormonal treatment. After acclimatization, vitellogenesis in

the female broodstock was induced by weekly intramuscular injections of either CPE or SPE,

each at 18.75 mg kg-1 initial BW for 10–21 weeks [58]. Salmon and carp pituitary extracts were

obtained from Argent Chemical Laboratories, Washington, USA, diluted in NaCl 0.9 g/L,

ground, and centrifuged at 3600 RPM for 20 minutes, following [52,59], and supernatants

stored at -20˚C until use. Dependent on body-weight increase and oocyte developmental

stage, monitored by biopsies, an additional injection of the respective hormone was given to

each female as a primer [49,60]. After 12–24 hours the female received an injection of

17α,20ß-dihydroxy-4-pregnen-3-one (DHP) (Sigma-Aldrich, St. Louis, MO, USA) at 2 mg kg-

1 current BW to induce follicular maturation and ovulation [59]. Males received weekly injec-

tions of human chorionic gonadotropin (Sigma-Aldrich, Missouri, USA) at 150 IU/fish [58].

Prior to spawning, milt from 3–5 males was collected, sperm concentration standardized [61],

and the dilution kept in an immobilizing medium [62]. Eggs were strip-spawned and fertilized

using a standardized sperm to egg ratio [63,64]. After five min, eggs were transferred to 20 L

buckets filled with ~15 L reverse osmosis water salted to ~36 PSU with Blue Treasure (Qingdao

Sea-Salt Aquarium Technology Co., Ltd., Qingdao, China) at ~19˚C. After 60 min, the floating
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layer of eggs/embryos was transferred to a second bucket (as above) and kept for 60 min. Eggs/

embryos were taken from the floating layer of the separation bucket and subsequently incu-

bated in 10 × 1 L glass beakers (~5000 eggs/embryos per L) filled with filtered UV-treated sea-

water (FUV seawater; filter size: 10, 5, 1 μm) and supplemented with rifampicin and ampicillin

(each 50 mg L-1, Sigma-Aldrich, Missouri, USA). Subsequent rearing occurred in a tempera-

ture incubator at 18˚C [65] and 36 PSU. Additionally, 6 × 200 mL sterile tissue culture flasks

filled with FUV seawater and supplemented with rifampicin and ampicillin (each 50 mg L-1,

Sigma-Aldrich, Missouri, USA) were stocked with eggs/embryos and incubated as above. 3

flasks stocked with ~2500 eggs/embryos were used to follow embryonic development and 3

flasks stocked with ~600 eggs/embryos were used to analyze hatch success.

Data collection and image analyses. For each female, initial length and weight, weekly

weights and weight at DHP injection were recorded as well as the number of weeks until

spawning and the time between priming and DHP were recorded. The weight of stripped eggs

(% initial weight) was recorded prior to fertilization and unfertilized eggs were sampled for

dry weight (3 × 0.1 mL) and gene expression (see below). For dry weight, samples were kept in

the oven at 60˚C for 24 h and weighed. At 0.5 hpf, the amount of floating eggs (%) was deter-

mined in a 25 mL volumetric column. Digital images were used throughout the experiment to

document oocyte, egg, and embryonic development. Here, all images were taken with a Nikon

Eclipse 55i microscope equipped with a Nikon digital sight DS-Fi1 Camera, while analyses

used NIS Elements image software (Nikon Corporation, Tokyo, Japan). A digital image of the

ovarian biopsy was taken, when females were primed or DHP was given, and oil droplet size

was measured subsequently. Ten of the largest oil droplets from ten oocytes at average stage

were measured per female. In order to calculate fertilization success and embryonic survival,

sub-samples from the embryonic development flasks were taken at 2, 3, 4, 5, 6, 7, 8, 16, 24, 32,

40, and 48 hpf and digital images were obtained. Fertilization success was measured from the

digital images taken at 4 hpf, where eggs were categorized as fertilized when > 4 blastomeres

could be observed and fertilization success was calculated as the percentage of fertilized

divided by the total number eggs (obtained from the floating layer) [63]. At the remaining

sampling points, embryonic survival was then calculated by counting the number of dead and

alive eggs and expressing it as a percentage. Additionally, morphological measurements were

conducted at 4 hpf, where total egg area, yolk area, and oil droplet area was measured. Cleav-

age abnormalities were also determined at 4 hpf by counting the number of eggs with regular

and abnormal cell cleavages. Hatch success from flasks was obtained by counting hatched lar-

vae and dead eggs and was expressed as the number of hatched larvae divided by the total

number of floating eggs.

Gene expression

Samples for gene expression were taken from the ovarian tissue of the female after spawning,

and from the unfertilized eggs and embryos at 2, 4, 8, 24, 32, and 48 hpf. The samples were

stored in Eppendorf vials filled with RNA later, then kept in the fridge at 4˚C for 24 hours and

subsequently at -20˚C until analysis. RNA was extracted using the NucleoSpin RNA kit

(Macherey-Nagel, Germany) according to manufacturer’s instructions. RNA concentration

and purity was analyzed by spectrophotometry using Nanodrop One (Thermo Fisher Scien-

tific, USA). From the resulting total RNA, 1 μg was transcribed using qScript cDNA Synthesis

Kit (Quantobio, Germany), following the manufacturer’s instructions. This included a step to

permanently inactivate all trace levels of DNase activity using PerfeCta DNase I (RNase free)

(Quantabio, Germany). Primers of eight genes (thαa, foxr1, npm2, zar1, phb2, c3, igm, il1β)

were retrieved from previous studies (Table 1). Primers of four genes (ccna2, ccna1, ccnb1,
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ccnb2) were designed on the basis of the coding sequences of the closely related species A.

japonica, publicly available in Genebank, National Center for Biotechnology Information

(NCBI). Primers for 12 genes (cei, igfr-1b, cea, cdhr2, cldnd, dcbld1, epcam, dicer1, oct4, sox2,

neurod4, neurog1) were designed based on the most accurate assembly and annotation of the

European Eel genome [66] available at https://dataverse.no/dataset.xhtml?persistentId=doi:10.

