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Asthma is a highly prevalent, chronic respiratory disease that impacts millions of
people worldwide and causes thousands of deaths every year. Asthmatics display
different phenotypes with distinct genetic components, environmental causes, and
immunopathologic signatures, and are broadly characterized into type 2-high or type
2-low (non-type 2) endotypes by linking clinical characteristics, steroid responsiveness,
and molecular pathways. Regardless of asthma severity and adequate disease
management, patients may experience acute exacerbations of symptoms and a loss
of disease control, often triggered by respiratory infections. The interferon (IFN) family
represents a group of cytokines that play a central role in the protection against and
exacerbation of various infections and pathologies, including asthma. Type I and III
IFNs in particular play an indispensable role in the host immune system to fight off
pathogens, which seems to be altered in both pediatric and adult asthmatics. Impaired
IFN production leaves asthmatics susceptible to infection and with uncontrolled type
2 immunity, promotes airway hyperresponsiveness (AHR), and inflammation which can
lead to asthma exacerbations. However, IFN deficiency is not observed in all asthmatics,
and alterations in IFN expression may be independent of type 2 immunity. In this review,
we discuss the link between type I and III IFNs and asthma both in general and in specific
contexts, including during viral infection, co-infection, and bacterial/fungal infection. We
also highlight several studies which examine the potential role for type I and III IFNs as
asthma-related therapies.

Keywords: asthma, type I interferon, type III interferon, infection, interferon-alpha, interferon-beta, interferon-
lambda, asthma therapeutics

INTRODUCTION

Asthma is a common chronic respiratory disease that affects approximately 300 million people
worldwide and places significant economic burden on society. Asthma accounts for millions of
disability-associated life years lost and over 200,000 deaths. In the United States between 2011 and
2016, 6.8% of working adults had asthma (11 million people) and nearly half reported an asthma
exacerbation, with 10% having visited the emergency department over a 5 year span (1). In 2009,

Abbreviations: AAD, allergic airway disease; AHR, airway hyperresponsiveness; EGFR, epithelial growth factor receptor;
hMPV, human metapneumovirus; hPIV, human parainfluenza virus; IAV, influenza A virus; ICS, inhaled corticosteroids;
IFN(s), interferon(s); IgE, immunoglobulin E; IRF, interferon regulatory factor; MDA5, melanoma differentiation-associated
protein 5; NTHi, non-typeable Haemophilus influenza; PBMCs, peripheral blood mononuclear cells; pDCs, plasmacytoid
dendritic cells; PGRN, progranulin; RIG-I, retinoic acid-inducible gene I; RLR, RIG-I like receptor; ROS, reactive oxygen
species; RSV, respiratory syncytial virus; RV, rhinovirus; TGFβ, transforming growth factor beta; TLR, Toll-like receptor.
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it was estimated that asthma was the cause of nearly 500,000
hospitalizations with an average stay of over 4 days, resulting in
health care costs of 20 billion dollars (2). In children, asthma
is the leading cause of chronic lung disease. Using the 2001–
2016 National Health Interview Survey, asthma incidence in the
United States was 9.2% in boys versus 7.4% in girls under the
age of 18, with incidence increasing after 5 years of age (3).
Further, asthma incidence and disease control also vary based
on socioeconomic, genetic, and environmental factors. Children
from low-income families, non-Hispanic Black children, and
Puerto Rican children have higher incidence and reduced asthma
control (4, 5). In 2013, 49% of asthmatic children missed school,
16.7% required an emergency department of urgent care visit, and
4.7% were hospitalized. This asthma burden resulted in over 13
million school days missed in the United States in a single year
(2). Emergency department visits from exacerbations or acute
attacks of asthma nearly double healthcare costs when compared
with stable asthmatics (2). Despite advances in treatments, a
significant portion of patients fail to achieve asthma control (6).

Asthma is a heterogeneous disorder characterized by airway
inflammation, mucus hypersecretion, and partially reversible
bronchial hyperresponsiveness with or without the presence
of atopy and elevated immunoglobulin E (IgE). This complex
respiratory disease encompasses a broad spectrum of phenotypes
ranging from mild to severe disease, with varying degrees of
responsiveness to steroid therapies. Based on lung function,
medication use, and frequency of exacerbations, asthma is
broadly defined as mild, moderate, or severe, and clinical
characteristics are used to cluster adult and pediatric asthmatics
(7–9). Although the majority of asthmatics have mild to
moderate disease that is well managed with standard therapies,
approximately 5–10% of asthmatics have severe disease, which
comprises nearly 50% of the asthma-related healthcare costs (10,
11). To date, the presence and degree of type 2 inflammatory
responses, involving eosinophilia and increased levels of the
proinflammatory cytokines IL-4, IL-5, and IL-13, have been the
focus of asthma research. Although the development of biologics
that target pathologic type 2 inflammation have been successful
in patients with disease marked by high eosinophilia (12, 13),
approximately 50% of asthmatics do not exhibit this type 2
phenotype, especially those with severe corticosteroid refractory
disease (14–16). Further, much less is known about pathogenic
mechanisms in non-type 2 asthma. Clinical symptoms and
steroid responsiveness have defined this subset of patients, but the
need for more mechanistic studies focused on linking molecular
mechanisms with clinical disease phenotypes is well appreciated.

