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This study presents a data-driven machine learning approach to predict individual
Galactic Cosmic Radiation (GCR) ion exposure for 4He, 16O, 28Si, 48Ti, or 56Fe up
to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET
assay consists of a series of cognitive performance tasks on irradiated male Wistar rats.
The GCR ion doses represent the expected cumulative radiation astronauts may receive
during a Mars mission on an individual ion basis. The primary objective is to synthesize
and assess predictive models on a per-subject level through Machine Learning (ML)
classifiers. The raw cognitive performance data from individual rodent subjects are
used as features to train the models and to explore the capabilities of three different
ML techniques for elucidating a range of correlations between received radiation on
rodents and their performance outcomes. The analysis employs scores of selected input
features and different normalization approaches which yield varying degrees of model
performance. The current study shows that support vector machine, Gaussian naive
Bayes, and random forest models are capable of predicting individual ion exposure
using ATSET scores where corresponding Matthews correlation coefficients and F1

scores reflect model performance exceeding random chance. The study suggests a
decremental effect on cognitive performance in rodents due to ≤150 mGy of single ion
exposure, inasmuch as the models can discriminate between 0 mGy and any exposure
level in the performance score feature space. A number of observations about the utility
and limitations in specific normalization routines and evaluation scores are examined as
well as best practices for ML with imbalanced datasets observed.

Keywords: space radiation, radiation research, rodent studies, cognitive impairment, machine learning, support
vector machine, Gaussian naive Bayes, imbalanced datasets

INTRODUCTION

Galactic Cosmic Radiation (GCR) is an inherent risk for crewed missions traveling beyond the
magnetosphere encircling Earth (Pietsch et al., 2011; Delp et al., 2016). GCR originates from outside
the solar system and is primarily composed of high-energy atomic nuclei (Longair, 1992). The
effects that GCR has on human cognitive health performance remain an essential inquiry for deep
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space travel given the inevitable exposure of astronauts during
long-duration flights. An astronaut on a planned mission to
Mars will be exposed to an estimated 130 mGy of GCR per
year (Slaba et al., 2016). To quantify the potential change in
human cognitive abilities to these levels of GCR ions, rodent-
based human surrogate models are commonly used (Chancellor
et al., 2018). Such studies show that the aggregate exposure to
less than 250 mGy of various ions could have concomitant effects
on cognitive performance for rodents (Parihar et al., 2015; Kiffer
et al., 2019), implying potential complications for humans in
space mission success.

Testing rodents’ recognition memory, spatial memory,
anxiety, and attention provides quantification of difference
in health and performance between control and irradiated
groups (Cekanaviciute et al., 2018). One such test, the Novel
Object Recognition (NOR) test (Antunes and Biala, 2012;
Lueptow, 2017), evaluates a rodent’s object recognition memory.
Exposure to whole-body and head-only High atomic number
(Z) and Energy (HZE) ions and protons is shown to cause
impairment in NOR for mice (Haley et al., 2013; Poulose
et al., 2017). Reports of NOR tests performed after exposure
to GCR component ions show 300mGy 48Ti particle irradiated
mice having significantly reduced recognition memory and
50 mGy irradiated 48Ti and 16O and 300mGy 16O having no
reduced recognition memory when compared with the control
rodents (Parihar et al., 2016). A similar object recognition
study using exposure of 56Fe particle doses greater than those
experienced by astronauts in long term missions shows a
dose dependent impairment of irradiated rats in differentiating
between novel and familiar objects in object recognition memory
tasks (Rabin et al., 2009).

Executive functions are a crucial component for adaptive
functioning and include aspects of cognitive flexibility, planning,
conceptual reasoning, attention, and set shifting (Spinella, 2005).
One rigorous assay for assessing executive function is the
Attentional Set-shifting (ATSET) test (Birrell and Brown, 2000;
Garner et al., 2006). The ATSET is a constrained cognitive
flexibility test where a rodent is evaluated on its ability to
discriminate between cues across varying perceptual modalities
in order to retrieve a food reward. This test consists of seven
stages where rats forage for a food reward placed inside a
bowl associated with a digging media and/or scent which varies
by stage (Birrell and Brown, 2000). The ATSET attempts to
quantify the cognitive performance and ability of a rodent
to adapt to changes in an environment through a series of
stages that each requires utilization of specific regions of
the brain (Heisler et al., 2015). Five cognitive processes are
interrogated during the ATSET: Simple Discrimination (SD),
Compound Discrimination (CD), Intra-Dimensional Shifting
(IDS), Extra-Dimensional Shifting (EDS), and reversal learning.
In reversal learning, a rodent first learns a discrimination
rule and then, after demonstrating this learned behavior, must
unlearn and reverse its choice (e.g., an unrewarded cue is
now rewarded). This aims to assess cognitive flexibility in
the subject. Stages of the ATSET involving reversal learning
include the CD reversal (CDR), ID reversal (IDR) and ED
reversal (EDR) stages. The medial prefrontal cortex regulates

performance in SD (Bissonette et al., 2008) while the perirhinal
cortical region regulates performance in the CD tasks (Norman
and Eacott, 2004). Cognitive flexibility is evaluated in the
reversal and extra-dimensional shift stages of the assay (Heisler
et al., 2015). An attentional set forms when a subject learns
rules that allow it to differentiate relevant from irrelevant
cues with regards to various stimuli. A rodent’s ability to
adapt to new conditions and rules are evaluated during these
stages—analogous to an astronaut adapting to changes in
the environment.

