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DNA in cells is frequently damaged by endogenous and exogenous agents. However,
comprehensive mechanisms to combat and repair DNA damage have evolved to ensure
genomic stability and integrity. Improper DNA damage repair may result in various diseases,
including some types of tumors and autoimmune diseases. Therefore, DNA damage repair
mechanisms have been proposed as novel antitumor drug targets. To date, numerous
drugs targeting DNA damage mechanisms have been developed. For example, PARP
inhibitors that elicit synthetic lethality are widely used in individualized cancer therapies. In this
review, we describe the latent DNA damage repair mechanisms in gastric cancer, the types
of DNA damage that can contribute to the development of gastric cancer, and new
therapeutic approaches for gastric cancer that target DNA damage repair pathways.
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INTRODUCTION

According to the 2020 Global Cancer Statistics, gastric cancer was responsible for 1,089,103 new
cases in 2020 and approximately 768,793 deaths (corresponding to 1 in every 13 deaths universally)
worldwide, making it the fifth most frequently diagnosed cancer and the fourth leading cause of
cancer-related death (Hyuna et al., 2021). Gastric cancer is the fourth and seventh leading cause of
new cancer cases in males and females, respectively, and the fourth and fifth leading cause of cancer-
related death in males and females, respectively (Hyuna et al., 2021). Most new cases occur in
developing countries, especially in China (Zhou et al., 2020). The global incidence of gastric cancer is
42.6% and the mortality rate is 45.0% (Ferlay et al., 2014). Data from cancer registries have revealed
that gastric cancer is more likely to occur in locations where individuals have unhealthy diets, such as
remote rural areas (Hongli et al., 2017).

Hence, novel strategies are urgently being researched and developed to improve the prognosis and
survival of patients with gastric cancer. Twenty years ago, some studies demonstrated that DNA
damage repair (DDR) mechanisms play a significant role in the tumorigenesis, progression, and
treatment validity of gastric cancer (Hoeijmakers, 2001). In recent years, some clinical and preclinical
studies have concluded that DDR pathway inhibitors may prolong the survival time of patients
(Young et al., 2016).

LATENT DNA DAMAGE REPAIR MECHANISMS

Genome instability leads to mutations in DNA repair genes and is a symbol of cancer evolution and
one of the universal mechanisms of tumorigenesis (Tian et al., 2015). DNA damage refers to the
physical or chemical changes in the DNA found in cells, affecting the interpretation and transmission
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of genetic information. Extensive DNA damage may
subsequently activate oncogenes or inactivate tumor
suppressor genes, such as p53 (Kim et al., 2019a). To repair
this DNA damage, cells have developed a remarkable
mechanism—DDR pathways. DDR pathways play a crucial
role in the development of human cells and can repair
different types of DNA damage (single-strand breaks (SSBs),
pyrimidine dimers, A–C or A–G or T–C or T–G mismatches,
DNA interstrand crosslinks, and double-strand breaks (DSBs)) to
maintain genomic stability (Sokolova and Naumann, 2019a;
Rahman et al., 2020). This damage can be caused by both
exogenous and endogenous factors, such as replication fork
stalling, reactive oxygen species (ROS) generation, genetically
toxic substances, and ultraviolet rays (Sokolova and Naumann,
2019a).

Many signaling pathways and over 450 related proteins are
involved in DDR processes (Jackson and Bartek, 2009; Pearl et al.,
2015; Mauri et al., 2020). In addition, different DNA repair
mechanisms are used to repair different types of damage, such
as homologous recombination repair, nonhomologous end joining
(NHEJ), base excision repair (BER), nucleotide excision repair, and
mismatch repair (Huang and Zhou, 2020). These repair methods
and the outcomes of DNA damage are shown in Figure 1. DDR
processes are important for protecting against tumorigenesis.
Defects in gene expression and genomic instability are
associated with a high risk of gastric cancer and significantly
contribute to tumorigenesis and gastric cancer development.
The survival of DDR patients with a defective DDR can be
improved by the development of therapeutics targeting the DDR.