Respiratory syncytial virus (RSV), human metapneumovirus
(hMPV), rhinovirus (RV), and human parainfluenza virus (hPIV)
represent four of the leading causes of respiratory tract infections
in children and can lead to chronic wheezing and other
pulmonary complications (17, 18). Numerous studies have linked
childhood RV infection with wheeze (2, 19, 20). In infants,
RSV is the most common cause of acute bronchiolitis and
wheeze. Early life infection with RSV has been linked to type
2 immune activation and allergic sensitization (21). In addition
to anti-viral inflammatory responses, viral infections also impact
the microbiome. Bacterial outgrowth of Moraxella catarrhalis,

Haemophilus influenzae, and Streptococcus pneumoniae has also
been associated with wheeze (22). Despite these associations,
the cause of asthma is still unknown, and many genetic and
environmental factors are linked to the development of this
chronic disease.

Exacerbations of asthma are acute or sub-acute episodes
of worsening asthma symptoms and lung function. Asthma
exacerbations account for the majority of the morbidity and
mortality associated with this disease, health care costs, and
loss of disease control (23, 24). Asthma exacerbations can be
triggered by many factors, including but not limited to allergens,
air and traffic pollution, upper and lower respiratory infections,
cigarette smoking or vaping, and second-hand smoke or aerosol
exposure (25, 26). It is well established that viral respiratory tract
infections initiate the majority of exacerbations in both school-
aged children and adults with asthma. Indeed, it is estimated that
greater than 80% of asthma exacerbations are associated with
viral infections (27). Many viruses have been identified as triggers
of exacerbations including RV, RSV, hMPV, hPIV, influenza
virus, coronavirus, enterovirus, bocavirus, and adenovirus (28).
Human RV is commonly associated with asthma exacerbations
and is detected in 76% of wheezing children and 83% of adult
exacerbations (29, 30). Studies have shown that individuals with
chronic airway diseases, like asthma, or chronic obstructive
pulmonary disease (COPD), have impaired immune responses
to infections, consequently triggering acute exacerbations of
diseases. Recent research suggests that infants with deficient
type I and III interferon (IFN) responses are more at risk for
lower respiratory tract infections and wheezing later in their
lives (31). As asthma exacerbations are commonly triggered by
respiratory infections and type I and III IFNs are essential for
antiviral host responses, we will review some common initiators
of asthma exacerbations and type I and III IFN responses in
the context of asthma and acute exacerbations. Finally, we will
discuss several preventative measures and treatments that are
utilized in preclinical and clinical settings.

TYPE I AND III INTERFERON
RESPONSES IN THE LUNG

While type I IFNs have been known since 1957 as cell-secreted
antiviral factors (32), and were the first cytokines discovered, type
III IFNs (IFNλ, IL-28/29) were only first described in 2003. Their
simultaneous discovery by two different groups led to their many
names, with Paul Sheppard’s group calling them interleukins (IL)-
29 and IL-28A/B (33), while Sergei Kotenko’s group referred
to them as IFN lambda (IFNλ1/2/3, respectively) (34). While
IFNλ1 is only found in humans, both mice and humans express
IFNλ2 and IFNλ3. Though structurally dissimilar, type I and
III IFNs converge at the beginning of their signal cascades to
induce the transcription of a highly overlapping complement
of interferon-stimulated genes (ISGs). However, the localization
of the type III interferon-specific receptor IFNλR1 to mucosal
tissues and immune cells restricts its actions (35). Type I and
III IFNs also differ in their kinetics and ability to activate
STAT1, leading to differences in IFN response factor expression
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and subsequent induction of pro-inflammatory chemokines (36).
Moreover, more recent work shows that these differences may
be independent of receptor abundance and instead intrinsic to
their signaling pathways (37). While new research will continue
to reveal differences between type I and III IFN signaling, these
pathways have many redundancies and are highly overlapping
throughout the respiratory tract (38, 39).