A 2014 investigation (Britten et al., 2014) observes that
exposure from 150 or 200 mGy of 1 GeV/nucleon 56Fe particle
irradiation inhibits ATSET performance in rats at all stages.
The study further reports that performance decrement varies
across tasks as the SD, CD, CDR, and Intra-Dimensional
Shifting (IDR) ATSET tasks exhibit strong impairment at
200 mGy, some impairment at 150 mGy in the SD and
CD tasks, and no significant impairment at 100 mGy in any
of the tasks resulting from exposure to 1 GeV/nucleon 56Fe
particle irradiation, implying threshold radiation levels may
exist above which impairment exacerbates or deemed beyond
acceptable degradation. The authors also observe performance
decrements in male Wistar rats after exposure to 1 GeV/n
doses in the CD stage when assessed at the 12 week post-
irradiation time point, but no impairment at this same post-
irradiation time in the SD and CDR stages. In a subsequent
study (Jewell et al., 2018), the cognitive performance of rodents
is evaluated post-exposure to single beam 56Fe ions with doses
varying between 100 and 150 mGy. This study finds that
exposure to even 100 mGy 56Fe impairs cognitive performance
in the ATSET and that CD is impaired across all doses. In
contrast, performance in other stages is impaired at only certain
radiation doses. This study further illustrates that performance
impairment resulting from given GCR exposure is not uniform
across stages. One of the distinctions in this study is the
prescreening stage, which aids in differentiating between rodents
who suffer memory or performance impairment and those who
have an inherent difficulty with the tasks at hand. Another
such study (Britten et al., 2018) using prescreening of the
male Wistar rats and 600 MeV/n 28Si particles illustrates the
ability of rats to perform ATSET 12 weeks after exposure
to 50 – 200 mGy of 600 MeV/n 28Si particles. The findings
show that exposed rodents exhibit a uniform impairment in
the SD task along with impairment in other tasks varying
according to dose. A male Wistar rat investigation (Parihar
et al., 2016) shows significant performance decrement in the
CD stage at the 12-week post-irradiation point after low dose
50 mGy 1 GeV/n 48Ti particle irradiation. This signals an
impairment in the subjects in identifying and concentrating
on task relevant perceptual cues. Notably, no impairment is
found for the SD and CDR stages at this 12-week post-
irradiation point. Another 1 GeV/n 48Ti investigation (Hadley
et al., 2016) on male Wistar rats subjected to doses from 100 to
200 mGy shows long-term cognitive performance impairment
in specific ATSET stages when evaluated at 3 months post
exposure. The findings demonstrate significantly impaired CDR
performance at all doses, especially 200 mGy, and impaired CD
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performance at 100 and 150 mGy. Unlike other studies (Jewell
et al., 2018) which show impaired SD with 1 GeV/nucleon
56Fe particle irradiation at 150 and 200 mGy, no significant
impairment in SD ability is established from 1 GeV/n 48Ti
irradiation. All of these investigations help substantiate the
notion that HZE particle irradiation can induce attentional set-
shifting impairment.

Studies generally evaluate performance measures holistically,
such as with Mann—Whitney (Britten et al., 2014; Parihar
et al., 2016), one-way analysis of variance (Parihar et al., 2016),
and cohort analyses (Britten et al., 2021), but do not attempt
unique ML classification of individuals. Traditionally, space
radiation studies look at average cohort values of the relevant
performance metric and see if they differ significantly between
the sham, i.e., non-irradiated, and irradiated subjects (Britten
et al., 2021). One drawback to this methodology is that the
entire subject population usually does not undergo constant
performance decrement. Another drawback is that these cohort
analyses do not indicate the extent to which the performance
of individual subjects differs from the non-irradiated subset
(Britten et al., 2021). Recent studies illustrate the use of ML
and ensemble methods to automate sleep scoring in rodents
using electroencephalogram and electromyogram combination
recordings (Gao et al., 2016; Exarchos et al., 2020). More broadly,
ML enables the use of human subject-level data in a wide range
of medical applications (e.g., bone physiology (Schepelmann
et al., 2019), bioelectromagnetics (Halgamuge, 2020), clinical
decision making (Chen et al., 2019) — including radiotherapy
(Valdes et al., 2017)). Other applications (Cacao et al., 2018)
use combinations of stochastic (including Monte-Carlo methods)
and physics-based models to predict neuronal dendritic damages
caused by exposure to low linear energy transfer radiation (e.g.,
X-rays, γ-rays and high-energy protons). In contrast, data-driven
approaches make inferences directly from the data without the
requisite understanding of the underlying physical mechanisms
and may offer unique insights given their limited reliance on
presumptions and potential prediction capabilities.

