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Abstract. Lysyl oxidase proteins (LOXs) are amine oxidases, 
which are mainly located in smooth muscle cells and fibro-
blasts and serve an important role in the formation of the 
extracellular matrix (ECM) in a copper-dependent manner. 
Owing to the ability of LOX proteins to modulate cross-
linking between collagens and to promote the deposition of 
other fibers, they serve crucially in organogenesis and the 
subsequent organ development, as well as disease initiation 
and progression. In addition, ECM formation significantly 
influences organ morphological formation in both cancer‑ and 
non-tumor-related diseases, in addition to cellular epigenetic 
transformation and migration, under the influence of LOXs. 
A number of different signaling pathways regulate the LOXs 
expression and their enzymatic activation. The tissue remod-
eling and transformation process shares some resemblance 
between oncogenesis and embryogenesis. Additionally the 
roles that LOXs serve appeared to be stressed during onco-
genesis and tumor metastasis. It has also been indicated LOXs 
have a noteworthy role in non‑tumor diseases. Nonetheless, 
the role of LOXs in systemic or local organ development 
and disease control remains unknown. In the present study, 
the essential roles that LOXs play in embryogenesis were 
unveiled partially, whereas the role of LOXs in organ or 
systematic development requires further investigations. The 
present review aimed to discuss the roles of members of the 
LOX family in the context of the remodeling of organogenesis 
and organ development. In addition, the consequences of the 

malfunction of these proteins related to the development of 
abnormalities and resulting diseases is discussed.
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1. Introduction

Lysyl oxidase proteins (LOXs) are secretory amine oxidases 
that aid in the formation of the extracellular matrix (ECM) in 
a copper-dependent manner (1). The LOX precursor (50 kDa), 
secreted mainly by smooth muscle cells and fibroblasts, is 
hydrolyzed into the catalytically active, matured form of LOX 
(30 kDa) and the non‑catalytic active peptide (18 kDa) (2,3). 
The extracellular roles of activated LOX include promoting 
the crosslinking between ECM collagen type I, collagen 
type III and elastin, through catalyzing the lysine residue, 
which subsequently transforms collagens and elastin into a 
non‑soluble state (1).

Since their initial discovery, the role of LOXs in collagen 
and elastin crosslinking has been confirmed by numerous 
studies (1,2,4,5), and additional LOX-like proteins (LOXLs)1-4 
were subsequently discovered. LOXL1, LOXL2, LOXL3 and 
LOXL4 have been demonstrated to share 85, 58, 65 or 62% 
sequence similarity with the LOX protein in the conserved 
regions and, altogether, these enzymatic proteins form the 
LOX family (6).

The regulation of LOXs varies depending on the tissue and 
on the developmental stage of a specific organ; these enzymes 
have been found to serve a role in oncogenesis or tumor 
metastasis through dysregulating tumor microenvironment 
homeostasis and have also been suggested to be biomarkers for 
cancer prognosis and survival (7). In other studies, LOXs were 
found to be important in regulating ECM metabolism, which 
promoted alterations in the tumor tissue tensile strength; conse-
quently, the ECM properties may influence embryogenesis and 
organ development substantially (5,7,8). Tumorigenesis and 
embryogenesis involve similar cellular morphological changes, 
migrations and adjustments in the mechanical stiffness and 
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structural integrity of the tissues (8,9). Previous studies have 
reported contradictory effects of LOXs on the phases of tumor 
differentiation (5). These contradictions may indicate the 
spaciotemporal specificities for LOXs response and regula-
tions, which suggest that the response of LOXs may vary at 
various stages of organ development. A similar phenomenon 
was observed during embryogenesis, which suggested that 
LOXs may serve a significant role in the process of ECM 
structural stabilization and organ development (10,11).

In addition, aberrant ECM metabolism has been identified 
in several different diseases, including atherosclerosis, liver 
cirrhosis, aneurysms and Menkes syndrome, and the effects 
of LOXs were observed to be increased during organogenesis 
and development (5). ECM remodeling does not only form 
the foundations for stromal and interstitial stability, it also 
ensures the proper cellular anchorage to facilitate stabi-
lized cell‑cell adhesions, which is essential for maintaining 
functional stromal polarity (12). In this process, numerous 
proteins involved in ECM remodeling, including the LOXs, 
are required to be correctly functioning in the phases of organ 
development.