Interferon induction is perhaps best characterized in response
to influenza infection in the lungs. Mice lacking the receptors
for either type I (IFNαR1) or type III IFNs (IFNλR1) are more
susceptible to influenza infection, and both are important for
limiting mortality (40, 41). However, IFNαR1 deletion alone
did not increase immunopathology in the lungs post influenza
infection, suggesting that type III IFNs have an active anti-
inflammatory role in this context. Further, type III IFNs are
highly produced and less inflammatory than type I IFNs during
influenza infection in the lungs (40). Type III IFNs did not
induce the production of inflammatory cytokines in neutrophils
and suppressed neutrophil migrations to sites of infection (40,
41), helping to limit pulmonary inflammation during influenza
infection. While this reduction of neutrophils and resulting
decrease in immunopathology is beneficial during influenza
alone, neutrophils are necessary for antibacterial defense and thus
the role of type I and III IFN responses may be different in the
context of co-infection. During a co-infection, most commonly
influenza and a secondary bacterial infection, both type I and
III IFN are robustly produced after influenza infection and can
be detrimental to host clearance of secondary bacterial infection
(42, 43). Other models of co-infection exist, including RSV
and P. aeruginosa. Biofilm growth of P. aeruginosa, a main
factor for cystic fibrosis disease progression, was promoted by
RSV infection and P. aeruginosa biofilm growth on polarized
respiratory epithelium was enhanced by both type I and III IFN
production (44). Thus, the anti-inflammatory effects of type III
IFNs that are favorable to host outcomes during viral infection
can limit the ability of the immune system to clear bacterial
super-infection.

In the lung, many viruses have mechanisms to impair or evade
IFNs throughout the signaling pathway, affecting the ability of
the immune system to recognize virus, control viral replication,
and kill infected cells (Figure 1). RIG-I like receptors (RLRs)
bind double-stranded RNA replication intermediates of these
viruses and induce the production of type I and III IFNs. Initial
detection of viral nucleic acids by RIG-I and MAVS is blocked by
RSV proteins NS1/2, influenza A virus (IAV) NS1, PB1-F2/PB2,
and hMPV G and M2-2 proteins (45–47). The hPIV V protein
interacts with MDA5 to inhibit STAT activation and downstream
signaling, and hPIV’s C and V proteins directly inhibit STAT1
phosphorylation in the IFNλ signaling cascade (48, 49). NF-κB
and various interferon regulatory factors (IRFs), often IRF/3/7,
are inhibited or degraded by IAV progranulin (PGRN) and type 2
cytokines produced by RV infection (50, 51). The RSV F protein
also inhibits IRF1 outside of the classical IFNλ signaling pathway
through activation of the epithelial growth factor receptor
(EGFR) (52). Inhibition of IFN I and III can prolong infection
in otherwise healthy patients and cause detrimental effects in
compromised hosts, including asthmatics. As pathogens can play

a role in asthma development or exacerbations, understanding
the link between type I and III IFNs and asthma is crucial to
combatting and controlling severe asthma.

TYPE I AND III IFNS AND ASTHMA

In addition to controlling pulmonary infections, type I and III
IFNs are also thought to regulate immune responses critical for
asthma pathogenesis, but these mechanisms are less explored.
While much research has focused on IFNγ as a pro-inflammatory
mediator of severe asthma, altering airflow obstruction and
steroid responsiveness (53, 54), type I and III IFNs have also
been shown to be up-regulated in asthma. Children with asthma
have increased expression of both IFNλ1 and IFNλ2 in their
sputum, while adult asthmatics have increased sputum IFNλ2
but similar IFNλ1 levels when compared to healthy controls
(55). Another study found elevated levels of IFN I and III
in sputum of asthmatics with disease marked by neutrophilic
inflammation (56). IFNα levels in sputum also correlated with
higher levels of sputum lymphocytes in patients with asthma
(57). In addition to type I and III IFNs, ISG activation is also
prominent in mild and severe asthma, independent of viral
transcripts and type 2 inflammation (58). Overall, type I and III
IFN responses may influence asthma regardless of the degree of
type 2 immune activation.

Evidence shows that type I and III IFNs can restrict the
development of Th2 cells and secretion of type 2 cytokines,
thereby mediating allergic responses (Figure 2). Type I IFNs have
been shown to block Th2 development by suppressing GATA3
expression (59, 60) and altering Th2 cell activation and cytokine
release (61–63). Similarly, the development and activation of
human and murine Th17 cells are also negatively regulated by
type I IFNs (64, 65). Further, recent work has also demonstrated
a defect in type I IFN production in dendritic and epithelial cells
from patients with severe atopic asthma (62, 66). Studies also
show that type I IFNs are required for proliferation and effective
transmigration of DCs in response to antigen and an optimal
Th2 response in vivo (67–69). Using an ovalbumin murine model
of asthma, all isoforms of type III IFNs were shown to alleviate
allergic airway disease by reducing eosinophilia, decreasing type
2 cytokines, and modulating lung dendritic cell and CD4 + T cell
functionality (70–72). Similarly, other studies have shown that
IFNλ1 inhibits the development and responses of Th2 cells in
human PBMCs in an IFNγ-dependent fashion (73, 74). Together,
these studies suggest that type I and III IFNs regulate adaptive
and innate immune cells that are critical to the development of
allergic disease.