This paper explores the feasibility of using ML techniques
to predict received radiation exposure on a rodent subject from
their corresponding ATSET cognitive performance scores. The
remainder of the paper is structured as follows. First, the ATSET
experiments upon which the analysis is based are explained and
discussed, including details about the dataset and normalization
options. We then inspect the rationale behind using three
classification ML algorithms with varying underlying approaches
and discuss essential concepts such as class imbalance and the
cross-validation routine. Lastly, we present results from three ML
classification algorithms with different underlying mathematical
approaches and discuss the utility, findings, and limitations in
their application to this type of analysis.

MATERIALS AND METHODS

Analysis Workflow
The analysis consists of a data acquisition phase where the
experimental data are assembled, and a preprocessing stage where

data are normalized and dimensionality reduction techniques
are employed. Next, we initiate a model training phase where
hyperparameters and other considerations of the model itself,
such as kernels and class weighting, are specified. We conclude
with a validation and assessment phase where cross-validation,
hyperparameter tuning, and corresponding evaluation metrics
are assessed. Figure 1 depicts a flowchart diagram of the general
methodology in the analysis.

Data Procurement: Irradiated Rodent
Performance Data
We procure individualized rodent data for this numerical
investigation from experimental ATSET results. The
experimental data consist of previously reported 400 MeV/n
4He with LET of 1.2 keV/µm (Burket et al., 2021), 600 MeV/n
28Si with LET of 54 keV/µm (Britten et al., 2018), 1 GeV/n
48Ti with LET of 106 keV/µm (Hadley et al., 2016; Parihar
et al., 2016), 600 MeV/n 56Fe with LET of 180 keV/µm (Jewell
et al., 2018), and previously unreported 400 MeV/n 16O with
LET of 19.4 keV/µm whole-body single beam ion exposures
with a dose of 0 (sham), 10, 30, 50, 100, or 150 mGy on 10-
month-old male Wistar rats evaluated before irradiation and at
the 12 week post-irradiation time point. A tabulated summary
of these studies is given in Table 1. These experiments are
performed with multiple cohorts over a multi-year timespan
in Dr. Richard Britten’s lab at East Virginia Medical School
(EVMS; Norfolk, VA, United States). For the experimental
tests from which performance decrement scores are calculated,
the rodents perform the first four ATSET stages in the pre-
irradiation phase, and all seven stages in the post-irradiation
stage. The pre-irradiation results provide a baseline for some
aspects of their innate performance abilities for a direct
comparison to their post-irradiation performance and are a
strong consideration in choosing to utilize the scores of this
specific experiment.

To elucidate the ML approach to utilizing this individualized
rodent data, a more comprehensive description of the ATSET
test is beneficial. The attentional set-shifting test is an executive
function task designed to quantify the cognitive performance
of a rodent through the use of a food reward and a series
of stages that use distinct centers of the brain when executed
(Britten et al., 2014; Heisler et al., 2015). This multi-stage
test investigates the ability of the rats to complete these
seven stages with a performance evaluation using two different
scores: the Attempts To Reach Criterion (ATRC) and the
Mean Correct Latency time (MCL). The ATRC scores examine
the number of attempts that the rat takes to pass a stage
(the criterion to pass a stage is successful food retrieval
in six consecutive attempts). Thus, a lower score in ATRC
represents a higher-performing subject. Six is the lowest score
possible, representing a perfect performance in that stage.
The MCL metric evaluates the average time for successful
retrieval of food; thus, higher magnitudes represent worse
performance. We further define an additional score, the success
rate, which provides the ratio of correct attempts to the sum
of correct and wrong attempts. These three metrics, ATRC,
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FIGURE 1 | Flowchart diagram illustrating the general steps in the analysis methodology. The Data Procurement and Preprocessing stages consist of acquiring and
segmenting the data and then performing the relevant normalizations and dimensionality reduction when applicable. The Model Training and Validation and
Assessment stages consist of training the model using the relevant algorithms, evaluating their performance, and making relevant modifications to improve model
training.

TABLE 1 | List of publications corresponding to the datasets used in this analysis.