18710/L7GO8T. Here, gene prediction and exon coordinates were determined by the authors

with Augustus v 2.4 [67], and annotation was performed using Blast2GO v 2.4.8 [68]. The cod-

ing sequences used for our analyses were then submitted to Genebank, NCBI and the related

accession numbers are given in Table 1. Primers were designed using primer 3 software v

0.4.01. All primers and predicted amplicons were tested in silico for specificity using blast

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Subsequently, from all samples, the expression of the

24 genes was analyzed with two technical replicates, using the qPCR BiomarkTM HD system

(Fluidigm) based on 96.96 dynamic arrays (GE plates), as previously described [69]. In brief, a

pre-amplification step was conducted with a 500 nM pool of all primers in PreAmp Master

Mix (Fluidigm) and 1.25 μL cDNA per sample run in a thermocycler for 2 min at 95˚C; 10

cycles: 15 s each at 95˚C and 4 min at 60˚C. Obtained PCR products were then diluted 1:5 with

low EDTA-TE buffer. The preamplified product was loaded onto the chip with SsoFast-Eva-

Green Supermix Low Rox (Bio-Rad) and DNA-Binding Dye Sample Loading Reagent (Flui-

digm). Primers were loaded onto the chip at a concentration of 50 μM in Assay Loading

Reagent (Fluidigm) and low EDTA-TE Buffer. The chip was run according to the Fluidigm

96.96 PCR protocol with a Tm of 60˚C. qBase + software verified stability of housekeeping

gene expression throughout analyzed samples (M< 0.4; according to [70]). Gene expression

was normalized (ΔCt) to the geometric mean of the four most stable reference genes (ccna2,

cei, thαa, igfr-1b). Further analysis of gene expression was carried out according to the 2-ΔΔCt

method, in relation to a random unfertilized egg sample, according to [71].

Statistical analyses

Data were analyzed using SAS Statistical Software (version 9.4; SAS Institute Inc., Cary, North

Carolina). Prior to analysis, residuals were tested for normality (Shapiro–Wilk test) and homo-

geneity of variances (plot of residuals vs. fitted values). Data deviating from normality or

homoscedasticity were log10 or arcsine square-root-transformed. Alpha was set at 0.05. Tukey

analysis was used to compare least-squares means between treatments. Akaike (AIC) and

Bayesian (BIC) information criteria were used to assess which covariance structure fitted the

data most appropriately [75]. The effects of hormonal treatment on embryonic survival

throughout development (2, 3, 4, 5, 6, 7, 8, 16, 24, 32, 40, 48 hpf) and on gene expression

throughout development (unfertilized egg, 2, 4, 8, 24, 32, 49 hpf) were tested using a series of

repeated measures mixed-effect model ANOVAs. Female ID (individual females and their off-

spring) was considered random in all models. No significant interactions were detected for

any of the tested dependent variables and all models were re-run with the interaction effects

removed, analyzing main effects separately [76]. The effects of hormonal treatment on initial

length, initial weight, time until spawning, oil droplet stage at priming and at DHP stage,

weight increase of females, stripped eggs, floating eggs, dry-weight of unfertilized eggs, fertili-

zation success, cleavage abnormalities and hatch success were tested using student t-tests. Lin-

ear and quadratic regression functions were used to analyze the relationship between cleavage

abnormalities at 4 hpf and embryonic survival at 48 hpf, as well as relationships between gene

expression in the ovary and unfertilized eggs and between gene expression and offspring qual-

ity parameters. In cases where both regression functions were significant, F-statistics were

used to evaluate best fit.
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Table 1. Sequences of European eel, Anguilla anguilla primers used for amplification of genes by qRT-PCR. Full name and abbreviation is given for each gene with

function, accession numbers and references for primers retrieved from previous studies. Primers were designed based on the coding sequence (cds), that have been

retrieved based on the predicted annotation of the European eel reference genome [66], complemented with cds of A. japonica.

Abbreviation Full name Function Primer Sequence (5’ 3’) (F: Forward; R:

Reverse)

Reference/

Accession

ccna2 Cyclin A2 Reference F: ATGGAGATAAAATGCAGGCCT AB061443.1

R: AGCTTGCCTCTCAGAACAGA

cei Cellular island Reference F: CCTCAAACACCCCAACATCC MT531390

R: AGCTCCTCCATGTACGTTGC

thαa Thyroid hormone receptor αa Reference F: GCAGTTCAACCTGGACGACT Politis et al., [72]

R: CCTGGCACTTCTCGATCTTC

igfr-1b Insulin like growth factor receptor 1b Reference F: ATGGGAATCTTCAGCTCTTTAGA MT531391

R: TCAAACTCCTCCTCCAAGCT

foxr1 Forkhead box R1 Cell division F: CCTCGTCCAGCGAATATCTTCTT Geffroy et al.,

[73]

R: TGTTTTGAGCGAGATTCAGCTTC

cea Cellular atoll Cell division F: AGCACTCTGTCGAAGGAAGT MT531392

R: ACCTTGATCTTCCCCACCAG

ccna1 Cyclin A1 Cell cycle control F: ACCTGCTTCTCAAGGTCCTC AB061442.1

R: CCTTGGACGGAACATGTAGC

ccnb1 Cyclin B1 Cell cycle control F: TCAACCTCAAGCTGACGGAG AB183431.1

R: CTGCATCTCCCACACCCAT

ccnb2 Cyclin B2 Cell cycle control F: GTGTTGCATGATGGGCTTGA AB183432.1

R: TGATGCAGAGAAACACACGC

npm2 Nucleoplasmin 2 Cell cycle control F: AAAGTTGACCGTTGGACCAG Rozenfeld et al.,

[20]