Many genes also play an important role in the process of DDR,
such as 53BP1, BRCA1, RAD51, ATM, and ATR. 53BP1 is a key
mediator involved in DSB repair, maintaining the balance
between repair pathway selection and genome stability. Recent
evidence suggests a molecular mechanism that encodes
53BP1 and DNA break response effectors to DSB sites and
promotes NHEJ-mediated DSB repair through 53BP1 (Lei
et al., 2022). The roles of the BRCA1 and RAD51 genes are
mainly to maintain genome integrity through different
mechanisms in response to DNA damage, and its
maladjustment is related to the development of a tumor and
the change of sensitivity to chemotherapy drugs. Studies have
shown that high cytoplasmic expression of BRCA1 has a higher
overall survival (OS) rate in gastric cancer, whereas nuclear
expression of BRCA1 usually indicates adverse outcomes
(Wang et al., 2018). Studies also have shown that gastric
cancer tissues have higher levels of RAD51 expression
compared with normal tissues (Xu et al., 2021). Therefore,
BRCA1 and RAD51 can be used as biomarkers for the clinical
diagnosis of gastric cancer to evaluate the prognostic effect of the
disease. ATM is involved in DDR through downstream
interactions with BRCA1 and other proteins involved in DSB
repair. DNA damage-induced ATM activation promotes β-
TRCP-mediated ubiquitination and destruction of ARID1A in
gastric cancer cells, thereby exacerbating the development of
gastric cancer (Jiang et al., 2019). Moreover, novel studies
revealed that germline pathogenic variants in ATM genes are
associated with a high and moderate risk of many cancers (Hall
et al., 2021). ATR is considered an important direction in cancer

FIGURE 1 | Repair methods and outcomes of DNA damage. Endogenous and exogenous factors can damage DNA in a cell, such as reactive oxygen species
(ROS) generation, replication fork stalling, chemical agents, ultraviolet radiation, and ionizing radiation, which cause single-strand breaks (SSBs) and double-strand
breaks (DSBs) to produce SSB fragments and DSB fragments, respectively. To mitigate this damage, cells have evolved certain types of DNA damage repair (DDR)
mechanism. BER is used to repair SSBs and HR, NHEJ, MMEJ, and SSA are used to repair DSBs. If repaired correctly, the cell will remain a healthy cell. However, if
repaired incorrectly, these cells will undergo senescence and apoptosis, leading to aging, disease, and cancer.
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therapy because of its deleterious effects on cancer cells that
contain defects in homologous recombination. Recent studies
have shown that AZD6738, as a novel oral ATR inhibitor, can
induce synthetic death of gastric cancer cells through ATM defect
(Min et al., 2017; Sheridan, 2018). Understanding the role and
association of these genes in DDR will facilitate further clinical
research to develop new treatment strategies for gastric cancer.
Some genes/proteins that function in DDR in gastric cancer are
shown in Table 1.

In addition, the cell cycle checkpoint genes Wee1, CHK1,
and CDK also play irreplaceable roles. The CDK family plays a
key role in regulating multiple signaling pathways concerning
transcription and cell cycle processes. CDK affects DNA repair
and contributes to the fidelity of cell division and the
maintenance of genomic integrity after DNA damage
(Kciuk et al., 2022). It has been shown that reduced
Wee1 activity leads to ectopic activation of CDK1 activity,
which drives unrepaired DNA into mitosis prematurely,
leading to mutations (Bukhari et al., 2022). Therefore,
Wee1 inhibitors can also be used to treat different types of
cancer and regulate therapeutic immune responses. CHK1 is a
key regulator of the cell cycle in DDR. CHK1 plays an
important role in promoting the survival and growth of
gastric cancer cells, which is an effective therapeutic target
for gastric cancer. Recent clinical trials have shown that
CHK1 inhibitor LY2606368 can induce DNA damage and
inhibit cancer proliferation (Koustas et al., 2020). However,
other researchers have speculated that CHK1 inhibitors may
also lead to CHK1 inhibitor toxicity by increasing DNA
damage in nontumor cells (Brooks et al., 2021). If some
inhibitor compounds acting on a DDR can be found to
achieve the targeting therapy, it will pave the way for the
treatment of gastric cancer and improve the survival time and
the prognosis of patients.