VIRUSES IN ASTHMA EXACERBATIONS

It is well-appreciated that viruses are the cause of a significant
portion of asthma exacerbations. In a cohort of 9–11 year
old children studied over 13 months, 80–85% of asthma
exacerbations occurred during viral infections (75). In one study,
hPIV infection was found in 42% of asthma exacerbations, and
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FIGURE 1 | Viral induction and evasion of type I and III interferon response. Infection with RSV, RV, hPIV, hMPV, or IAV causes production of type I and III IFNs (left)
through PRR signaling including TLRs and RLRs. These viruses have evolved functions to evade the IFN response (right) either by preventing PRR recognition or
blocking the activity of downstream factors like IRF3 or STAT1. Figure created in BioRender.com.

children with hPIV-induced bronchiolitis can go on to develop
chronic asthma due to virus-initiated immune reprogramming
(76, 77). Similarly, over 50% of children with hMPV infections
had wheezing complications and older children (5 and above)
were likely to have asthma exacerbations due to hMPV (18,
78). Moreover, co-infection with multiple viruses can occur and
increases the risk of asthma development. One study found that
approximately 83% of children 6–8 years old with co-infection-
induced bronchiolitis had recurrent wheezing as opposed to 70%
of children with a single infection. The same study also found that
hospitalizations due to co-infection were twice as high as single
infection, indicating that co-infection is a higher risk factor for
asthma exacerbation than single viral or bacterial infection (79).

Many studies have shown that host defense against respiratory
viruses may be abnormal in patients with asthma. It has
been speculated that asthmatics have a diminished capacity to
overcome respiratory viruses due, in part, to low levels of IFNs

in the bronchial mucosa. Several studies show that bronchial
epithelial cells from pediatric and adult asthmatics have deficient
induction of type I and III IFNs following RV infection (66, 80,
81), with the level of IFN production relating to the severity
of infection (81, 82). Bronchial epithelial cells from asthmatics
were shown to produce less type I and III IFN in response to
viral challenge (21). Both IFNα and IFNβ were directly linked
to more severe RV infection in a study that blocked type I IFN
activity in healthy patients. Moreover, this study showed that
otherwise healthy patients with impaired type I IFN mimicked
what is seen naturally in asthmatics during infection (81, 83,
84). Mice with house dust mite (HDM)-induced allergic airway
disease infected with influenza and primary bronchial epithelial
cells from patients with mild, atopic asthma infected with RV
produce IL-33 that subsequently suppresses production of type
I IFNs (85). Interestingly, deficient immune responses to viral
infection were not limited to patients with atopic, type 2-related
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FIGURE 2 | Type I and III interferon induction and T helper cell response to respiratory pathogens in the asthmatic lung. Type I and III IFNs are known to have
overlapping innate and adaptive roles in the lung and decreased IFN response to respiratory infection in asthmatics is thought to contribute to acute exacerbations.
Cross-inhibition between type 2 responses and type I and III IFNs have been reported in the context of type 2-high asthma and acute viral exacerbations. Type I and
III IFNs also can alter Th1 and Th17 responses and may directly and indirectly influence type-2 low asthma and exacerbations of disease. Further, pathogens can
influence T helper cell responses independent of IFN as well, directly altering the inflammatory environment in the asthmatic lung. Figure created in BioRender.com.

disease, but were also present in those without type 2-associated
conditions and severe therapy-resistant atopic asthma (66, 80,
86–88).

Several mechanisms for this apparent type 2 versus IFN cross-
inhibition have been proposed in the context of asthma and
acute viral exacerbations (Figure 2) (62). Reciprocally, type I
IFN was shown to inhibit innate lymphoid cell 2 (ILC2) function
as a mechanism of opposing type 2 inflammation (89). Further,
moderate to severe asthmatics have been shown to express
decreased levels of Toll-like receptor 7 (TLR7) on epithelial
and innate immune cells, likely mediated by IgE, suggesting a
defect in viral sensing and induction of IFNs (90, 91). Cross-
linking of the IgE receptor, FcεRI, and increased FcεRI expression
on plasmacytoid dendritic cells from atopic asthmatic children
has been linked to decreased type I and III IFN production in
response to RV (92) and influenza (93). Conversely, influenza
infection in mice lacking the type I IFN receptor resulted in
increased type 2 inflammation and IgE (89). A clinical trial using
an IgE blocking antibody resulted in increased immune cell
production of type I IFN upon in vitro stimulation with RV (94).

Airway inflammation in asthma is characterized by complex
inflammatory protein interactions, and it is likely that more than
one specific mediator or pathway influences and alters the lung

environment. For instance, type I and III IFNs are known to
have overlapping innate and adaptive roles as well as effects on
other inflammatory mediators contributing to the complexity of
understanding the mechanistic role of IFNs in this respiratory
disease. The balance between asthma driving cytokines and those
that render asthmatics more susceptible to viral infections and
exacerbations is an important consideration when regarding
IFNs as therapies.