R: GGCCTATGTGAGGCAGTCAT

cdhr2 cadherin-related family member 2 or

protocadherin-24

Cell adhesion F: GTTCCTTCGGTCACCACAAC MT531393

R: TGTGTGACCAGGTGCAAATG

cldnd Claudin d Cell adhesion F: CTCCCCAGCCAATGAACAAC MT531394

R: ATTCTGTTGTCGGTTGCTGG

dcbld1 Discoidin, CUB and LCCL domain

containing 1

Cell adhesion F: ACCAGTCCACAGAGTTCACC MT531395

R: CGTGTGCAGGTAGTCGTAGT

epcam Epithelial cell adhesion molecule Cell adhesion F: TCTTCAGGTCTCTCTCGATGT MT531396

R: GCTGGTGAAGGAATATACTCTGG

zar1 Zygote arrest 1 Oocyte-embryo transition F: TGAGGTTTCAGTTCTTGGAGCAG Geffroy et al.,

[73]

R: TAAACCTTGTTGGTTCCCTGGAC

dicer1 Dicer1 microRNA regulation F: CGGTCGTCTTAAACAGGCTTATA MT531397

R: ACCTCCTCCTGTTTGCGAAA

oct4 (also known as pou5f1
or pou2)

Octamer-binding transcription factor 4 Pluripotency regulation/

MZT activation

F: AACAGTTTGCCAAGGAGCTG MT531398

R: GCACATGTTCTTAAAGCTCAGC

sox2 Sox2 Pluripotency regulation/

MZT activation

F: GTCCTTTCATCGACGAAGCG MT531399

R: TGATTTACTCCCGCACCCAA

phb2 Prohibitin 2 cell signaling F: AAATGTTGGGAGAGGCTGTG Rozenfeld et al.,

[20]

R: ACCGTCTTGGCGATATTCTG

neurod4 Neuronal differentiation 4 Neurogenesis F: TTCCTGTCCTCGCACCAGTA MT531400

(Continued)
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For female and quality parameters, ANOVA models were first run testing the effect of

broodstock series (2016, 2017), hormonal treatment and their interaction. While initial length

(p< 0.0001) and weight (p< 0.0001) differed between female broodstock from the two loca-

tions, quality parameters were similar between female broodstocks, including fertilization suc-

cess (p = 0.7832), cleavage abnormalities (p = 0.6711), embryonic survival (p = 0.4538), and

hatch success (p = 0.6258). Data from the two experiments were therefore pooled. Comparing

the two resulting treatment groups, no significant difference was found in the initial weight

between CPE (686. 3 ± 49.7 g) and SPE females (723.5 ± 55.9 g; p = 0.620). Likewise, the initial

length between females from CPE (70.1 ± 1.6 cm) and SPE (70.3 ± 1.8 cm) treatment did not

differ (p = 0.952).

Results

Reproductive success and offspring development

Overall, 51 females were included in the combined analyses of the two trials. Female informa-

tion and reproductive success for each treatment are shown in Table 2. The female weight

increase (% IW) until DHP stage was similar for the two treatments (p = 0.161). The number

Table 1. (Continued)

Abbreviation Full name Function Primer Sequence (5’ 3’) (F: Forward; R:

Reverse)

Reference/

Accession

R: AAGGAGTCGAAGGCCATGTC

neurog1 Neurogenin 1 Neurogenesis F: CAGGATGCACAACCTCAATG MT531401

R: TGCAATTCGGATTGTCTCTG

c3 Complement component c3 Immune response F: AATATGTGCTCCCAGCCTTC Miest et al., [74]

R: GATAACTTGCCGTGATGTCG

igm Immunoglobulin M Immune response F: CCAAGGACCATTCTTTCGTC Miest et al., [74]

R: ACTGGCTTTCAGGAAGATGC

il1β Interleukin 1β Immune response F: ATTGGCTGGACTTGTGTTCC Miest et al., [74]

R: CATGTGCATTAAAGCTGACCTG

https://doi.org/10.1371/journal.pone.0235617.t001

Table 2. Data on females and reproductive success of European eel, Anguilla anguilla in two successive trials. Dif-

ferent lower-case letters represent a significant statistical difference (p< 0.05).

Parameter CPE SPE

n females in trials 27 24

Time until spawning (wks) 14.19±3.93 a 15.58±2.61 a

Time between primer and DHP (h) 20.38±0.75 a 21.24±1.05 a

Oil droplet diameter at priming stage (μm) 109.9±33.68 a 95.33±26.94 a

Oil droplet diameter at DHP stage (μm) 157.4±31.9 a 145.1±16.84 a

Stripped females (%) 96.3 (n = 26) 79.2 (n = 19)

Stripped females with fertilized eggs (%) 57.7 (n = 15) 89.5 (n = 17)

Stripped females with hatched larvae (%) 50.0 (n = 13) 73.7 (n = 14)

Weight increase (% IW) 22.9±1.9 a 26.0±0.9 a

Stripped eggs (% IW) 42.4±1.9 a 42.1±2.4 a

Floating eggs (%) 55.3±8.8 a 79.7±6.1 b

Dry-weight unfertilized egg (mg egg-1) 0.060±0.002 a 0.061±0.001 a

Egg size (mm2) 1.58±0.09 a 1.68±0.09 a

Fertilization success (%) 53.37±4.95 a 54.75±6.56 a

https://doi.org/10.1371/journal.pone.0235617.t002
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of weeks until spawning (p = 0.189) and the time between primer and DHP (p = 0.659) also

did not differ between hormonal treatments. There was no difference in the oil droplet size at

priming stage (p = 0.142), or at DHP stage (p = 0.139) between hormonal treatments. The

overall percentage of females that responded to the treatment and were stripped was higher in

the CPE treatment, while the percentage of stripped females producing fertilized eggs and

hatched larvae was higher in the SPE treatment (Table 2).