DNA DAMAGE REPAIR IN GASTRIC
CANCER BECAUSE OF HELICOBACTER
PYLORI INFECTION AND OTHER RISK
FACTORS

Risk factors for gastric cancer include many nonmodifiable
variables, such as age, sex, and race. Other risk factors are
controllable, such as infection with Helicobacter pylori,
smoking, and a diet high in nitrites and nitrates (Lawrence
et al., 2012). There are also several relatively rare risk factors,
such as a history of previous stomach surgery and hereditary
diffuse gastric cancer (CDH1) (Samantha et al., 2015). Next, we
will focus on the mechanism by which Helicobacter pylori and
other risk factors cause gastric cancer.

Nitrite is a common potential risk factor for gastric cancer.
Because the stomach is acidic, nitrite is protonated in the stomach
to form nitrous acid. Nitrous acid reacts directly with DNA to
form a deaminated base. All of these changes lead to mutations
when DNA polymerase is at work replicating DNA (Zhang et al.,
2019). Nitrite can also react with food to form N-nitrosamines,
some of which are carcinogens to humans because they can react
with DNA as alkylation reagents to produce admixtures that can
cause harm. At the same time, irregular diet, environmental
factors, drinking, and smoking can also lead to tumorigenesis
and progression of gastric cancer (Praud et al., 2018).

Helicobacter pylori is a strongly virulent Gram-negative
bacterium that colonizes the stomach of almost half of all
people and is classified as a class Ⅰ carcinogen of gastric cancer
(Helicobacter pylori Infection, 2022). Helicobacter pylori is a
dominant hazard factor for the occurrence mechanism of
gastric cancer and is responsible for approximately 90% of
new cases. Helicobacter pylori can induce DNA damage that
can lead to genomic instability and ultimately result in the

TABLE 1 | Genes/proteins involved in DDR in gastric cancer cells.

Gene/
Protein

Function in DDR Prognosis References

BRCA1 A crucial component of HR pathways in
DSB repair

Nuclear expression predicted poor outcomes, but high expression of
cytoplasmic BRCA1 had a significantly favorable overall survival

Hee Sung et al., 2019; BRCA

BRCA2 A vital component of HR pathways in DSB
repair

High expression of cytoplasmic BRCA1 had a significantly favorable
overall survival

BRCA; Joel Del Bel et al., 2022

EXO1 Involved in the HR pathway of DSB repair
and SSB repair

NO Lifeng et al. (2012)

KU70/
KU80

Ku protein binds to DNA DSB ends and
plays a crucial part in NHEJ

An abnormal expression may promote the occurrence of gastric cancer Wei et al. (2013)

ATM Involved in DSB repair and activates the
DNA damage checkpoint

ATM expression with MIS can be regarded as a prognostic marker Jin Won et al., 2013; Hannes et al.,
2015; Yali et al., 2020

XRCC1 A crucial part of BER for SSBs Expression of XRCC1 can be regarded as a prognostic marker of gastric
cancer recurrence

Bushra et al., 2018; Wang et al.,
2012

TP53 Induces cell cycle arrest and apoptosis
and blocks DNA repair

TP53 mutations inhibit tumor immunity in gastric cancer Zehang et al. (2018)

DNA-pkcs A crucial part of the NHEJ pathway of DSB
repair

An abnormal expression may promote the occurrence of gastric cancer Fu-Rong et al. (2017)

RPA A crucial part of the HR pathway of DSB
repair

RPA may serve as a biomarker or therapeutic target to improve the
prognosis of patients with gastric cancer

Efi et al., 2020; Yujie and Chaoran,
2020

RAD51 A crucial part of the HR pathway of DSB
repair

RAD51 expression can occur and is regarded as a valuable prognostic
marker

Huiying et al. (2021)
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formation of gastric cancer (Sokolova and Naumann, 2019b).
People infected with the bacterium frequently suffer chronic
nonatrophic gastritis, eventually resulting in gastric cancer
through a complex series of changes. The way in which
Helicobacter pylori causes DNA damage and then results in
gastric cancer has always been a hot topic of research. Next,
we summarized the interaction between Helicobacter pylori and
DNA damage and the effects of this damage on the development
of gastric cancer.