INFLUENZA INFECTION IN THE
ASTHMATIC LUNG

The relationship between asthma and influenza is highly
nuanced. Unlike other respiratory viruses, it has long been
thought that asthmatics are no more likely than the general
population to contract influenza. This has been contradicted by
a study of the 2009 H1N1 pandemic which shows that children
with asthma were twice as likely to be infected with H1N1
influenza compared with other respiratory viruses (95). However,
infection of bronchial epithelium from human asthmatics and
healthy controls with pandemic H1N1 influenza showed no
difference in ability of virus to infect cells (96). Moreover, asthma
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did not increase H3N2 influenza viral shedding during ex vivo
infection of bronchial biopsy explants when compared with those
from healthy controls, both of which suggest that control of viral
replication is maintained in the asthmatic lung (97). Importantly,
a number of factors including RSV and RV co-infections during
hospitalization for influenza may have complicated the analysis
of the 2009 influenza pandemic (98), which may explain this
discrepancy between experimental findings and epidemiological
data. While there is a significant amount of data detailing
the prevalence of asthma in people hospitalized for influenza,
there is very little data concerning the incidence of influenza in
asthmatics compared with healthy controls, making it impossible
at this time to draw evidence-based conclusions regarding the
effect of asthma on influenza susceptibility.

It has also been assumed for quite some time that asthmatics
fare worse than the general population during influenza infection.
Asthmatics were hospitalized earlier than non-asthmatics (99)
during the 2009 H1N1 influenza pandemic but, surprisingly,
were less likely to die (100). In a larger retrospective study of
the pandemic outcomes, corticosteroid use and earlier hospital
admission explained the lower death rate of asthmatics compared
with healthy controls (101). In comparison, corticosteroid use
has been shown to increase mortality from influenza in non-
asthmatics (102). This pattern persisted across the world: a
pooled global study of risk factors during the 2009 pandemic
demonstrated that unlike all other chronic diseases assayed,
asthma actually decreased the odds ratio for mortality compared
with previously healthy people hospitalized for influenza (103).

This decrease in influenza mortality due to asthma is
reproducible in rodent models. Mice with Aspergillus fumigatus-
sensitized allergic airway disease (AAD) cleared H1N1
more rapidly than naïve mice (96). These results have been
independently corroborated in a murine model of ovalbumin-
sensitized AAD, where earlier clearance of H1N1 correlated
with more rapid type III IFN induction in the ovalbumin-
sensitized mice (104). It was observed that increased viral control
correlated with higher numbers of eosinophils arriving earlier to
the lung during influenza (96). More recent findings show that
influenza exposure causes murine eosinophils to up-regulate
the expression of genes encoding viral sensors (105), and that
these eosinophils can become infected by influenza virus and
degranulate in response to influenza (106). Strikingly, adoptive
transfer of eosinophils into the airways of A. fumigatus-sensitized
mice reduced influenza viral burden and weight loss in response
to influenza infection, suggesting these cells are actively beneficial
during influenza infection in mice with AAD. Moreover, this
correlated with a higher number of virus-specific CD8 + T cells,
and these influenza-exposed eosinophils were able to stimulate
CD8 + T cell activation and proliferation in vitro, indicating
a possible role for eosinophils as antigen-presenting cells in
influenza infection during asthma (106). Eosinophils from
human blood are also activated by influenza and are able to both
uptake and inactivate fluorescent dye-labeled influenza virus.
However, eosinophils from asthmatic patients were less able to
capture influenza virus when compared with eosinophils from
healthy controls, and this reduction correlated with severity of
asthma (107). In summary, data from murine models suggest

that eosinophils have direct antiviral activity and promote
adaptive immunity against influenza during AAD. However, data
from human eosinophils suggest their direct antiviral capacity
may be reduced in asthma, leaving the possibility open that
the reduction in influenza severity in asthmatics may be due to
factors other than eosinophils.

While asthma appears to reduce severe outcomes from
influenza infection, influenza can certainly exacerbate asthma.
Influenza is often identified in sputum samples from asthma
patients experiencing exacerbations (108), and children who did
not receive the influenza vaccine were more likely to have asthma
exacerbations (109). While there has been some concern in the
lay community that influenza vaccination itself could cause acute
asthma exacerbations, a study encompassing more than 1 million
children in the United States over three influenza seasons from
1993–1996 showed no increase in asthma exacerbations in both
a 2-day and 2-week period after vaccination (110). Importantly,
children with more severe asthma are more likely to receive the
influenza vaccine (111), creating a confounding variable. Without
taking that confounder into account, analysis suggested that
vaccinated children were more likely to experience exacerbations.
However, upon controlling for asthma severity, the analysis
revealed that children who had received the influenza vaccine
were in fact less likely to have asthma exacerbations in the 2-week
period following vaccination (110).