The number of stripped eggs relative to body weight (p = 0.926) and the dry-weight of

unfertilized eggs (p = 0.865) did not differ between CPE and SPE females. The percentage of

floating eggs was higher in females from the SPE treatment than in females from the CPE treat-

ment (p = 0.038), but the fertilization success of eggs from the floating layer (p = 0.868) and

egg size at 4 hpf (p = 0.428) did not differ. Embryonic survival was higher for SPE treated

females than CPE (p = 0.029; Fig 1A), while embryonic survival in general decreased over time

(p = 0.003; Fig 1B). Reduced embryonic survival coincided with higher proportions of cleavage

abnormalities at 4 hpf in embryos obtained from CPE treated females (p = 0.037; Fig 1C). The

relationship between cleavage abnormalities and embryonic survival at 48 hpf was significant

for both treatments (Fig 1D and 1E). Examples of normal egg development and occurrence of

cleavage abnormalities are shown in Fig 2.

The number of females with viable offspring decreased over time, with about half of the

CPE and three quarters of the SPE treated females succeeding in larval production (Table 2).

The resulting hatch success was on average higher for SPE (37.87 ± 7.25%) than for CPE

(26.54 ± 6.19%) treated females, but the difference between treatments was not significant

(p = 0.245).

mRNA transcript abundance and gene expression patterns

Detailed results of gene expression analyses are shown in Table 3. The relationship between

expression levels in the ovary and the unfertilized egg for SPE was significant for 13 genes

(cdhr2, dcbld1, epcam, foxr1, cea, ccna1, ccnb1, oct4, sox2, neurod4, c3, igm, il1β). For CPE, the

relationship was significant for 7 genes (cdhr2, epcam, ccna1, oct4, neurog1, c3, igm) with six of

these overlapping between treatments. For all genes, the relationship was best described by a

positive linear regression.

The statistical model for analysis of hormonal treatment and age on mRNA abundance

from unfertilized eggs throughout embryogenesis showed that the transcript levels of eight

genes differed significantly (Table 3). dcbld1, epcam, oct4, and igm, which are associated with

cell adhesion, MZT activation, and immune response, showed significantly higher mRNA lev-

els in offspring from SPE than from CPE treated females. In contrast, cdhr2, cldnd, foxr1, and

ccnb1, associated with cell division, cell cycle control, and cell adhesion, showed significantly

higher mRNA levels in offspring from CPE than from SPE treated females. Significant varia-

tions in patterns of mRNA abundance throughout embryonic development were observed for

all genes, with the exception of cdhr2 and dcbld1. Here, cldnd, foxr1, cea, ccna1, ccnb1, ccnb2,

zar1, oct4, and npm2 showed a similar pattern with relatively stable abundance during the first

eight hours until MZT (Fig 3A and 3B). After this, mRNA levels for these genes declined

greatly, remaining low until hatch. In contrast, mRNA levels of sox2, neurod4, neurog1, phb2,

and c3 were low in the unfertilized eggs and first hours post fertilization, but increased steeply

during MZT and remained high thereafter (Fig 3C and 3D). Up to almost 100,000-fold differ-

ences were detected in the expression during later embryonic development. Lastly, levels of

mRNA transcripts were low for epcam, dicer1, igm, il1β, while a deviating pattern with large

differences between treatments was observed for dcbld1 during embryonic development (Fig

3E and 3F).
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mRNA abundance and developmental competence

The relationships between relative mRNA levels of analyzed genes and offspring quality

parameters are shown in Table 4. Significant relationships between relative mRNA levels at 2

hpf and the occurrence of cleavage abnormalities (at 4 hpf) were found for three genes. For

dicer1, no relationship was found for CPE females, however, for SPE females the relationship

was best explained by a negative linear regression. The relationship between epcam and cleav-

age abnormalities for CPE females was best explained by a negative linear regression, while no

relationship was found for the SPE treatment. The relationship for zar1 was best explained by

a negative linear regression for SPE females, but was not significant for CPE females.

For seven genes, the relationship between the relative mRNA levels at 8 hpf and embryonic

survival at 48 hpf was significant for at least one of the treatments. For zar1, the relationships

were best explained by positive linear regressions for CPE as well as SPE. The relationship

between sox2 and survival was also best explained by positive linear regressions for both

Fig 1. Embryonic survival and cleavage abnormalities in embryos from hormone-treated European eel, Anguilla anguilla. Embryonic survival in relation to (A)

hormonal treatment and (B) age in hours post fertilization, (C) difference in proportions of cleavage abnormalities at 4 hpf among hormonal treatments and

relationships between cleavage abnormalities at 4 hpf and embryonic survival at 48 hpf for (D) CPE and (E) SPE treatment. Values for bar plots represent means (±
SEM) of embryos at each age and treatment. Different lower-case letters represent a significant statistical difference (p< 0.05).

https://doi.org/10.1371/journal.pone.0235617.g001
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Fig 2. Examples of normal development and cleavage abnormalities in European eel, Anguilla anguilla embryos.

Eggs with (A) normal development and (B) occurrence of cleavage abnormalities at 4 hours post fertilization. Scale bar

represents 1 mm.

https://doi.org/10.1371/journal.pone.0235617.g002

Table 3. Gene expression in ovary, unfertilized eggs, and embryos in two successive trials with hormone-treated European eel, Anguilla anguilla. Best fitting rela-

tionship between expression of the gene in the ovary of female and levels of mRNA transcripts in unfertilized egg for each treatment and mRNA abundance from unfertil-

ized egg to embryos (shortly before hatch) related to hormonal treatment (CPE and SPE) and age of embryos (in hpf).