2. Roles of members of the LOX family in organ develop-
ment

The ECM is crucial in regulating extracellular functions. Not 
only does it maintain tissue mechanical rigidity and stiff-
ness, it is also responsible for manipulating cellular functions 
and regulating cell migrations (8,13). Amongst the hundreds 
of components identified in the ECM, fibrous proteins and 
proteoglycans are the two main constituents (14,15). As these 
proteins are mainly fibrous in form, the correct crosslinks 
between these macromolecules are essential for proper 
tissue development (6,15‑18). Furthermore, ECM metabolic 
processes and remodeling contribute to the complex extracel-
lular mesh, which relies heavily on the catalyzing function of 
LOXs (19).

During embryogenesis and organ development, LOXs 
promote infrastructural integration, in addition to facilitating 
the proper cell stiffness and rigidity required for organogen-
esis and subsequent morphological maintenance (17,20‑23). 
That is, the cells can be secured and maintained properly in 
the organic mesh and are able to maintain their functional 
polarity (12). Owing to the enzymes being secreted locally, the 
expression levels of LOXs and their subsequent activity have 
been correlated with the modulation and transformation of 
the cells. In this manner, cells can detect microenvironmental 
changes directly or indirectly, and serve as both participants 
and regulators in response to these changes (13,24). Again, as 
the mechanical force is becoming increasingly recognized in 
inducing organ development and tissue remodeling (25,26), 
further research embryogenesis should not be limited to 
biochemical factors, but to biomechanical factors as well.

Along with tissue adjustment, cells respond to external 
stress through the mediation of the ECM, which is also under 
the influence of the activity of LOXs (25,27‑29). In simpler 
terms, LOXs have been demonstrated to function as mediators 
between cells and the ECM during development. Thus, this 
family of enzymes is not only responsible for the overall archi-
tecture of cells, but also for the transduction of signals and 

responses between external forces and parenchymal/stromal 
cells during the processes of proliferation and remodulation.

Establishment of mechanical strength. The crosslinking of 
fibrous macromolecules is crucial for tissue formation because 
the properly formed ECM provides mechanical rigidity and 
stiffness, which is essential for maintaining the structural 
correctness and the proper functioning of organs (8,30,31). 
With regards to the respiratory system, bronchial forma-
tion and alveolarization are the main processes that occur 
during lung development. In a previous study analyzing the 
expression levels of LOX in the pulmonary parenchyma 
and pleural membrane during development, it was observed 
that LOX expression levels in prenatal and postnatal rabbits 
were increased, and subsequently reduced to 50% within 
4-10 weeks (17). In the same study, a one-side pneumo-
nectomy was performed in hamsters to determine LOX 
expression levels during the compensatory lung growth; 
an instant elevation in LOX expression levels were noted, 
alongside compensatory growth of the lung tissue prior to 
cellular proliferation. Thus, a chronologic‑specific pattern of 
LOX expression levels was observed during lung growth and 
development. Conversely, by inhibiting LOX activity, either 
through downregulating its expression or using the enzymatic 
inhibitor, β‑aminopropionitrile (BAPN), the newly formed 
lungs are observed with impaired bronchial morphogenesis 
and alveolarization (32,33). Notably, Maki et al (20) inves-
tigated the LOX-/- and LOXL1-/- knockout mice, and it was 
discovered that the improperly developed airways were associ-
ated with abnormally formed elastin and collagen fiber, which 
resembled the human embryo sample observed in a study by 
Kumarasamy et al (28). Although the direct evidence that 
abnormal embryogenesis contributes to pulmonary diseases is 
lacking, the pulmonary emphysema identified alongside alve-
olar enlargement and structural distortion were identified to be 
correlated to ECM abnormalities and LOX downregulation in 
a previous study (34). Consequently, these findings suggested 
that the development of the lung mesenchyme, bronchus and 
the pulmonary artery may be strongly associated with LOX 
modulation and properly regulated ECM formation may 
be substantial in maintaining the structural and functional 
mechanical load of bronchi and alveoli for ventilation and gas 
exchange.