The molecular mechanisms by which influenza exacerbates
asthma are still somewhat unclear. The decreased type I IFN
response to viral infection in asthmatics may aid them during
influenza infection, but it likely contributes to the aggravation of
type 2 immunity during influenza-induced asthma exacerbations,
as type I IFNs suppress type 2 immunity. In fact, type 2 cytokines,
which dominate the most studied endotype of asthma, have
been shown to be increased by influenza. In mice with HDM-
sensitized AAD, influenza infection increased mucus production,
pulmonary inflammation, and airway hyper-responsiveness
(AHR), the hallmarks of asthma pathologies. Analysis of BAL
and lungs showed much higher cellular inflammation in the
influenza-infected, HDM-sensitized mice compared with mice
that were only infected with influenza. This was correlated with
early high IL-33 that persisted throughout influenza infection,
and later induction of myriad pro-inflammatory mediators
including KC, TNFα, IL-6, IL-12p40, IL-17A, CCL2, CCL20, and
RANTES (112). This same group later showed a key role for
IL-33 as a driver of asthma exacerbations: antibody blockade
of the IL-33 receptor reduced AHR as effectively as systemic
corticosteroids (85). While this group found no role for the IL-
33-producing ILC2 cells in influenza exacerbation of asthma,
another group using the same HDM-sensitized murine model
implicated ILC2s as well as CD4 + T cells. While ILC2s were
present earlier in the lung than T cells, their numbers did not
increase due to influenza infection, and CD4 + T cells were able
to produce pathogenic type 2 cytokines earlier during influenza-
induced asthma exacerbation. Only during viral clearance, when
ILC2 numbers in the BAL fluid were declining, did ILC2s produce
a meaningful amount of type 2 cytokines (113). While the
epidemiology unambiguously shows that influenza causes asthma
exacerbations, the roles of specific cytokines and immune cells
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involved still merit significant study, especially the influence of
type I and III IFNs that are so highly produced in healthy patients
in response to influenza.

BACTERIA AND FUNGI IN ASTHMA
EXACERBATIONS

While virus infections are thought to be the main culprit
of infection-associated asthma exacerbations, they are not the
only pathogens that contribute to exacerbations. Both bacteria
and fungi that cause respiratory infections are associated with
higher risk of exacerbation in asthmatics. Studies have shown
that neonates colonized with S. pneumoniae, M. catarrhalis,
or H. influenzae have increased risk of airway inflammation
during infection and developing asthma later in life (114).
Additionally, a longitudinal study showed that sensitization to
S. aureus enterotoxins increased risk of severe asthma and asthma
exacerbations up to 20 years after the study began (115).

In considering how asthma patients will respond to bacteria
and fungi, type I and type III IFN again are important factors. For
example, asthmatics have increased risk of severe S. pneumoniae
infection compared to their healthy counterparts. Studies in mice
have shown that prophylactic IFNα administration increases
macrophage and neutrophil activation upon S. pneumoniae
infection, leading to faster clearance of bacteria and reduced lung
inflammation (116, 117). As asthmatics often have lower IFN
responses to pathogens, this may impair their defenses against
exacerbation-causing bacteria as well as viruses, underscoring the
importance of developing IFN-based therapies.

The Gram-negative bacteria M. catarrhalis and H. influenzae
have also been associated with wheezing. Colonization of the
airways with either of these bacteria during childhood increased
the likelihood of asthma diagnosis later in life (114). In one
study, 21% of infants tested were colonized with S. pneumoniae,
M. catarrhalis, H. influenzae, or a combination; of these infants,
colonization with one or more of the above correlated with
persistent wheezing along with elevated eosinophil counts
and serum IgE levels (118). Additionally, infants dominated
by H. influenzae had more instability in their microbiome
over time, which led to more frequent respiratory infections
compared to infants with a stable microbiome (119). Non-
typeable H. influenzae (NTHi) induces a potent inflammatory
response upon infection, including IL-8, TNFα, and IFNγ. IFNγ

has been suggested as a therapeutic for recurrent NHTi infections
but has not been sufficiently tested (120). Similarly, M. catarrhalis
colonization can lead to asthma exacerbations through massive
production of inflammatory mediators like IL-6, TNFα, IFNγ,
and IL-17 (121). Therapies in the form of neutralizing antibodies
against both IL-6 and TNFα have proven effective in mice against
M. catarrhalis-caused asthma exacerbations, but IFNs have not
been studied as M. catarrhalis efficiently down-regulates TLR3
in infected cells, resulting in almost complete ablation of IFNβ,
IFNλ, and IL-8 secretion (122).