Certain cancers in the body develop as a result of the direct
carcinogenic effects of certain tumorigenic substances or as a
result of genomic instability caused by accompanying
inflammation and DNA damage (Kim et al., 2019b).
Helicobacter pylori infection can induce both innate and
adaptive immune responses, including oxidative stress, which
leads to DNA damage (Reyes and Peniche, 2019). The build-up of
DNA damage can eventually lead to mutations that activate or
inactivate tumor suppressor genes. Oxidative stress leads to the
production of ROS/RON, and their concentration determines
their effect on the body (Han et al., 2022). ROS/RON-mediated
DNA damage leads to the breakage of chemical bonds, which is
the most common mechanism of carcinogenesis after
Helicobacter pylori infection. Once the body is infected by
Helicobacter pylori, innate and acquired immune responses
occur, and then an interrelated cellular response produces
ROS/RON, leading to oxidative stress. According to previous
studies, APE-1 is the main regulator of the cellular response to
oxidative stress. APE-1 can repair the sites of oxidative damage in
DNA, reduce the activity reduction of many transcription factors,
decrease the damage because of ROS and RON in cells and
tissues, and maintain the mitochondrial function (Futagami et al.,
2008). APE-1 is involved in the transcriptional regulation of genes
involved in the adaptive response to oxidative stress and the BER
pathway.

ROS and RON are also involved in many related pathways in
the body. The PLK1/P13K/Akt pathway plays an important role
in the development of gastric cancer and is inseparably related to
ROS and RON. Next, we will introduce the mechanisms of the
PLK1/P13K/Akt pathway in detail. Helicobacter pylori can
express CagA, a virulence factor that is recognized by cells
and phosphorylated by Src family kinases (Zhu et al., 2016).
CagA possesses functions that are distinct from conventional
toxins and can counterbalance the activity of the established
Helicobacter pylori toxin VacA. Meanwhile, phosphorylated
CagA can regulate the expression of PLK1 and then
phosphorylate PTEN and AKT, while nonphosphorylated
CagA can regulate PDK1 to some extent (Su et al., 2022). The
activation of AKT kinase leads to the activation of the mTOR
complex, producing ROS/RON, and the accumulation of RON/
RON in cells leads to DNA damage and genomic instability,
leading to gastric cancer. The mechanism by which Helicobacter
pylori induces DNA damage through the PLK1/P13K/Akt
signaling pathway, leading to gene stability and ultimately
gastric cancer, is shown in Figure 2.

Research results have shown that long-term Helicobacter
pylori infection interferes with the activity of the electron

transport chain and damages oxidative phosphorylation,
resulting in changes in APE-1 gene expression and decreasing
APE-1 expression. Furthermore, there is a certain relationship
between APE-1 gene polymorphisms and the tumorigenesis and
development of gastric cancer. Chronic Helicobacter pylori
infection may inhibit APE-1 expression and ultimately lead to
genomic instability (Chattopadhyay et al., 2010). Genomic
instability is an evolving feature that is caused by mutations in
DNA repair genes to drive the development of cancer (Asatryan
and Komarova, 2016). Genomic instability includes microsatellite
instability (MSI), chromosomal instability (CIN), and the
improper activation of telomerase. Microsatellites are repeats of
DNA sequences that are almost randomly distributed in all
genomes (Polom et al., 2018a). During the process of
replication and recombination, errors such as the insertion or
deletion of bases can lead to gene mutations that cause MSI. MSI
results in the abnormal expression of target genes and ultimately
leads to the tumorigenesis of gastric cancer (Silva-Fernandes et al.,
2017). As important evidence, the expression rate of MSI is more
obvious in elderly women with gastric cancer (Polom et al., 2018b).

High-frequency mutations in microsatellite regions are an
indicator of MSI in the DNA sequence, but if such genomic
changes occur at the chromosomal level, it is regarded as CIN
(Maleki and Röcken, 2017), and its definition continues to change
as different types of cancer are continually studied. Some groups
have referred to CIN as aneuploidy or polyploidy, while others
have defined CIN as multiple structural rearrangements or
frequent changes in the chromosome number (Tsai et al.,
2018). The formation of CIN is caused by the breakdown of
the DNA replication fork induced by an oncogene, which leads to
DSB and genomic instability (Kohlruss et al., 2021). Although
CIN in cancer has been studied extensively, its exact cause
remains unclear. To reveal the exact etiology of CIN in
tumors, further studies are needed to investigate its
mechanism and the affected pathways.