Gene Relationship ovary–unfertilized

eggs—CPE

Relationship ovary–unfertilized

eggs—SPE

Model on unfertilized eggs and embryos

Equation R2 p-value Equation R2 p-value CPE (mean ± SE) SPE (mean ± SE) Hormonal treatment (p-

value)

Age (p-value)

cdhr2 Y = 0.01+0.67x 0.951 <0.0001 Y = -0.52

+0.72x

0.954 <0.0001 9.31±0.89 6.18±0.88 0.014 0.208

cldnd Y = 1.38–0.08x 0.003 0.847 Y = 0.36+0.43x 0.086 0.290 0.54±0.04 0.41±0.08 0.028 <0.0001

dcbld1 Y = 1.58–0.58x 0.195 0.076 Y = -5.03

+0.58x

0.797 <0.0001 3.33±21.71 99.13±21.36 0.0003 0.958

dicer1 Y = 1.25+0.32x 0.023 0.534 Y = 1.03+0.25x 0.092 0.273 1.23±0.03 1.26±0.03 0.354 <0.0001

epcam Y = 1.26+0.17x 0.637 0.0001 Y = 1.04+0.16x 0.906 <0.0001 5.88±0.70 8.85±1.63 0.012 0.0003

foxr1 Y = 0.72+0.35x 0.084 0.243 Y = 0.74+0.32x 0.318 0.029 0.67±0.05 0.48±0.11 0.013 <0.0001

cea Y = 0.30+0.64x 0.170 0.089 Y = 0.11+0.83x 0.740 <0.0001 0.74±0.03 0.67±0.07 0.156 <0.0001

ccna1 Y = 1.20+1.04x 0.239 0.047 Y = 1.10+0.82x 0.692 0.0001 1.34±0.07 1.33±0.06 0.852 <0.0001

ccnb1 Y = 3.37–1.76x 0.076 0.269 Y = 0.55+0.90x 0.335 0.030 1.16±0.02 1.06±0.03 0.013 <0.0001

ccnb2 Y = 2.67–1.35x 0.065 0.306 Y = 1.02+0.16x 0.012 0.702 0.96±0.05 1.04±0.12 0.366 <0.0001

npm2 Y = 2.97–0.45x 0.057 0.342 Y = 0.88+0.15x 0.116 0.215 1.04±0.08 1.05±0.15 0.97 <0.0001

phb2 Y = 1.43–0.02x 0.007 0.743 Y = 0.93+0.05x 0.032 0.525 5.31±0.40 5.90±0.86 0.393 <0.0001

oct4 Y = -0.17

+1.55x

0.336 0.009 Y = 0.29+0.90x 0.567 0.001 0.80±0.03 0.92±0.08 0.048 <0.0001

sox2 Y = 0.86+0.15x 0.167 0.103 Y = -0.16

+0.55x

0.996 <0.0001 1070.99±89.07 1137.89±112.47 0.708 <0.0001

zar1 Y = 3.60–0.11x 0.035 0.460 Y = 1.12

+0.009x

0.016 0.649 0.56±0.06 0.47±0.13 0.364 <0.0001

neurod4 Y = 1.82–0.47x 0.079 0.242 Y = 0.27+0.21x 0.878 <0.0001 1299.55±115.67 1279.14±217.08 0.378 <0.0001

neurog1 Y = 1.37+0.63x 0.376 0.007 Y = 1.31+0.14x 0.244 0.061 238.84±12.57 247.10±13.76 0.245 <0.0001

c3 Y = 0.57+0.21x 0.231 0.037 Y = 0.09+0.40x 0.646 0.0003 1150.66±125.19 829.36±285.06 0.314 <0.0001

igm Y = 0.32+0.15x 0.271 0.022 Y = 0.03+0.40x 0.699 0.0001 0.53±0.06 0.85±0.14 0.002 <0.0001

il1β Y = 2.03+0.59x 0.012 0.651 Y = 0.26+0.28x 0.282 0.041 0.75±0.06 0.78±0.06 0.768 <0.0001

https://doi.org/10.1371/journal.pone.0235617.t003
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Fig 3. mRNA transcript abundance in unfertilized eggs and developing embryos of hormone-treated European eel, Anguilla anguilla. Conceptual overview–

Expression (2-ΔΔCt) was calculated in relation to the average abundance in the unfertilized eggs of each gene. Relative abundance of cldnd, foxr1, cea, ccna1, ccnb1, ccnb2,
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treatments. No significant relationship was found between the mRNA levels of foxr1 and sur-

vival for CPE females, while a significant positive linear regression was found for SPE females.

The relationship between the mRNA levels of cldnd and survival was also non-significant for

CPE females but best explained by a positive linear regression for the SPE treatment. Similarly,

no significant relationship was found for CPE females between phb2 levels and survival, while

the relationship for SPE females was best explained by a positive linear regression. For neu-
rod4, a significant relationship was found for both treatments. Here, the relationship for CPE

females was best explained by a positive linear regression, whereas for SPE females it was a pos-

itive quadratic regression. Similar results were found for neurog1, where the relationship for

CPE females was best explained by a positive linear and for SPE females by a quadratic

regression.

Lastly, five genes showed a significant relationship between the mRNA abundance at 32 hpf

and hatch success. The relationship between the mRNA abundance of ccna1 and hatch success

was best explained by a positive quadratic regression for CPE and a positive linear regression

for SPE females. For npm2, no relationship was found for CPE females, while the relationship

was best explained by a positive linear regression for SPE females. For oct4, significant rela-

tionships were found for both treatments and best explained by a positive quadratic regression

zar1, oct4, npm2 for (A) CPE and (B) SPE treatment. Relative abundance of sox2, neurod4, neurog1, phb2, c3 for (C) CPE and (D) SPE treatment. Relative abundance for

cdhr2, dcbld1, epcam, and dicer1, igm, il1β for (E) CPE and (F) SPE treatment. Bars represent timeframe of maternal-to-zygotic transition (MZT).

https://doi.org/10.1371/journal.pone.0235617.g003

Table 4. Relationship between mRNA abundance of specific genes in eggs and embryos at selected sampling points and offspring quality parameters for the two

treatments (CPE and SPE) in European eel, Anguilla anguilla, including best fitting equation and significance levels for genes, where a significant effect was found

for at least one of the treatments.