In LOX-/- mice, it was reported that the mice died peri-
natally due to aortic aneurysms, cardiovascular dysfunction 
and diaphragmatic ruptures (20). This result is logical because 
the structural stability of the cardiovascular system is vital, 
as it endures the most constant and relative mechanical pres-
sure compared with other organ systems, thus any structural 
incompetence will lead to fatal consequences. With regards 
to development, Tsuda et al (35) discovered increased expres-
sion levels of LOX mRNA during embryogenic myocardium 
development in mice on the 11th and 13th day of embryonic 
development. Similarly, Behmoaras et al (15) revealed that 
LOX and LOXL1 activities were at their highest during the 
first 15 days of development, which suggested that both LOXs 
may be required for elastin and collagen remodeling in the 
aorta of rats. In addition, the insufficient activity of both 
enzymes was found to render Brown Norway rats susceptible 
to spontaneous artery rupture, which further indicated the 
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pivotal role of LOXs in ECM regulation, especially in stabi-
lizing collagen and elastin crosslinks (14,15). Complementary 
research similarly confirmed that LOXs were observed to 
reside in the aortic arch vessel, amongst other sites as myocar-
dial, endocardial, epicardium (35).

In more concrete organs, such as the teeth or bones, the 
ECM is found to be mostly mineralized, with other constituents 
namely being collagen, elastin and other fibrous proteins (18). 
The development of teeth has been found to involve ECM 
condensation and odontogenic stabilization (36), of which both 
processes can be observed through densely packed collagen 
fibers and orderly polarized picrosirius red staining. Through 
investigating odontogenesis, Tjaderhane et al (22) identified 
no significant differences among the teeth of LOX-/-, LOX+/- 
and wild‑type mice under the light microscope; however, 
following histochemical examination, the teeth of the LOX-/- 
and LOX+/- mice were observed to be thinner and unpolarized, 
which indicated that these effects may be due to the dysregu-
lation of LOX. Kim et al (37) demonstrated that both LOX 
and LOXLs were essential for organizing periodontal ECM 
fibrogenesis and promoting the differentiation of dental pulp 
cells from odontoblasts. Accordingly, both investigations favor 
the substantial effect of LOX in promoting the thickening of 
teeth and matrix collagen filling during development.

Similar to bones, the differentiation and mineralization of 
stromal cells and ECM are reported to be under LOX regulation. 
For example, during osteoblastogenesis, a parallel expression 
pattern between collagen and LOX was found in isolated mice 
clavicle cells (38,39). This result suggested that LOX may 
promote osteocyte stabilization and bone ECM remodeling. 
Furthermore, in LOX-/- mice, Pischon et al (40) found reduced 
osteoblast differentiation and insufficient mineral crystalliza-
tion. Similarly, Turecek et al (41) inhibited LOX expression 
with BAPN in cultured osteoblasts and discovered that not 
only were the collagen crosslinks dysregulated, but the expres-
sion and activity of osteoblasts were also undermined. These 
results further suggested an essential role of LOX in bone 
matrix formation. The collagen‑based mesh weights more 
crucial than is instinctively comprehend in bones and teeth 
development; however, the importance of LOXs in regulating 
development in these organs remains relatively unclear.

The musculoskeletal system accounts for nearly half of the 
body weight (42). The main constituent of muscles is myofibers, 
which are coated with muscle connective tissue (MCT) formed 
from muscle ECM, and muscles and tendons are formed from 
muscle fibers, fasciculi and other myogenic progenitors (43). 
Resembles to the ECM in other tissues, the homeostatic 
metabolism of the MCT is crucial; not only does it provide the 
supporting forces that bind the muscle fibers together, but the 
myofiber‑MCT cross‑talk is crucial during myogenesis (43). 
Kutchuk et al (44) revealed that muscle fibers formed in LOX-/- 
mice were shorter, smaller and decreased in number. Also, 
the more undeveloped embryonic limbs formed in these mice 
exhibited a disorganized MCT and the dysregulated deposition 
of collagen fibrils (44). Thus, it was indicated that insufficient 
LOX activity may underlie the deformed growth of embryonic 
limbs, which may be potentially correlated with the origin of 
Duchenne muscular dystrophy (23).