While bacteria can exacerbate asthma on their own, they
are also found during viral-bacterial co-infections in the
lung, which as previously discussed most often occurs during

influenza infection. Like influenza, it appears that asthma
may protect patients from severe disease during co-infection
with influenza and bacteria. A murine model of ovalbumin-
sensitized AAD showed that sensitized mice had increased
bacterial clearance and survival after influenza/S. pneumoniae
co-infection as compared to mice without AAD. Furthermore,
these results were repeated with HDM-sensitized mice, which
also displayed lower bacterial burden and mortality in response
to influenza/S. pneumoniae co-infection compared with non-
sensitized mice. The mice with AAD produced more TGFβ even
before influenza infection, and this protection from infectious
disease was ablated in mice with deletion of TGFβRII (123). TGFβ

is commonly up-regulated in asthma (124), and is thus likely
to contribute to protection from viral/bacterial co-infection in
humans with asthma as well. An independent group corroborated
these findings in a model of A. fumigatus-sensitized AAD,
showing that bacterial burden and mortality were decreased
during influenza/S. pneumoniae co-infection in sensitized mice
compared with healthy controls (125). As type I and III IFNs
are such important mediators of influenza-induced susceptibility
to secondary bacterial infection, it is likely that they are altered
by preceding asthma, but measurements of these IFNs were not
reported in either study.

Aspergillus fumigatus infects both healthy and
immunocompromised individuals, but even colonization without
invasive infection in asthmatics can result in sensitization and
AHR that increase the likelihood for an exacerbation (126).
While A. fumigatus can be used to induce AAD in mice
and contributes to the development of asthma in humans,
it can also invade the lung causing invasive aspergillosis, as
well as causing a number of pulmonary diseases (127). Both
type I and type III IFNs are robustly induced upon infection
with A. fumigatus and help the host to clear the fungus.
Specifically, CCR2 + monocytes are primarily responsible for
promoting type I IFN production upon A. fumigatus infection,
and the presence of type I IFNs allows for optimal IFNλ

signaling later in infection (128). Once IFNλ is produced
with the help of type I IFNs, it acts directly on neutrophils to
promote antifungal activity and clear the infection (128). The
effectiveness of IFNs in clearing A. fumigatus infection makes
them attractive therapeutic candidates. It has been postulated
that the regulation of neutrophils and ROS by IFNλ could
be used in a therapeutic setting, but more work needs to be
done in this area (129). In summary, IFN I and III aid host
defense against bacteria and fungi as well as viruses in the lung
and make attractive targets for boosting immunity against this
plethora of pathogens that contribute to asthma exacerbations.
However, the research regarding IFNs as treatments is limited
and will require further studies to evaluate their potential
in these settings.

CLINICAL IMPLICATIONS OF TYPE I
AND III INTERFERON THERAPIES

Inhaled corticosteroids (ICS) are commonly prescribed therapies
in airway diseases, such as COPD and asthma, and are used
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TABLE 1 | Therapeutic Applications of Type I and III IFNs in Asthma (in chronological order).

References Tested intervention/Drug Subjects/Study population Outcomes

Preclinical:

Maeda et al. 1997 (140) IFNβ via intraperitoneal
administration and prednisolone
treatments

Mice with type 2 dominant allergic
airway disease

Improved lung inflammation and
reduced AHR, with no change in
secreted IgE

Li et al. 2014 (70) Ad-hIFNλ1 via intranasal
administration

Mice with type 2 dominant allergic
airway disease

Improved lung inflammation (lower
IL-4, IL-5, and IL-13) and
decreased eosinophilia

Won et al. 2019 (71) IFNλ2/3 via intranasal administration Mice with type 2 dominant allergic
airway disease

Improved lung inflammation (lower
TSLP and IL-33)

Clinical:

Gratzl et al. 2000 (137) Administration of IFNα daily for
∼6 months

Case study of a 38-y/o with poorly
controlled eosinophilic asthma

Reduced IL-5 release from PBMCs,
decreased blood eosinophils, and
possibly increased corticosteroid
sensitivity

Simon et al. 2003 (138) Treatment with IFNα over the course
of 5–10 months

10 adults with severe
steroid-resistant asthma taking
prednisone

Improved lung function, lowered
required dose of corticosteroids,
decreased blood leukocytes,
increased IL-10 expression in
PBMCs, and promoted Th1
differentiation

Kroegel et al. 2009 (139) Treatment with IFNα over the course
of 12 months

16 adults with severe, persistent
asthma on long-term oral
glucocorticoid treatment

Improved lung function, lowered
required dose of corticosteroids,
decreased blood eosinophils, and
decreased asthma-associated
emergency room visits and
hospitalizations

Djukanović et al. 2014 (141) Inhaled administration of IFNβ daily
for 14 days after onset of cold
symptoms