Telomerase is a reverse transcriptase that uses its own DNA as
a template to synthesize telomeres to supplement the telomeres
lost during the process of cell division and proliferation so that
cells can continue to divide and proliferate (Yucheng and Amir,
2016). Telomerase is an indispensable factor in tumor
immortalization and tumorigenesis (Hiyama et al., 1995).
According to clinical research data, the telomerase activity in
chronic atrophic gastritis cells caused by Helicobacter pylori
infection is much higher than that in normal cells. The
decreased length of telomerase is also a contributing factor to
the poor prognosis of gastric cancer (Hiyama et al., 1995). A
shortened telomere length will be recognized by the body as a
DSB, thereby activating the DNA damage reaction pathway to
protect the body, but unfortunately, this aberrant activation can
cause great harm. The telomere length has important research
value in studies on neurobiology and gastrointestinal microbes.
Genomic instability leads to the loss of tumor suppressor genes
and the improper activation of oncogenes, triggering
uncontrolled cell proliferation and continued malignant cell
development (Haojian et al., 2021). This mechanism of gene
instability is shown in Figure 3.
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In conclusion, we also review our previous work on the
relationship between Helicobacter pylori and DNA damage.
We have confirmed that transforming growth factor-β is an
important mediator in the pathogenesis of Helicobacter pylori
(Nianshuang et al., 2016). We have identified the molecular
mechanisms underlying the interaction between the Hippo
and Wnt signaling pathways and elucidated their roles in
tumorigenesis of the gastrointestinal tract, especially the
intestine, stomach, and liver (Li et al., 2019). We further
verified that the inhibition of autophagy activates the DNA
damage response and initiates gastric tumorigenesis via
Rad51 ubiquitination in response to Helicobacter pylori
infection (Chuan et al., 2020). In the future, we will continue
to study the strong link between Helicobacter pylori and gastric
cancer.

THERAPEUTIC APPROACHES FOR
TREATING DNA DAMAGE IN GASTRIC
CANCER
Considering that the individual DDR capacity of gastric cancer
patients varies greatly, the diversity of DDR genes not only is a
crucial genetic element but also provides a novel approach to treat
gastric cancer and will become a focus and hotspot in the cancer
research field. Regarding the treatment of gastric cancer, some

approaches have been proposed and validated. For example, the US
Food and Drug Administration (FDA) has approved some special
DNA-damaging agents for the clinical treatment of gastric cancer,
such as PARP inhibitors. Furthermore, certain chemotherapy and
radiotherapy regimens are also effective. Below is a summary of the
DNA-damaging agents and chemoradiotherapy used in the
current treatment of gastric cancer.

DNA-DAMAGING AGENTS IN GASTRIC
CANCER

DNA-damaging agents induce diverse types of DNA damage,
mainly DSBs and SSBs. These types of DNA damage are sensed
and repaired by proteins involved in the DNA damage response.
Therefore, the abnormal expression of a particular DNA damage
response protein could be a biomarker of resistance or of a
favorable response to therapies that induce the corresponding
types of DNA damage. For instance, SLFN11 has been shown to
suppress gastric cancer growth both in vitro and in vivo and to
enhance the capacity of cisplatin to induce S-phrase arrest and
apoptosis in gastric cancer. Therefore, the use of SLFN11 has
contributed to improvement in the prognosis and survival of
cancer patients (Yaojun et al., 2019).