CPE SPE

Gene Function Relative

abundance

Quality parameter Equation R2 p-value Equation R2 p-value

dicer1 microRNA regulation 2 hpf Cleavage

abnormalities

Y = 52.67–5.57x 0.002 0.876 Y = 94.24–60.74x 0.338 0.023

epcam cell adhesion 2 hpf Cleavage

abnormalities

Y = 67.28–9.22x 0.357 0.024 Y = 24.95–0.30x 0.004 0.831

zar1 MZT 2 hpf Cleavage

abnormalities

Y = 76.42–31.82x 0.149 0.155 Y = 62.07–35.30x 0.324 0.034

zar1 MZT 8 hpf Survival (48 hpf) Y = -7.26+44.41x 0.326 0.042 Y = -15.3+47.07x 0.350 0.020

sox2 MZT 8 hpf Survival (48 hpf) Y = 15.83+3.61x 0.729 0.0002 Y = 7.89+17.17x 0.697 0.0004

foxr1 cell division 8 hpf Survival (48 hpf) Y = -23.32+45.92x 0.265 0.072 Y = -56.24+75.42x 0.495 0.003

cldnd cell adhesion 8 hpf Survival (48 hpf) Y = 0.75+41.59x 0.104 0.282 Y = -68.68+134.63x 0.364 0.017

phb2 normal mitochondrial

function

8 hpf Survival (48 hpf) Y = -24.82+44.64x 0.204 0.122 Y = -32.78+49.99x 0.269 0.047

neurod4 Neurogenesis 8 hpf Survival (48 hpf) Y = 20.60+0.96x 0.419 0.017 Y = 12.89+3.21x-

0.04x2
0.516 0.013

neurog1 Neurogenesis 8 hpf Survival (48 hpf) Y = 11.43+1.56x 0.672 0.0006 Y = 13.35+4.16x-

0.05x2
0.509 0.014

Ccna1 cell cycle control 32 hpf Hatch success Y = 5.70+379.13x-

478.20x2
0.524 0.024 Y = 21.41+88.96x 0.408 0.025

npm2 nuclear organization 32 hpf Hatch success Y = 32.02–19.88x 0.040 0.509 Y = 11.19+151.72x 0.473 0.013

oct4 MZT 32 hpf Hatch success Y = -5.12+545.65x-

513.65x2
0.498 0.032 Y = 21.11+115.98x 0.357 0.040

neurod4 Neurogenesis 32 hpf Hatch success Y = 69.93–0.009x 0.048 0.473 Y = 82.06–0.03x

+0.01x2
0.605 0.015

neurog1 Neurogenesis 32 hpf Hatch success Y = 25.03+0.004x 0.00 0.931 Y = 93.25–0.09x 0.601 0.003

https://doi.org/10.1371/journal.pone.0235617.t004
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for CPE and a linear regression for SPE females. No significant relationship was found between

the abundance of neurod4 and hatch success for CPE females, however, for SPE females, the

relationship was best explained by a negative quadratic regression. Similarly, no relationship

was found between the abundance of neurog1 and hatch success for CPE females. Here, the

relationship for SPE females was best explained by a negative linear regression.

Discussion

Carp and salmon pituitary extracts administered using identical preparation protocols and

treatment schemes caused differences in female responsiveness, egg quality, and embryonic

developmental competence in European eel. Differences in embryonic survival were associated

with the abundance of mRNA transcripts of genes involved in zygotic formation and embryo-

genesis. Among the 20 examined genes, several were associated with occurrence of cleavage

abnormalities, embryonic survival, and/or hatch success.

Induced vitellogenesis and egg quality

Assisted reproduction techniques are commonly used in aquaculture to enhance reproductive

success including a variety of hormonal treatments depending on the targeted stage of the

reproductive cycle [6]. Resulting differences in response to hormonal therapy may be particu-

larly great in anguillid eels due to dopaminergic inhibition [37,58] which requires repeated

treatment, most commonly weekly, for a prolonged period, to sustain gametogenesis and

reach gamete maturation. In the present study, both CPE and SPE induced vitellogenesis and

led to production of viable larvae, however with differences in responsiveness and embryonic

survival. More CPE treated females responded and reached the follicular maturation stage,

while the proportion of SPE treated females that produced viable eggs and embryos was higher.

Such discrepancies in treatment effects could be caused by differences in content and composi-

tion of gonadotropins in the pituitary glands or species-specific affinity of eel receptors to carp

or salmon gonadotropins as well as other pituitary hormones. Commercially available pituitar-

ies glands are harvested from different fish species close to spawning. While, the exact timing

of harvesting will cause variability in species-specific gonadotropin content and composition

of pituitary gland, influences of species’ reproductive strategies may be significant. For exam-

ple, in species, which show synchronous development of oocytes, e.g. salmonids, FSH gene

expression is predominant during the early stages of vitellogenesis, whereas LH gene expres-

sion becomes elevated as the oocytes approach follicular maturation. In contrast, species,

which show asynchronous development of oocytes, e.g. common carp (Cyprinus carpio), grass

carp (Ctenopharyngodon idella), Atlantic halibut (Hippoglossus hippoglossus), and gourami

(Osphronemidae), the expression of genes for both FSH and LH increases with the progression

of ovarian development and peaks during the spawning season [77–80]. It is notable that SPE

is derived from Pacific salmon (Oncorhynchus keta), a semelparous species with synchronous

oocyte development, while CPE is derived from common carp, an iteroparous species with

asynchronous oocyte development. In the case of anguillid eels, evidence is accumulating that

they are batch spawners with asynchronous or group synchronous oocyte development