Publication Ion Ion
mass

Dose (mGy) Linear energy
transfer LET

(keV/µm)

Kinetic energy
(MeV/n)

Britten et al., 2014 Fe 56 100, 150, 200 150 1000

Hadley et al., 2016 Ti 48 100, 150, 200 106 1000

Parihar et al., 2016 Ti 48 50 106 1000

Britten et al., 2018 Si 28 50, 150, 200 54 600

Jewell et al., 2018 Fe 56 10, 30, 50, 100, 150 180 600

Britten et al., 2020 Si 28 10, 30, 50, 100, 150 54 600

Burket et al., 2021 He 4 10, 50, 100 1.2 400

All studies use male Wistar rats, 10-months-old at time of irradiation. All irradiation is administered to the whole-body at the NASA Space Radiation Laboratory. All
behavioral testing is performed in Dr. RB’s lab at the East Virginia Medical School at 12 ± 2 weeks post-irradiation. Irradiation details specific to each study are listed.

MCL, and Success Rate, are henceforth also referred to as
evaluation scores.

Preprocessing Rodent Attentional
Set-Shifting Data
We utilize specific data normalizations of input feature sets
in predicting GCR ion exposure. Two types of normalizations
of the data are performed to examine the rodent performance
decrements relative to pre-irradiation performance: prescreen
SD and 4-stage normalization. Prescreen SD normalization is
the division of each of the post-irradiation performance scores
in the SD, CD, CDR, IDS, IDR, EDS, and EDR stages by
the corresponding prescreen values in the SD stage. 4-stage
normalization focuses only on four post-irradiation scores,
namely, SD, CD, CDR, and IDS, and divides each by its

corresponding prescreen value. The prescreen values for the
other, later stages of ATRC are not available for this type of
normalization. Additionally, we utilize the raw post-irradiation
data (i.e., non-normalized) to compare performance with the
normalized datasets.

The adverse effects of high dimensional input feature spaces
relative to the training set size require mitigation. This “curse of
dimensionality” manifests when there are not enough samples
to generalize well over the large input domain (Verleysen and
François, 2005). Given the size for this dataset consisting of
at most 62 individual rodents per dose, we utilize Principal
Component Analysis (PCA) (Jolliffe and Cadima, 2016) to
represent the training data in a reduced 2-D feature space from
the 7-D (prescreen SD or non-normalized datasets) and 4-D (4-
stage normalized datasets) feature spaces to alleviate the potential
of higher dimension input challenges. PCA uses the input data to
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create a new orthonormal coordinate system, hosting a projection
of the original features. The first axis of the new system is
constructed in a way that maximizes the variance of the projected
data, and the projected features on that axis are the first Principal
Component (PC). The second axis holds the projection with the
second to highest variance in the data, and so on. The choice
of two dimensions in the PCA is due to the added benefit
of visualization, but future approaches could seek to capture
a certain desired percentage of the variance. PC transformed
features are not deemed critical in this analysis considering
that the number of input features varied throughout was not
particularly high (4-D or 7-D in almost all cases), but subsequent
performance after dimensionality reduction was deemed worthy
of examination for insights as to whether or not dimensionality
reduction is worthwhile.

Classification Terminology
In keeping with standard ML terminology, different
dimensionalities of the input variable feature space account
for the number of features available. For the output, binary
classification refers to the model application to predict one of two
possible classes. In this study, we predict whether a rat is sham
(dose 0 mGy) or irradiated with a particular dose or any dose of
a certain ion. As an example, a “0 vs. 150” classification analysis
attempts to make predictions on whether a given feature vector
(vector of the scores in the ATSET stages as input to the ML
model) belongs to the 0 mGy class or the 150 mGy class.

Machine Learning Algorithms
Support vector machine (SVM) analysis (Noble, 2006) is
a discriminative ML algorithm used for classification and
regression tasks. SVM is considered a robust and effective
classifier employed in medical data analysis research
(Janardhanan et al., 2015). We summarize the application
used in this analysis with respect to linear classifiers. In the SVM
algorithm, the objective is to find a hyperplane that maximizes the
margin between the closest data point of each class, the support
vectors, and the hyperplane, called the decision boundary.

A linear classifier is expressed as a linear combination of the d
features xi of the input feature vector x as shown below:

f (x) =
d∑

i = 1

wixi + b = wTx+ b, (1)

where w is a vector representing the weights or parameters of the
linear classifier and b is a scalar representing the bias. A binary
(two-class) classifier is trained to learn parameters that classify the
output feature y as class 1 if f (x) ≥ 0 and class−1 if f (x) ≤ 0.