Aurora kinase A (AURKA) is highly overexpressed in gastric
cancer and inversely correlated with prognosis. AURKA restricts

FIGURE 2 | Mechanism by which Helicobacter pylori induces DNA damage, leading to genomic instability. Helicobacter pylori can express the virulence factor
CagA, which is recognized by cells and phosphorylated via Src family kinases. Phosphorylated CagA affects the expression of PLK1, leading to the phosphorylation of
PTEN and AKT, while unphosphorylated CagA interacts with PDK1. The activation of AKT kinase leads to subsequent activation of the mTOR complex, producing ROS/
RON, and the accumulation of RON/RON in cells causes DNA damage and genomic instability, leading to gastric cancer.
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survivin ubiquitylation and degradation in gastric cancer to
promote drug resistance, and hence, the AURKA–survivin axis
can be targeted to enhance the efficacy of DNA-damaging agents
in treating gastric cancer (Kamran et al., 2017). In recent years, a
retrospective multicenter data analysis of gastric cancer with
BRCA1 or BRCA2 germline mutations (gBRCAm) was
conducted to identify 10 gastric cancer patients with
gBRACm, 6 of whom had metastatic disease. The results of
the analysis demonstrated that the median OS was 4.5 months
for all 10 gastric cancer patients, 55.5 months for patients with
operable disease, and 32 months for patients with metastatic
disease. These preliminary data suggested that gBRCAm is
associated with favorable outcomes in gastric cancer patients
(Naama et al., 2020). However, the data samples of these cases are
only 10, and further experimental research studies are needed to
verify them. In contrast, a large number of DNA-damaging
agents have been developed, and among them, some have
partly been tested for their ability to enhance DNA damage-
induced tumor cell killing in preclinical studies and clinical trials.
As this technology improves, more uncertainties will be resolved
in future experiments.

Different types of DNA damage trigger phosphorylation-
mediated signaling cascades that lead to stimulating specific
cellular responses. In the NF-KB signaling pathway, the
transcription factor RelA is critical to these DNA damage

response pathways. Different DNA damage agents can induce
different cell outcomes through transcription factor RelA, but its
specific coordinated signal transduction mechanism remains
unclear (Campbell et al., 2021). The P13k/AKT signaling
pathway also plays an important role in DDR. The dual
inhibition of P13k/AKT signaling and DNA damage
checkpoints in p53-deficient cells accelerates rapid apoptotic
cell death during the G (2) period (Skladanowski et al., 2007).
Maintenance of genomic integrity after DNA damage depends on
the activation of the tumor suppressor P53, which then
coordinates the DNA repair system/cell cycle checkpoint. The
Wnt/β-catenin signaling pathway is one of the main targets of
p53. Therefore, when related DNA damage agents act on the
Wnt/β-catenin signaling pathway, DNA damage will occur,
leading to genomic instability and thus aggravating the
tumorigenesis and progression of gastric cancer (Karimaian
et al., 2017). It is worth adding that DNA damage agents can
also activate p53 through different upper signaling pathways,
such as SAPK signaling (Shi et al., 2021). When the mechanism of
the signal pathway involved in the occurrence and development
of gastric cancer is clearly studied, its treatment will also become
feasible.

Some related inhibitors are also being developed, such as
Wee1 inhibitors, CHK1 inhibitors, and PARP inhibitors.
Wee1 inhibitors are undergoing clinical trials. The

FIGURE 3 | The types of genomic instability includemicrosatellite instability (MSI), chromosomal instability, and telomerase inactivation. (A). tumorigenesis because
of MSI is caused by the abnormal regulation of the expression of target genes (B). chromosomes undergo structural or numerical changes, such as deletions and
exchanges and aneuploidy and polyploidy, respectively. (C). telomerase inactivation on chromosomes can lead to genomic instability and gastric cancer. The structure
of telomerase is shown.
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Wee1 inhibitor AZD1775 has an effective checkpoint inhibitory
activation effect, which can significantly inhibit the proliferation
of gastric cancer cells and induce apoptosis and cell cycle arrest,
especially in gastric cancer cells with highWee1 expression (Chen
et al., 2018). When combined with CHK1 inhibitors,
Wee1 inhibitors can overcome the resistance of tumor cells to
CHK1 and thus enhance the anticancer activity (Li et al., 2020). In
the meantime, the combination of CHK1 inhibitor
LY2606368 and PARP inhibitor BMN673 showed a better
synergistic anticancer effect (Parmar et al., 2019). It can be
seen from these studies that Wee1, CHK1, PARP, and others
are all valuable targets in the treatment of gastric cancer, and the
combination of different target-related inhibitors may be a more
effective strategy for the treatment of gastric cancer in the future,
which improves the overall treatment outcome in patients with
advanced gastric cancer.