Attached to the skeletal muscles are the more ECM 
abundant structures, such as tendons and ligaments. In chick 

embryos, LOX expression levels in tendons were found to be 
elevated during their development (26). Moreover, the tendons 
were found with minor elastic modulus following the appli-
cation of BAPN during embryogenesis. These results may 
partially explain the defective healing capability discovered 
in the anterior cruciate ligament; differential LOX expression 
levels and collagen crosslinking in the three ligaments of the 
knee has been found to predispose different healing capabili-
ties (45,46).

The dynamic structural and functional changes during 
the maturation of the central nervous system (CNS), namely 
neuronal plasticity, is a critical process of both pre‑ and 
postnatal development (47). The involvement of neurogenesis, 
programmed cell death and ECM remodeling in neuronal 
plasticity following the adaption to environmental changes 
is markedly enhanced during brain development (48). In 
the maturation of the CNS, various components have been 
identified to be involved in cerebrum and cerebellum ECM 
remodeling (49). As one of these components, the dendritic 
extensions of neurons have been observed not only to deter-
mine brain function, but also are indicative of a neuron's 
development and its regeneration. A previous study identified 
the presence of LOXs in the cerebrum and immunohisto-
chemical analysis further revealed that cells in the pyramid 
layer in the hippocampus of LOXL‑null mice exhibited 
decreased diameters (50). These results revealed a potential 
essential role of LOXLs in inducing cellular differentiation; 
for example, it has been discovered that the increase in intra-
nuclear LOX‑propeptide facilitated microtubule stability and 
dendritic cell development (51).

Similarly, as the genetic deficiency of vacuolar protein 
sorting protein 18 (VPS18) is reported to facilitate the lyso-
somal degradation of LOX, the impaired dendritogenesis in 
VPS18 knockout mice was suggested to be correlated with 
the accumulation of LOX (52). That study revealed that other 
than ECM remodeling, LOX may also be capable of regulating 
organ development. Additionally, in studying amputated mice, 
the white matter and gray matter in the spinal cord were 
both found to be atrophied (53). Meanwhile, the decreased 
myelination and downregulated ECM regulatory factors 
were depressed along with LOX expression levels in another 
study (53). Furthermore, in superoxide dismutase 1-induced 
neurodegenerative model rats, neurons in the developed amyo-
trophic lateral sclerosis were found to express increased LOX 
expression levels and exhibit increased enzyme activity (54). 
This evidence suggested that, as the principle form of ECM 
remodulation in the CNS, synaptic remodeling may be regu-
lated by both LOX and neuronal signaling transmissions. Thus, 
proper regulation with a spatial and conditional specialty is 
fundamental for CNS development.

In a previous study, LOXs were found widely distributed 
cutaneously and subcutaneously, and were discovered to 
be correlated with aging (55). In fact, LOX expression was 
abundant in the epidermal basal layer, the basal keratinocytes 
and dermal fibroblasts, dermal vascular endothelial cells, hair 
follicles, sebaceous glands, sweat glands and hair (55,56). 
Cenizo et al (57) demonstrated that LOX expression levels 
in skin fibroblasts in adults were decreased compared with 
children, whereas, Langton et al (58) identified higher 
LOX activity in the elderly compared with young people. 
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In epidermal keratinocytes, further research identified an 
important role for LOX in regulating cellular keratinization, 
whereas LOXL2 was found to interact with cell‑matrix inter-
actions (59‑61). Le Provost et al (60) have thus suggested that 
finely regulated LOX expression is crucial for maintaining 
epidermal homeostasis.

LOX mediates the ECM response to environmental change. 
During organogenesis, the interaction between cells and 
the ECM in the adapting environment change is crucial (8). 
Physiological and biochemical changes in the environment, 
namely hypoxia, glycation, hormonal changes and deposi-
tion of metabolites, were discovered to trigger alterations in 
ECM formation and enzyme expression (17,62‑65). These 
adaptations in turn required the responses of the stroma 
and ECM to initiate the post-translational tissue remodeling 
process (7,8,13).