Data, D =
{

x(j), y(j)
}N

j = 1
, with N training examples is linearly

separable if and only if:

∃ w ∈ Rn, b ∈ R s.t. wTx(j) + b ≥ 1 if y(j)
= + 1,

wTx(j) + b ≤ − 1 if y(j)
= − 1. (2)

The width of the margin is given by 2
||w||2

. Maximizing
this margin is achieved by solving the quadratic optimization
problem:

minw,b wTw, s.t. y(
j)
(
wTx(j) + b

)
≥ 1 ∀j ∈ {1, ..., N} (3)

The use of a kernel function obviates the need to compute the
dot product wTx in the higher dimensional feature space by
replacing this calculation and hence reducing the computational
burden. Through a kernel function, one can construct decision
boundaries that are linear in a higher dimensional feature space
but nonlinear in the original feature space. Thus, nonlinear
decision boundaries can be drawn in the original feature
space to still perform under possible nonlinearities in the data
distribution. For this investigation, we utilize the linear, radial
basis, and third-degree polynomial kernel functions. Results are
reported as averages across all the kernels unless stated otherwise.
Slack variables can also be introduced to allow for a certain
number of outliers to fall on the wrong side of the hyperplane
when training (Smola and Schölkopf, 2004). This is important
for applications where outliers are to be expected like in the
medical sciences.

Gaussian naive Bayes (GNB), a probabilistic model which
assumes that features are conditionally independent of each other
(Mitchell, 1997), represents the second ML application. GNB
relies on Bayes Theorem to find the class that the sample most
likely belongs to. For a feature vector X = < x1, x2, xn > and
the ith class label Ci, Bayes Theorem is shown in eq. (4) where
P (Ci| X) is the posterior probability, P (X |Ci) is the likelihood,
P(Ci) is the prior probability, and P(X) is the evidence/marginal
likelihood.

P (Ci |X) =
P (X |Ci) P(Ci)

P(X)
(4)

The likelihood can be reformulated as the following using the
probability chain rule (eq. 5).

P (X |Ci) = P (x1, x2, ... xn|Ci) = P (x1 | x2, ... xn, Ci) ...

P (xn−1 | xn, Ci) P(xn|Ci) (5)

In GNB, we assume the conditional independence of the
n number of features, such that the likelihood, can be expressed
as shown in eq. (6).

P (X |Ci) = P (x1, x2, ... xn | Ci) =

n∏
j = 1

P
(
xj
∣∣Ci) (6)

The posterior probability can be written now by substituting the
likelihood back into the model as seen in eq. (7).

P (Ci |X) =
[
∏n

j = 1 P
(
xj
∣∣Ci)] P(Ci)

P(X)
(7)

In GNB, we seek to find the most probable hypothesis. The Naive
Bayes classifier is hence a function that assigns a class based on
which class label obtains the highest value of the posterior.

Frontiers in Systems Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 715433

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-715433 October 15, 2021 Time: 12:5 # 6

Prelich et al. Predicting Space Radiation Ion Exposure

FIGURE 2 | A decision tree example created using the 7 stage raw ATSET performance scores as features. The Gini coefficient is evaluated to determine which
features using the ATSET scores best segregate the classes of sham rats (0 mGy) and those irradiated with 100 mGy of Fe.

The marginal likelihood in the denominator will not change
given the input; thus, the optimization can be written as shown
below.

argmax
i ∈ {1, ... , I}

P(Ci)

n∏
j = 1

P
(
xj
∣∣Ci) (8)

An assumption to be noted is that we use a uniform prior for
the GNB model. This is because the number of samples for
each dose is not assumed or expected to be representative of its
prior probability.

The third ML approach incorporates the data within a decision
tree (DT) analysis. Decision tree models (Breiman et al., 1984)
represent ML approaches that predict values of a target output
based on input variables (features) following hierarchical if-then-
else decision rules and allocating samples to nodes as shown in
Figure 2. Decision tree classifiers find the best features to split
such that the resulting daughter nodes are as well segregated
as possible. The algorithm starts by allocating all samples in
question to the root node and asking if samples have a score
above or below a threshold, then splitting them accordingly.
The decision of which score to pick to determine the threshold
comes from the evaluation of an impurity index such as the
Gini impurity (Sundhari, 2011), indicating the probability of a
randomly selected sample being misclassified. A Gini impurity

of 0 indicates that all samples belong to the same class. After
the Gini impurity is calculated for all features using the samples
in the node, the feature with the lowest Gini is selected to split
the data. The process proceeds through more layers of the tree
until an appropriate stopping criterion specified by the user is
satisfied (Breiman et al., 1984) such as the maximum depth of the
tree which is set to six in this analysis. Figure 2 shows a learned
decision tree when trained using the ATSET data.

An extension to decision trees is Random Forests (RF)
classification (Breiman, 1999; Tsipouras et al., 2018). A RF is
constructed from an ensemble of decision trees where each trains
over random data samples with random sets of input features to
predict the output variable. The RF receives a vote for the class
from each tree and selects the most popular class as the class
predicted by the RF. The motivation for RFs is that outputs from
single trees are very sensitive to noise in the training data whereas
aggregating them reduces overfitting and bias due to the variation
between the included trees.