[41,60,81]. In Japanese eel, sequential expression of FSH and LH at the brain pituitary level has

been documented throughout induced ovarian development [82,83] and a similar pattern was

also found in European eel with increasing levels of LH and decreasing FSH levels throughout

experimental maturation [84]. Such species dependent differences in gonadotropin content

and composition may have influenced female responsiveness and ovulation success in the

present study as well as follicle development, thereby affecting egg quality.
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During reproductive development, mRNA transcripts as well as nutrients (e.g. yolk and

vitamins) are incorporated into the growing oocytes [7]. Maternal mRNAs and proteins,

which are loaded into the cytoplasm during oocyte development, are instrumental in imple-

menting basic biosynthetic processes during early embryogenesis, with subsequent clearance

during MZT [9,12]. We found significant differences between SPE and CPE treatments in

mRNA abundance in eggs and embryos for genes related to cell division, cell cycle control, cell

adhesion, MZT activation, neurogenesis, and immune response. Observed differences in

abundance of several mRNA transcripts during embryogenesis may explain the higher propor-

tion of floating eggs, higher embryonic survival, and lower frequency of cleavage abnormalities

in offspring from SPE treated females. High occurrence of cleavage abnormalities led to high

embryonic mortality in this study, which has also been found in various species, such as Atlan-

tic cod (Gadus morhua) [85], yellowtail flounder (Limanda ferruginea) [86], turbot (Scophthal-
mus maximus) [87]. The observed lack of cell adhesion in this study was connected with

differences in gene expression patterns.

Molecular ontogeny and embryonic development

Cell adhesion. Abundance of mRNA transcripts of two genes related to cell adhesion,

dcbld1 and epcam differed between treatments, with higher mRNA abundances in embryos of

SPE treated females. Although expression of dcbld1 has been associated with cell adhesion dur-

ing embryonic development, insights into its role are still limited [88]. Rise et al. [25] found

high variations in dcbld1 transcript levels in Atlantic cod eggs with larger than 100-fold differ-

ences among females. However, when all females were included in the analysis, no relationship

was found between dcbld1 abundance and egg quality. In our study, dcbld1 transcript abun-

dance also varied considerably among offspring from individual females, but differed between

treatments. The relation between transcript abundance in unfertilized eggs and in the ovary

indicated a maternal effect, which in combination with higher mRNA abundance in SPE com-

pared to CPE females may relate to the incomplete cell adhesion observed, compromising the

development in European eel embryos.

The second gene, epcam has been associated with cell adhesion, migration, proliferation,

differentiation and signaling [89–91] with high transcript abundance found in early stages of

Atlantic cod [92] and zebrafish [93]. Thus, in zebrafish, expression of epcam is required for

epithelial morphogenesis during epiboly [89] as well as cell migration in the lateral line system

[94]. In our study, high mRNA abundance signaled maternal transfer of epcam to eggs and

embryos with a positive effect of high transcript levels on performance of embryos obtained

from SPE treated females. A negative relationship with cleavage abnormalities was found for

CPE. These results indicate that high mRNA abundance of this gene is also important for nor-

mal development in European eel embryos.

MZT activation. Studies of the expression patterns of oct4 in medaka (Oryzias latipes)
[95–98], Nile tilapia (Oreochromis niloticus) [99,100], and zebrafish [101–105] have docu-

mented its importance for normal fish embryonic development and survival. In zebrafish,

maternally inherited oct4, sox2 (soxb1), and nanog transcripts are responsible for activating

zygotic expression and initiating the clearance of maternal mRNA through activation of

microRNA, hence they are considered fundamental for successful MZT [103]. We found high

mRNA abundance of oct4 in ovaries, eggs, and embryos, with highest abundance in the SPE

treated group, suggesting that maternally inherited oct4 plays a similarly important role in suc-

cessful MZT and survival during embryonic development in eel. Transcript levels of oct4 in

later embryonic stages were linked to higher hatch rates in both treatments, which indicates
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that oct4 assumes an additional role during later embryonic development and successful

hatching.

Immune response. During early development, teleost fish rely exclusively on their innate

immune system, until their adaptive immune system is sufficiently developed [106]. Maternal

transfer of immune-related factors to the eggs has been postulated for several species. While

such factors are probably involved in early protection of the embryo, the exact mechanisms are

still unknown [28–30]. In sea bream (Sparus aurata) [107] and Indian major carp (Labeo
rohita) [108], maternally transferred igm has been associated with higher larval survival.

Maternal antibody transfer improved the protection against pathogenic attacks for developing

embryos of zebrafish [109]. In European eel, the molecular ontogeny of the immune system

has been studied for larval stages from hatch until first-feeding at different temperatures [74],

with an array of candidate genes being involved in early immune response. Several of these

genes were also investigated in this study, and indicate the maternal transfer of igmmRNA in

European eel via the ovary to the eggs. Higher mRNA levels in embryos obtained from SPE

treated females might indicate a strengthened immune-readiness, due to maternally derived

immune factors. Our results showed maternal transfer of c3 and il1β transcripts. While il1β
exhibited relatively stable abundance throughout embryonic development, c3 followed a differ-

ent pattern increasing towards hatch, indicating a potential role for early larval stages.

mRNA transcript profiles and MZT. Overall, the mRNA abundance of 20 genes revealed

three main patterns of differential expression throughout development. In the first pattern,

high abundance in early embryonic development (until 8 hpf) was observed, followed by a

drop in mRNA levels after the MZT (between 8 and 24 hpf), likely demonstrating transfer and

subsequent clearance of maternal mRNA. This pattern was found for cldnd, foxr1, cea, ccna1,

ccnb1, ccnb2, zar1, oct4, npm2, which all are genes involved in early developmental functions,

such as cell adhesion, cell division, cell cycle control, oocyte-embryo transition, and MZT acti-

vation. This pattern compares to maternal-effect genes known from other teleost species [24–

27]. In the second pattern, low mRNA levels were observed during the early embryonic stages

(until 8 hpf), with an increase after 8 to 24 hpf, probably demonstrating the activation of

zygotic transcription. This was the case for sox2, neurod4, neurog1, phb2, and c3, primarily

genes involved in neurogenesis but also in cell signaling and immune response. This pattern of

starting transcription during MZT is common for genes involved in processes such as organo-

genesis [26]. In the third pattern, changes in transcription throughout development were less

prominent including cdhr2, epcam, dicer1, igm, il1β, genes involved in cell adhesion, micro-

RNA regulation, and immune response. It is notable that a deviating pattern between treat-

ments was observed for dcbld1 transcripts, which appeared to follow the maternal-effect gene

pattern only for embryos obtained from SPE treated females.