Pneumonectomy and hypoxia treatment are the conven-
tional methods used to investigating tissue alterations during 
lung organogenesis (17). As an ECM modulating enzyme, 
it was observed that hypoxia triggered cellular responses 
directly through increasing the expression levels of LOX (66). 
Cells are known to be sensitive to and promptly react to tissue 
oxygen saturation (StO2), as the O2 in the ECM is directly 
exchanged through passive diffusion extra‑intracellularly (67). 
Low StO2 directly hinders hypoxia induced factors (the HIF) 
from degrading, hence its accumulation triggers subsequent 
signaling cascades in response to hypoxia (68). In fact, low O2 
levels were ubiquitously observed to increase LOX expression 
levels and mediate ECM remodeling among different organo-
genesis and tissue development (29,35,66,69). In a model of 
pulmonary arterial hypertension, it was demonstrated that 
the vascular smooth muscle cells in the pulmonary arteries 
responded to hypoxia through increased LOX expression 
levels and subsequent enzymatic activity (64,70). Furthermore, 
this contributed to the increased deposition of collagen and 
elastin, alongside enhanced cellular proliferation during the 
progression of pulmonary vascular remodeling. Further studies 
have also identified the participation of other LOXLs, such as 
LoxL1, LoxL2, LoxL3 and LoxL4, contributing to idiopathic 
pulmonary arterial hypertension with response to hypoxia (71). 
Although this was observed in a pathological model, a similar 
mechanism is presumably employed during tissue develop-
ment. Similarly, LOX-mediated ECM remodeling in response 
to hypoxia has been reported in myocardial ischemia, liver 
fibrosis and in patients with obstructive sleep apnea (72,73). In 
addition, through investigating tendon and cartilage structure, 
the tenocytes were found to respond to hypoxia following 
increased LOX expression levels (29,74,75); as a consequence, 
these tenocytes were found with enhanced expansion capacity 
and proliferative potential. These results demonstrated that 
monitoring LOX expression, as the direct cellular response to 
hypoxia, is potentially useful as a biomarker and as a tissue 
engineering target to control tissue development.

Similar to hypoxia, dysregulated glycation induced 
tissue pathophysiology with altered ECM formation is a 
feature of metabolic diseases (76). It is reported that collagen 
crosslinking pathways involve both non‑enzymatic glyca-
tion and LOX‑mediated oxidative deamination of lysine and 
hydroxylysine (77). Commonly, dysregulated glycation is a 

result of diabetes, which has been indicated to induce altered 
enzymatic crosslinks and collagen physicochemical proper-
ties of the ECM in multiple systems (76). In the skin, patients 
with diabetes are more likely to appear aged and have a skin 
infection or foot ulcers, which is accompanied by fragmented 
collagens and dysregulated dermal connective tissues (78). 
In the retina, diabetes resulted in structural abnormalities in 
the retinopathy, which featured as thickened retinal capil-
lary basement membranes with upregulated levels of ECM 
fibroproteins (79,80). These findings may seem contradic-
tory. A plausible explanation for this phenomenon is that the 
structural changes in the oculus tissue were the consequence 
of excessive microvasculature permeability, whereas the 
abnormal collagen crosslinking change was similar to other 
hyperglycemia developed lesions (77). These results indicated 
that the glycation that contributes to ECM formation through 
LOX may be regulated at the metabolic level, as well as at the 
vascular and oxidative levels. For example, high glucose levels 
were discovered to directly increase the expression levels of 
LOX and its subsequent enzymatic activation in the dermis or 
endothelial layer, which resulted in excessive crosslinking and 
disruption in the formation of collagen fibrils and hindered 
ECM integrity (80). Furthermore, increased expression levels 
of matrix metalloproteinase (MMP)‑1 and MMP‑2 were 
identified in glycation‑induced LOX dysregulation; this result 
revealed the existence of indirect regulation between LOX and 
glycation (78).

Native low‑density lipoprotein and alcohol have also been 
reported to reduce LOX expression, collagen and elastin 
crosslinking in endothelial cells and the formation of scar 
tissue (65,81). Though these results were obtained following 
pathogenic studies, the implication of these results in manipu-
lating organogenesis requires further investigations.

Similarly, in age-related macular degeneration (AMD), 
pathological alterations involve choroidal neovasculariza-
tion, choroidal capillary proliferation and aberrant basement 
membrane architecture (82). Upon investigating environ-
mental tobacco smoke‑induced AMD, it was observed that the 
side stream smoke may directly suppress LOX expression in 
choroidal endothelial cells (83).