These three algorithms are chosen due to their varying
underlying approaches in order to evaluate performance across
many different perspectives. SVM, GNB, and RF rely on
geometric, probabilistic, and tree-based approaches, respectively.
Ensemble methods could be employed for future analyses to
assess whether all models could be leveraged in tandem for
prediction. For instance, to improve precision or recall scores,
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FIGURE 3 | Example SVM analysis in a 2-D feature space where the ATSET
performance scores IDS and IDR are used to predict whether a subject was
irradiated with 150 mGy or from the control group (0 mGy). Points in the figure
represent training points which we then perform predictions on after the
model training. Areas shaded with green and purple are areas which the
classifier predicts as coming from the non-irradiated subjects and the
150 mGy irradiated subjects, respectively. The decision boundary is
delineated by the change from green to purple. A white point on the green
shade and an orange point on the purple shade represent correct predictions.

one could set a decision heuristic to predict a given class only in
the case SVM, GNB, and RF were all in agreement.

Example Analysis
For the objective of predicting exposure based on performance
scores, ML algorithms described above such as SVM and GNB
are implemented for training classifiers. These algorithms find the
optimal parameters for a decision boundary that best separates
the data into their respective classes (e.g., dose exposure). Once
the model finds these parameters and the model is considered
"trained," then new data points can be tested to determine
the most likely classification. Figure 3 depicts an example of
the SVM classifier approach where the features (performance
scores) are being used to predict the exposure dose (either 0 or
150 mGy in this case).

Model Training and Validation
In ML analyses, to help ensure that correct classifications are
not found via the wrong means, one should not only ensure
that all the features used are realistic but also avoid using input
features that carry information equivalent to what the output
variables are predicting. In this analysis, only the cognitive
performance scores are utilized as features which prevents said
bias. Additionally, a robust cross-validation procedure should be
performed to demonstrate a model’s generalization abilities. We
employ a Leave-One-Out Cross-Validation (LOOCV) procedure
(Efron, 1982) whereby the number of folds in the cross-validation
routine is equal to the size of the training set (Figure 4). The
model’s parameters are trained using an n-1 subset of the total
number of examples and then tested using the instance left out in
order to assess the generalization abilities of the learned classifier.
Thus, the training is performed for all the training examples,

save one instance. This “left out” instance is subsequently tested
using the learned parameters from the training, and the process
is repeated over all training examples.

For reporting classification accuracies (eq. 9), an
undersampling routine is utilized due to the inherent issues
caused by certain dose classes that have much more data points
than others (Chawla, 2005). A large class imbalance can become
problematic when model learning begins to bias predictions
towards the classes with a higher number of samples since high
accuracy scores can often be achieved just by choosing the class
with the larger class ratio. For instance, having decuple the
number of training examples of a class 0 over class 1 may bias
the model towards creating de facto majority vote classifiers. In
this scenario, the model is not learning in its intended way, and
raw accuracy scores obfuscate interpretation. To mitigate these
effects when reporting accuracies, we employ an undersampling
procedure as one of the class imbalance mitigation strategies.
In this procedure, the classifier trains in a series of iterations
by using the full training data of the class with the lowest
number of training samples and a random subset of the training
set for the class with the larger class ratio. In each training
iteration, the number of training samples within each class label
is equal, locally mitigating the obfuscation induced by class
imbalance. The analysis is run over 100 iterations to try and
reduce noise in the outputs and the average metrics reported
over these iterations.

Another way of dealing with class imbalance is through
class weighting, where weights are used to penalize incorrect
classifications of the class with fewer samples, the minority class,
more harshly than the class with more samples, the majority
class. Undersampling is similar to class weighting by providing
more weight to the minority classes since replicating certain
observations during the model fitting stage increases the penalty
for these observations as well. The results between the two
differ due to the data splitting aspect. The results from using
the methods of both class weighting and undersampling are
presented and juxtaposed here. LOOCV is utilized in both cases.

For cross-algorithm comparisons and input feature set
selection we use accuracy, Precision-Recall (PR) plots, F1 scores,
and Matthews Correlation Coefficient (MCC) (Chicco and
Jurman, 2020). These evaluation metrics are shown in eqs. 9-
13. True Positive (TP), False Positive (FP) (or Type I error),
True Negative (TN), and False Negative (FN) (or Type II error)
refer to the ML outcome prediction vs. the actual class. The
“true” or “false” signifier preceding the “positive” or “negative”
denotes whether the classifier correctly (true) or incorrectly
(false) predicted whether the sample was positive or negative. The
True Positive Rate (TPR), also known as “sensitivity” or “recall,”
is the number of true positives (occurs if the model predicts
correctly when the test sample actually is positive) divided by
the number of actual positives as seen in eq. (10). The precision
is the number of true positives divided by the sum of the true
positives and false positives, as shown in eq. (11). This is the ratio
of the number of test samples that the model correctly predicts
as positive over the total number of samples predicted positive
in general (including the ones incorrectly classified as positive).
PR curves are a means of assessing the diagnostic capabilities
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FIGURE 4 | A graphical depiction of an n-fold leave-one-out cross-validation routine where n is the number of data points. The model’s parameters are trained using
an n-1 subset of the total number of examples and then tested using the instance left out in order to assess the generalization abilities of the learned classifier.