For now, PARP inhibitors have made great strides in the
treatment of cancer. We also systematically analyzed the
application of PARP inhibitors in gastric cancer. ADP-
ribosylation is the modification of target proteins by ADP-
ribosyltransferase using NAD+ and ADP-ribosyltransferase
(Hopp et al., 2019), which can alter the physical and chemical
properties of target proteins in many important processes (Lin
and Caroll, 2018), such as DNA repair, transcription, telomere
length and senescence, protein degradation, apoptosis, and
necrosis (Veneris et al., 2020). The only known ADP-
ribosylated proteins are the members of the PARP family.
This family of proteins consists of 17 members with different
domains, activities, subcellular localizations, and functions.
PARP is a DNA sensor; its polymeric ADP–ribose strands act
as a platform for protein signaling to coordinate the DNA repair
process (D’Andrea, 2018). However, PARP also affects the degree
of DNA damage. For lower degrees of DNA damage, PARP
activity can be beneficial for DNA repair and cell survival, but
under ischemic conditions or in the presence of severe
inflammation, widespread DNA damage can occur, activating
at least two different mechanisms to cause cell death, namely, cell
necrosis induced by energy depletion and apoptosis-inducing
factor–dependent apoptosis (Luo and Kraus, 2012). It is also
worth noting that some studies had found that PARP can also
affect many important biological activities in cells by changing the
AMP/ATP ratio (Min and Im, 2020).

Next, we will focus on the main mechanisms by which PARP
inhibitors combat tumors in cancer cells. First, we can think of
PARP inhibitors as “poisons” that cause the PARP enzyme to
become trapped on the DNA strand, facilitating the formation of
poly(ADP-ribose) chains from NAD+ (Kim et al., 2021). Second,
PARP inhibitors inhibit the repair of NHEJ, leading to cell
apoptosis or necrosis after DNA damage occurs (Gupta et al.,
2018). Third, some new studies have shown that PARP inhibitors
reduce the repair efficiency of MMEJ, an auxiliary DNA repair
mechanism (Tomasini et al., 2021). This speeds up the process of
apoptosis, or death, in cancer cells that do not initiate the required
DNA repair. Several PARP inhibitors have been developed. For
example, olaparib is an oral PARP inhibitor used for the
treatment of gastric cancer. It can both activate DDR
pathways and reactivate DNA checkpoints. In addition,

olaparib can be combined with many other substances to
enhance the capacity of these repair pathways. A long-
standing study showed that when olaparib was combined with
paclitaxel, olaparib plus paclitaxel was well tolerated and led to a
statistically significant improvement in OS and ATM-pts with a
larger benefit in ATM-pts (Yung-Jue et al., 2013). In recent years,
some scholars have pointed out that the combination of the P13K
inhibitor BKM120 with olaparib can inhibit the proliferation of
gastric cancer cells with ARID1A deficiency (Lin et al., 2018).
After this, olaparib plus AZD1775 was found to augment the
antitumor activity by disrupting DDR pathways and DNA
damage checkpoints (Xiaoting et al., 2018). Another study
demonstrated that olaparib combined with talaporfin
photodynamic therapy can improve the efficacy by inducing
the formation of PARP-DNA complexes in gastric cancer
(Mamoru et al., 2021). This strategy may be potentially useful
for the treatment of gastric cancer. Although olaparib and other
substances have been used clinically, the pathogenesis of gastric
cancer is different among different patients. Therefore, olaparib
still needs further development (National Library of Medicine,
2006). In Table 2, we describe the clinical and nonclinical uses of
five typical PARP inhibitor drugs. PARP inhibitors are
particularly sensitive and fit with the new concept of
“synthetic lethality,” in which the function of two repair
pathways is synergistically lost, leading to cell death
(Ashworth and Lord, 2018). Therefore, the clinical success of
PARP inhibitors has brought new hope for synthetic lethal
anticancer therapy, representing one of the next generations of
anticancer drugs targeting DDR. In essence, PARP inhibitors
prevent the repair of single-stranded DNA breaks, leading to cell
apoptosis.