Asthmatic patients on inhaled
corticosteroids

Enhanced morning peak expiratory
flow recovery, reduced need for
treatment, and increased ISGs in
sputum cells

to improve disease control and reduce asthma exacerbations.
However, this course of treatment may not be the ideal or
efficacious solution for all patients, particularly those with more
severe asthma, non-type 2 responses, or early in exacerbations
when airway neutrophilia is high. Evidence also suggests that
corticosteroids may impair innate antiviral immune responses
and may contribute to increased risk of exacerbations and
severity of disease. Indeed, McKeever and colleagues showed that
asthmatics receiving ICS have an increased risk of pneumonia
or lower respiratory infection, with those receiving higher
doses being at greater risk (130). Further, suppression of IFNs
by ICS during virus-induced COPD exacerbations mediated
pneumonia risk, suggesting that inhaled IFNβ therapy may be
protective (131). These studies suggest that suppression of IFNs
by corticosteroids may render patients with preexisting airway
disease more susceptible to viral infections and exacerbations,
thus, type I and III IFN therapy may be beneficial in some
settings. Outside of the lung, type I and III IFNs have been
explored as treatments and therapeutic targets for a variety of
inflammatory illnesses, including sepsis, cancer, ocular disease,
and rheumatoid arthritis (132–135). It is therefore worthwhile
to examine potential uses of type I and III IFNs within
the lung as well.

As type I and III IFNs can restrict the secretion of Th2
cytokines and mediate allergic responses, the therapeutic
potential of these IFNs for the treatment of asthma and

asthma exacerbations has been explored. Indeed, intranasal
administration of human IFNλ1 attenuated eosinophilic
inflammation in the airways, production of IL-4, IL-5, and
IL-13 in the lung, and pulmonary resistance in mice with
ovalbumin-induced AAD (136). Similarly, asthmatic mice that
received IFNλ2/3 intranasally exhibited significant decreases
in TSLP and IL-33 protein levels in the BAL fluid, less lung
inflammation by histology, and improved pulmonary resistance
(71). Other groups have shown that treatment of human PBMCs
with IFNλ1 inhibits the development and responses of Th2 cells,
primarily by diminishing IL-13 secretion while not inducing a
complementary elevation in IFNλ (73, 74). In addition to IFNλ1,
other isoforms have also been studied for their therapeutic
potential. Specifically, Koltsida and colleagues demonstrated
that overexpression of IFNλ2 in the lung inhibited Th2 and
Th17 responses and suppressed OVA-induced AAD in mice (72).
Further, this IFN-induced suppression was dependent on IFNγ

and IL-12 (72).
Beyond type III IFNs, studies outline the therapeutic potential

of type I IFNs in asthma control. Several publications show
that treatment with IFNα, coupled with corticosteroids, to be
beneficial in poorly-controlled asthma, citing improved lung
functionality and decreased AHR (137–139). Similarly, IFNβ was
also shown to inhibit AHR in a murine model of asthma (140).
In the context of exacerbations, a clinical trial of exogenous
IFNβ treatment at the onset of cold symptoms improved peak
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expiratory flow and asthma control questionnaire score in severe
asthmatics (141). When IFNβ was administered to asthmatic
patients infected with RV, only slight improvements in morning
peak expiratory flow recovery were observed (141). As the vast
majority of this research has been focused in type 2 driven disease,
it is still unclear if type I and III IFNs have a potential therapeutic
role in severe, type 2-low driven disease. IFNγ has been identified
as a driver of severe, steroid unresponsive asthma. Studies have
shown IFNγ+ CD4+ T cells are more prevalent in the airways
in severe asthma versus mild, moderate disease and that IFNγ-
induced expression of CXCL10 and down-regulation of SLPI lead
to increased AHR and steroid resistance in severe asthma (53, 54,
142, 143). Thus, the asthma endotype may need to be considered
in the context of type I and III IFNs.

While type I and III IFNs have significant antiviral activity and
are important in bacterial infection of the lung, evidence shows
that they also have important immunoregulatory properties,
especially in the lung. While the therapeutic applications of
type I and III IFNs are still emerging, several preclinical and
clinical studies show the effects of IFN treatments on pulmonary
diseases (Table 1).

SUMMARY

The importance and necessity of both type I and type III
IFNs is universal in viral, bacterial, and fungal infections in
the lungs. With infection being a prominent cause of asthma
exacerbation in both children and adults, understanding the role

of IFNs may be crucial to preventing and treating exacerbations.
While the role of type II IFN (IFNγ) in asthma has been
the subject of considerable investigation, new research shows
that type I and III IFNs may also have a hand in asthma
development and exacerbation. Here, we have discussed current
knowledge regarding the role of type I and III IFNs in
the development of asthma and in defense against common
respiratory pathogens linked to asthma exacerbation. Finally,
we summarize the current state of type I and III IFN-based
therapies for asthma.
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