of classifiers. The PR curve often consists of a plot of the TPR
on the x-axis vs. the precision on the y-axis, and the threshold
probability for predicting is varied for each point in the curve.
The best performing classifiers are towards the top right of the
plots, signifying both high precision and recall. Precision and
recall analysis is particularly adept at dealing with data with
high-class imbalances (Davis and Goadrich, 2006).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(9)

Recall =
TP

(TP + FN)
(10)

Precision =
TP

(TP + FP)
(11)

F1 score (F measure) = 2 ∗
Precision ∗ Recall
Precision+ Recall

(12)

MCC =
(TP ∗ TN)− (FP ∗ FN)

√
(TP + FP)(TN + FP)(TP + FN)(TN + FN)

(13)

Hyperparameters refer to modeler-defined parameters that are
specified before training. Varying these hyperparameters across
many different values is common (known as a grid search, Meng
et al., 2013) in order to find the ones best suited for the analyses at
hand. In this analysis, we show PR plots across hyperparameters
instead of threshold probabilities (which one can think of as a
hyperparameter of the decision rule rather than the model itself
since the modeler post-training defines threshold probabilities)
since we are not evaluating the tradeoff of type I and type II
classification errors here. Hyperparameter tuning is performed
for the SVM and GNB algorithms using their MCC results to
determine the optimal hyperparameters for the model.

In assessing the performance of the classifiers, the
corresponding F1 score and MCC are calculated as seen in
eqs. (12) and (13). F1 scores are the harmonic mean of the
precision and recall. MCC is a less commonly reported metric
but often attested as being the prime binary classification
evaluation metric for classification problems (Chicco and
Jurman, 2020; Powers, 2020) since it takes into account true

negative outcomes as well, unlike F1 scores. MCC represents a
gauge of the linear correlation between two binary variables, in
this case, the true class and predicted class (Chicco and Jurman,
2020; Powers, 2020).

When looking at ML performance classification results, it is
important to make no preconceptions about what a “good” target
evaluation measure (e.g., precision, recall, MCC, etc.) should be
for a “good” classifier—as the economics proverb goes: “when
a measure becomes a target, it ceases to be a good measure”—
and instead evaluate performance based on circumstances and
objectives. In other words, let the circumstances govern the
thresholds of efficacy. This is the tradeoff with type I and type
II classification errors.

RESULTS

Data Visualization
Figure 5 shows a 2-D PCA visualization of the He, Fe, O, Si,
and Ti ions datasets using the first two principal components.
Since each ion-related dataset consists of 7-D or 4-D features,
PCA analysis allows data to be visualized in a lower-dimensional
feature space. The 1st principal component is the projection of
the data onto the direction of the maximum variance, and the
2nd is the projection on the direction with the second-largest
variation orthogonal to the first.

Figure 5 illustrates that in most cases, many of the data points,
irrespective of class, cluster in a region near the origin in the 2-
D feature space plane. Even though many of the sham and the
irradiated subjects end up performing similarly, there are also
many outliers outside this general congregation that undergo
more pronounced decrement, of which the preponderance of
these come from the irradiated subset.

Classifier Performance
Various metrics are aggregated in order to assess a general
dose discrimination performance and juxtapose various
algorithms and feature sets. Figure 6 and Table 2 present
examples of the accuracy results for the SVM algorithm and
the GNB analysis, respectively, across different feature set
selections and dimensionalities without any class weighting
or undersampling procedures performed. The accuracy
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FIGURE 5 | PCA analysis results for the ATRC scores of sham rats and rats
irradiated with various ions. (A) shows the 7-D non-normalized raw data for
10, 50, or 100 mGy of each ion and (B) shows the same ion data with the
4-stage normalization routine with sham samples in blue and samples
irradiated with any dose in orange. The percentages next to the PC number
are the percentage of overall variability that is explained by said PC. Principal
components 1 and 2 are shown since these reflect the highest variation in the
data.

results seen in this table and figure are better than random
chance, but note that class imbalances in the data can
often obscure true accuracy performance. Therefore, we
evaluate more comprehensively with other metrics as well,
such as MCC, to reach a more robust interpretation. This
example serves as an illustration of the need for caution
when analyzing accuracy results from imbalanced data and
an intimation of the need for more robust performance
metrics going forward.