Genes whose transcripts followed pattern one included cldnd, a member of the family of

claudins, which are known for their importance in generating tight junctions between cells in

teleosts [110–112]. CldndmRNA was found to be highly abundant during early embryonic

development in zebrafish [93]. This was also the case in the present study, with highest levels

produced by CPE treatment. Ovarian-specific expression of foxr1 has been shown in zebrafish

[113], freshwater medaka (Oryzias melastigma) [114], rice field eel (Monopterus albus) [115],

and European eel [73] possibly indicating an important role during early life history. The vital

importance of foxr1 transcript abundance for embryonic survival around MZT was recently

suggested for zebrafish [113], which is consistent with our observed high transcript levels. The

family of cyclins is essential for early cell cycle progression in teleosts and highly expressed in

early embryonic stages [24,93,116,117]. In rainbow trout (Oncorhynchus mykiss), abundance

of ccna1might be linked to embryonic developmental competence [118]. In this study, mRNA

abundance of this gene was not associated with embryonic survival, however gene expression
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levels at later stages were related to hatch success, which indicates an additional function dur-

ing later embryonic development in European eel. Lastly, mRNA abundance patterns of zar1,

first shown to be critical for the oocyte-to-embryo transition in mice [119], also appear to play

an important role in early development of rainbow trout [118,120], and Atlantic cod [24].

Within the second pattern of mRNA abundance, sox2 has been shown to be responsible for

the successful activation of the MZT in zebrafish, together with oct4 and nanog [103]. The

expression patterns of sox2 in our study are in accordance with this, indicating a similar func-

tion in European eel. For phb2, a previous study on European eel found that the abundance of

transcripts was higher in a “high hatch group” compared to a “low hatch group” [20]. Our

results are similar, providing further support for an important role of this gene during embry-

onic development in European eel. In contrast, mRNA abundance of this gene in rainbow

trout has been negatively correlated with developmental success, indicating species-specific

differences [121]. Another important process during embryonic development is neurogenesis,

which in teleosts mainly has been studied in zebrafish, where neurod4 and neurog1 are key

players [33–35]. In our study, their mRNA abundance patterns suggested that they are already

important during early development. Interestingly, a negative relationship was found between

the mRNA abundance of neurod4 and neurog1 during late embryonic development and hatch

success, which calls for more detailed research on the function of these two genes during eel

embryogenesis.

Representing the third pattern, dicer1 has been ascribed an essential role in microRNA

(miRNA) synthesis during embryonic development. It has mainly been investigated in zebra-

fish [10,122], where lack of dicer1 transcripts led to slower growth rates and shorter survival

[123], as well as abnormal persistence of maternal mRNA beyond MZT [13,124]. High levels

of dicer1 transcripts in rainbow trout embryos suggest an important role during early develop-

ment [125]. This is in accordance with our results, which show high levels and importance

before MZT with a possible association with the occurrence of cleavage abnormalities.

The association between mRNA levels at 2 hpf of three genes, zar1, epcam, dicer1 and cleav-

age abnormalities as well as between mRNA levels before MZT (8 hpf) of seven genes, zar1,

sox2, foxr1, cldnd, phb2, neurod4, neurog1 and later embryonic survival (48 hpf) indicated

maternal mRNA transfer and the importance of all these genes for successful development in

European eel embryos. The expression of five genes, ccna1, npm2, oct4, neurod4, neurog1 dur-

ing later embryonic development (32 hpf) was associated with hatch success and corroborated

the importance of their transcription during the transition from maternal mRNA control to

zygotic transcription.

Conclusion

Assisted reproduction protocols developed for anguillid eels typically use repeated administra-

tion of pituitary extract for induction of vitellogenesis. Ours is the first study that compared

differences in egg quality and embryonic developmental competence between carp and salmon

pituitary extracts. In two successive trials, using a constant weekly dose, a higher proportion of

female broodstock responded to CPE treatment, however a higher proportion of SPE treated

females produced viable offspring. The lower embryonic developmental success of CPE treated

females was associated with abnormalities in cell cleavages during early embryogenesis. These

findings point to differences in constituents of the carp and salmon pituitaries applied, affect-

ing female response, oocyte development during vitellogenesis, and final maturation. Comple-

menting gene expression analyses showed that differences in embryonic survival were related

to differences in mRNA transcript abundance of eight genes involved in cell adhesion, cell

division, cell cycle control, MZT activation, and immune regulation. Thus, the differential
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impact of CPE and SPE appeared to be related to the variability in mRNA abundance in the

eggs including maternal transcripts known to be important for healthy embryonic develop-

ment. Differential expression patterns during embryonic development were observed for 20

genes involved in key mechanisms showing either increasing or decreasing expression profiles

around the MZT. The mechanisms regulating the transfer of mRNA to the developing oocytes

are still poorly known, however follicular development may be affected by differences in con-

tent, composition or affinity of gonadotropins, FSH and LH, as well as other pituitary hor-

mones affecting the deposition of mRNA transcripts into the oocytes. Unravelling the

influences of hormonal factors in PEs may prove important to developing novel treatment

protocols. Better understanding of the physiology and ontogeny of maternal and embryonic

mRNA transcript abundance of different genes during embryogenesis will alleviate early devel-

opment failure in teleost species in aquaculture.
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