Thus, ECM formation and its regulation are complex issues 
involving complex mechanisms in developing tissues. In those 
organs or systems in which their structural or mechanical 
properties mainly determine the function, the appropriate 
regulation of the formation of the ECM is substantial for the 
mechanical strength required for structural maintenance and 
tension upholding, but also in providing the foundations for 
initiating growth. Nonetheless, studies have also revealed that 
LOXs are able to manipulate the transformation of the cellular 
phenotype in response to environmental changes during 
organogenesis (35,37,38,84). These results suggested that the 
role of LOXs in regulating organ development remain to be 
fully determined (see also Table I).

3. Signaling pathways involved in the modulation of LOX 
during tissue development

Numerous factors have been identified that regulate LOX; 
for example, the stimulation of fibroblasts or myofibroblasts 
prompts the secretion of the LOX precursor or promotes LOX 
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hydroxylation and direct enzymatic activation (30). It was 
reported that hypoxia‑inducible factor (HIF)1α, advanced 
glycation end‑products‑dependent transcription factor, trans-
forming growth factor (TGF)‑β, tolloid protein-1 (TLD1) and 
fibronectin all promoted either the expression or activation of 
LOX (33,84‑89). The opposite effect occurred following the 
stimulation from prostaglandin E2 and homocysteine (11,16). 
BAPN is extensively applied in in vivo and in vitro experiments 
as it selectively and non‑reversibly inhibits LOX activity (5).

During the branching of airways and pulmonary vasculo-
genesis, hypoxia is one of the deciding promoters that triggers 
their development (66,86). Therefore, hypoxia treatment or 
lateral-pneumonectomy are the most common animal model 
methods used for studying the issues of the respiratory 
system (17). In tissues with high expression levels of HIF1α 
and HIF2, the tissue exhibited increased fibrogenesis and 
collagen deposition, alongside increased expression levels of 

LOX (69). Decreased HIF expression levels were found to lead 
to vascular alveolar hypoplasia, neonatal respiratory distress 
and bronchopulmonary dysplasia that featured alongside 
insufficiently deposited and crosslinked collagens (66). It is 
therefore suggested that LOX may serve an important role 
in ECM modeling under HIF regulation, as Pez et al (90) 
revealed that HIF and LOX synergistically promote the growth 
of newly formed tissue and increased cellular proliferation in 
these tissues.

Fibrosis serves an important role in structural recon-
figuration during development. Although LOX and LOXLs are 
reported to significantly promote fibrotic alterations in tissues, 
certain stimuli are required to stimulate fibroblasts or myofi-
broblasts to secrete their precursors (91,92). In addition, the 
increased hydroxylation of LOX and its direct enzymatic acti-
vation are required (30). The presence of TGF‑β is required to 
facilitate the growth of embryos and fetal myoblast fibroblasts; 

Table I. Role of LOX and LOXL in organ development.

Authors, year Tissue Member Role Refs.

Rauch, 2004 Cerebrum LOX Elevated in superoxide dismutase 1‑induced neurodegeneration (49)
Li et al, 2010  LOX‑pro‑peptide Interfered with NF‑κB RelA signaling and microtubule stability (51)
Peng et al, 2012  LOX VPS18 gene knockdown impairs dendritogenesis following the (52)
   accumulation of LOX
Chelyshev et al, 2014 Spinal cord LOX Decreased expression alongside decreased myelination (53)
Brody et al, 1979 Lung LOX Newborn rabbit exhibited transient increased expression levels (17)
   compared with adult rabbits, and were reduced within
   4‑10 weeks after birth 
Tsuda et al, 2003 Heart LOX Positively correlated with embryogenic myocardium (35)
   development
Hornstra et al, 2003 Aorta LOX Genetic deletion in mice caused aneurysms and diaphragmatic (14)
   rupture
Voloshenyuk et al, 2011  LOX Facilitated vascular ECM hardening and remodeling (94)
Tjaderhane et al, 2013 Tooth LOX and LOXLs Promoted pulp medulla dentinal cellular differentiation, ECM (22)
   augmentation and mineral nodule formation
Kaku et al, 2016  LOX Responded to mechanical stress and promoted odontogenic (36)
   differentiation
Tjaderhane et al, 2013  LOX Promoted tooth thickening and matrix collagen filling (22)
Vora et al, 2010 Bone LOX and LOXLs Promoted osteoblast differentiation and bone matrix (39)
   mineralization
Pischon et al, 2009  LOX β‑aminopropionitrile or genetic knockout reduced osteoblast (40)
   differentiation and osteoblast deactivation
Vora et al, 2010  LOX‑pro‑peptide Inhibited osteoblast proliferation and differentiation (39)
Makris et al, 2013 Cartilage LOX Strengthened cartilage by hypoxia induction (29)
Marturano et al, 2014 Muscle and LOX Promoted collagen fibril formation in muscle and tendons (74)
Xie et al, 2012;  tendon LOX Promote collagen maturation in cruciate ligament (45) 
Kato et al, 2015    (46)
Szauter et al, 2005 Skin LOX and LOXL2 Deactivated with aging, dynamically expressed by fibroblasts (55)
   with the cellular response
Jiang et al, 2014 Uterus LOX Maintained by estrogen and downregulated during aging (62)