In the case of circumscribed gastric cancer, surgical resection is
the most suitable treatment strategy (Riquelme et al., 2015).
However, most gastric cancers are diagnosed as advanced and
incurable when they are discovered, which limits traditional
treatments and makes the development of effective anti-DDR
therapeutic strategies so promising. Anti-DDR therapeutic
strategies have obvious advantages over other therapeutic
strategies. A recent comparative clinical study showed that the
experimental group receiving anti-DDR therapeutic strategies
had longer OS, reduced tumor response rate and serious
adverse reactions, and improved prognosis and quality of life
(Reddavid et al., 2021). Anti-DDR therapeutic strategies are the
most advanced and can achieve precise effects similar to the
“guiding rocket,” which directly acts on the cancerous parts and
tissues, causing less damage to normal cells and resulting in better
therapeutic effects (Patel and Cecchini, 2020). The development
of anti-DDR therapeutic strategy-related pathways and protein
inhibitors will help humans to achieve personalized treatment for
patients with advanced gastric cancer.

EFFICIENT MANAGEMENT OF GASTRIC
CANCER VIA CHEMORADIOTHERAPY

As the standard treatment for cancer, chemoradiotherapy has
been extensively applied to clinical practice worldwide; however,
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its efficacy in the eradication of cancer cells, suppression of
metastasis, and improvement of the OS of patients is poor.
The mechanism of chemoradiotherapy primarily induces DNA
damage to kill cancer cells; thereby, the efficacy of
chemoradiotherapy depends on the generation of DNA
damage. After long-term exposure to endogenous and
exogenous DNA damage, the body may evolve a DNA damage
response mechanism. It is normally used to sense and repair DNA
damage. If the damaged lesion is completely repaired, the cell will
survive; otherwise, the cells will die.

Compared with open gastrectomy, laparoscopic surgery in
patients with advanced gastric cancer following neoadjuvant
chemotherapy causes fewer complications and leads to a better
prognosis, faster recovery of intestinal function, and prolonged
survival (Liao et al., 2021). Selected gastric cancer patients with
limited regional lymph node recurrence may benefit from
radiotherapy combined with chemotherapy and high-dose
radiotherapy (≥54 Gy) leads to a better progression-free
survival and tends to extend the OS (Liang et al., 2020). A
recent analysis of related research data demonstrated that
tumor bleeding could be adequately controlled by palliative
radiotherapy in patients with unresectable advanced gastric
cancer (Jesang et al., 2021). Receptor tyrosine kinase MET
overexpression is frequently observed in a range of different
cancers, is associated with poor prognosis, and has been
investigated in several clinical trials (Georgina et al., 2021).
Olaparib can be used as an adjunct to chemotherapy to more
effectively treat gastric cancer. It activates DDR and DNA
checkpoint pathways to achieve a better treatment effect in
gastric cancer. Some adjuvants in combination with
radiotherapy may have adequate benefits in other areas as well
(Marie et al., 2017). Pembrolizumab synergizes with
radiotherapy, resulting in significantly improved outcomes in
patients with nonsmall-cell lung cancer (NSCLC). Data from the
KEYNOTE-189 phase III trial confirm that adding
pembrolizumab to first-line chemotherapy improves the
outcomes of patients with metastatic NSCLC, improving
survival by several months (Sidaway, 2018).

Although chemotherapy and radiotherapy have not worked as
well as we would like, more trials are needed to yield further
innovations in cancer treatment.

CONCLUSION AND PERSPECTIVES

Abundant data have proven that DDR pathways play a crucial
role in the tumorigenesis, progression, treatment, prognosis, and
other aspects of breast cancer. Hence, for the treatment of gastric
cancer, precise DDR mechanisms in cells should be clarified with
further experimentation. In this article, we reviewed latent DDR
mechanisms and the DDR in gastric cancer associated with
Helicobacter pylori infection, which represent novel therapeutic
targets. In general, the road ahead is long, and further research
will be indispensable. Further studies on DDR mechanisms will
aid in providing a more comprehensive understanding of the
etiology of gastric cancer (and other tumors) and will provide
evidence regarding the best therapies for individual patients.
Moreover, it is expected that the incidence and mortality of
gastric cancer will sharply decrease with the efforts of
scientific researchers.
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