LOX, lysyl oxidase; ECM, extracellular matrix; LOXL, LOX‑like proteins; VPS18, vacuolar protein sorting protein 18.
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Cusella-De Angelis et al (85) and Leonard et al (93) both 
discovered that TGF‑β triggered the proliferation of fetal 
myoblasts and fibroblasts. This may in turn stimulate primary 
limb bud formation, which is essential for the secondary level 
of limb development, and ECM and stromal enrichment. In 
addition, in neonatal rat aorta smooth muscle cells, TGF-β1 
was found to significantly promote LOX expression levels (35). 
A similar result was reported in cardiac fibroblasts treated 
with TGF-β; it was observed that LOX expression levels were 
increased at both the mRNA and protein level, and this may be 
prevented by inhibitors of the TGF‑β cascade (94). These find-
ings suggested that the presence of TGF‑β may be essential for 
maintaining LOX stability.

Within in the TGF-β superfamily, the bone morphogenetic 
proteins (BMPs) have also been demonstrated to influence 
organogenesis in the brain, eye, hair follicles, kidney, lung, 
liver, skin and teeth in a pleiotropic manner (89). In regu-
lating the morphogenesis of each organ, BMP was found to 
activate LOX and LOXL1 from pro‑enzymes, thus it can be 
suggested that they are both critical for the ECM crosslinking 
that determines the biomechanical features of the tissue (95). 
Additionally, BMP‑1 was found to promote the efficiency 
of pro‑LOX activity between 1‑ and 20‑fold compared with 
mammalian TLD (mTLD) or mammalian TLD-like (mTLL)-1 
and mTLL‑2 (89). Thus, it was suggested that BMP may 

regulate embryogenic fibroblasts and control LOX activity in 
an mTLD and mTTD assisted manner (96).

Similar to the crosslinking between collagens, the 
elastin‑collagen crosslinking determines the stability of the 
ECM (15,84). Elastin stabilization requires the catalyzation of 
LOX, whereas, elastin and collagen crosslinking require the 
catalyzation of fibronectins (FNs), a type of glycoprotein that is 
abundantly expressed in the ECM (88). FN receptors are located 
in every tissue that originates from the three primary germ 
layers and are therefore considered to modulate embryogenic 
cellular migration and anchoring (24), which suggested the FN 
signaling may mediate the cellular-ECM signal transduction 
that may, in turn, modulate LOX secretion. Fogelgren et al (97) 
revealed that the decreased LOX proteolytic processing in 
FN‑null mouse embryonic fibroblasts was associated with lower 
LOX activity; however, whilst their enzymatic activity data did 
not determine the role of cellular FN (cFN) in regulating LOX, 
it was hypothesized that the FN matrix may activate LOX in a 
comprehensive manner. Specifically, FN was hypothesized to 
be expressed differently in various stages of organ development 
with the alteration of tissue microenvironment.

In LOXL1 knockout mice, the malformed pelvic floor, 
weakened vaginal wall and tendencies of pelvic organ prolapse 
were observed (98). A similar phenomenon was also observed 
in estrogen‑deficient mice (63). Furthermore, it was noticed 

Figure 1. Proposed roles of LOX in response to different factors. LOX was expressed and secreted in its proenzyme form. The regulation of LOX occurs at 
multiple levels, including at the transcriptional and translational level, and following both intracellular and extracellular enzyme activation. These regulations 
and reactions are correlated with the ECM transformation during embryogenesis and leads to changes in cell adhesion and proliferation, which correspond to 
organ development. βAPN, β‑aminopropionitrile; βFGF, fibroblast growth factor β; BMP‑1, bone morphogenetic protein‑1; ECM, extracellular matrix; FSH, 
follicle‑stimulating hormone; HIF1α, hypoxia‑inducible factor 1α; LDL, low density lipoprotein; LOX, lysyl oxidase; TGF‑β1, transforming growth factor‑β1; 
PGE2, prostaglandin E2.
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that estrogen promoted LOX upregulation and enzymatic 
maturation through direct and indirect means, by which such 
a mechanism is deemed beneficial in maintaining pelvic wall 
stability and skin elasticity (63,99). Notably, the pro‑LOX 
effect of estrogen was found to be inhibited following the 
administration of SB431542, a TGF‑β1 receptor inhibitor, 
revealing the participation of TGF‑β signaling in the estrogenic 
effect (63). Similarly, the pro‑LOX effect was also identified 
with androgens, as Harlow et al (100) and Slee et al (101) iden-
tified that 5α‑dihydrotestosterone significantly increased LOX 
expression levels both in vitro  and in vivo. In addition, the 
follicle‑stimulating hormone was observed to reduce both LOX 
expression levels and its activity (100). These results revealed 
the complicated regulation of LOX by the sex hormones and 
indicated a potential target in manipulating organogenesis 
through LOX regulation.

Multiple signaling pathways are involved in LOX and 
LOXLs regulation at different levels, including pathways 
involved in genetic transcription, enzymatic synthesis and 
activation both intracellularly and extracellularly. ECM 
maturation facilitates cellular transformation, which results in 
embryogenic progression and organ development. Fibroblasts 
and SMCs are both considered as primary regulators and 
messengers. For they were observed not only receiving shifting 
signaling and extracellular feedbacks (91). In turn, they 
stimulate alterations that contribute to the stromal changes 
and tissue biomechanical alterations (such as changes in the 
rigidity) in response to organ‑specific needs and parenchymal 
requirements (33). The response of LOX to multiple factors in 
organ development is summarized in Fig. 1.

However, how to utilize these signaling effects and the 
ECM‑cellular responses described above to manipulate ECM 
formation and organogenesis with LOXs requires further 
investigation; the prevention of abnormal development through 
targeting LOX requires a more thorough understanding of the 
regulation of LOXs and their spatiotemporal specificity, which 
currently remains relatively unknown.

4. Conclusion

ECM metabolism serves a critical role in tissue development; 
not only is it an essential mechanical structure for cells to 
maintain normal organ function and transducing extracellular 
mechanical signals to stimulate cellular responses, but it also 
forms the microenvironment that enables stromal and paren-
chymal interactions. Apart from triggering inter‑collagen 
crosslinking that determines tissue stiffness, LOXs are demon-
strated to be involved in multiple physiological or pathological 
pathways, both in extracellular modulation and intracellular 
signaling. The findings of the present review suggested that 
LOX may be comprehensively involved in the organogenesis 
of all systems. Nevertheless, regulating mechanical homeo-
stasis should be considered as the pivotal role of LOX.

In order to decipher this pivotal role, efforts should focus on 
investigating how LOXs modulates the ECM by maintaining 
the mechanical properties, which are essential in maintaining 
organ integrity and organ functional properties. During this 
process, direct and indirect influences of LOX on the stromal 
and parenchymal interactions that guide cellular phenotypic 
adaptations is also worth of further investigation.

A number of methods have proven effective in targeting LOX; 
however, research remains far from declaring a plausible and 
credible method for regulating LOX expression. The complexity 
and spatiotemporal specificity of LOX requires further inves-
tigations, followed by its modulatory role in physiological and 
pathophysiological states. Studies on LOXs have been conducted 
for decades; however, there are currently no clinical trials on 
LOXs for disease prevention and treatment, which suggested 
that the current understanding of LOXs is primitive. Thus, the 
application of LOX genes and proteins on disease diagnosis, 
treatment and prognosis are required to be further investigated.
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