We further inspect classifier results by looking at PR, F1, and
MCC metrics. Table 3 shows model performance metric results
from the SVM, GNB, and RF algorithms when applied to the
non-normalized ATRC dataset for predicting 0 mGy (sham) vs.
any irradiation dose. Overall, the results show consistency in the
model performances for particular analyses, with similarly high
or low MCC and F1 scores. To illustrate, the lowest MCC score
overall for all models occur in the He ion prediction (Table 3).
Similar tendencies are observed with the other evaluation scores
and models. Given the similarity of the model results, for brevity,
only the results from the SVM analysis are shown henceforth.

Figure 7 shows the PR score results for the SVM algorithm
when predicting exposure to He ion between sham (0 mGy) and
any dose of irradiation. These PR plots present three different
approaches to deal with class imbalances: (1) Class weighting
but without undersampling, (2) Undersampling but without class
weighting, and (3) Neither class weighting nor undersampling.
We compare using class weighting or undersampling and
inspecting PR pair plots to evaluate how these remedies affect
the classification. PR pair plots and PR curves are a convenient
evaluation tool for identifying class imbalance issues in the
training stage as one can easily take note of the tradeoffs
between precision and recall to discern any apparent aberrations.
Obtaining very low precision or recall is often an indicator of class
imbalance impacting the model’s training and demonstrates the
tradeoff between the two. The results shown in Figure 7C confirm
this, given the high precision and low recall scores stemming
from class imbalance. The farther up and to the right on the PR
pair plots, the better the overall performance of the classifier in
that this corresponds to higher precisions and recalls.

One pertinent observation from the analysis is that, when
working with class-imbalanced data, evaluation using more
class ratio agnostic metrics (e.g., precision, recall, F1 scores,
MCC, etc.) without using undersampling or class weighting
beforehand does not take care of class imbalance effects (even
if it did help identify the class imbalance issue more clearly
than looking at the accuracy results). That is, just because
these more appropriate metrics are utilized does not obviate
the need for some other form of mitigation techniques such
as undersampling or class weighting. This is sensible because
these metrics will not affect the parameter training stage and are
merely a retrospective evaluation measure. Another takeaway we
note is that class weighting without undersampling yields better
results with the SVM classifier across ions and datasets compared
to both undersampling alone and neither undersampling nor
class weighting (Figure 7). This could be because the samples
randomly selected for removal in the undersampling procedure
led to missing out on learning specific patterns in the data during
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FIGURE 6 | Results of Gaussian naive Bayes using a variety of feature subsets. The classification index (CI) is a modified accuracy metric defined as the accuracy of
the classifier divided by the probability of achieving this through random chance, that is, the class ratio (the ratio of the number of points of any one class over the
number of points from all classes). Dimensionalities in the input vary from 4-D to 14-D (14-D only in the trial case where MCL and ATRC are combined together). *
indicates sham data is included. Other cases comprise of classifying the dose as one of 10, 30, 50, 100, and 150 mGy.

TABLE 2 | Examples of results with the SVM classifier in a 2-D analysis with the Fe
ion using the linear kernel without any undersampling or class weighting
technique applied.

Test 1 Test 2 Accuracy (%)

SD CD 62

SD CDR 65

SD IDS 71

SD IDR 56

SD EDS 59

SD EDR 62

CDR IDS 71

CDR IDR 56

CDR EDS 50

CDR EDR 56

IDS IDR 74

IDS EDS 71

IDS EDR 71

This is an example of predicting the sham vs. any irradiation (10, 30, 50, 100, and
150 mGy) subjects. There are 62 zero dose (sham) and 83 any dose (irradiated
rats). This 2-D analysis refers to taking a pair of two ATSET stages as input
features at once and predict the zero/any dose in order to investigate if certain
subsets of the ATSET stages yield improved classification over others. This creates
a total of 21 combinations of stages since there are seven stages of the assay.
Accuracies are to be compared to a random chance classification, i.e., the high to
low class ratio of 57%.

training. Without further instruction, we can infer from this
that class weighting without undersampling would be our choice
in general (when applicable), especially when the data set is
particularly large and undersampling routine would be expensive.

TABLE 3 | Model performance metrics from the SVM, GNB, and RF algorithms
when applied to the non-normalized ATRC dataset for predicting 0 mGy (sham)
vs. any amount of irradiation.

Ion ML model MCC F1 score

SVM 0.08 0.38

He GNB 0.03 0.53

RF 0.03 0.46

SVM 0.15 0.34

O GNB 0.11 0.43

RF 0.25 0.48

SVM 0.12 0.65

Si GNB 0.16 0.70

RF 0.11 0.81

SVM 0.08 0.55

Ti GNB 0.18 0.56

RF 0.09 0.48

SVM 0.33 0.52

Fe GNB 0.24 0.62

RF 0.22 0.62

For the SVM model, the regularization term and kernel coefficient set to 1 and.001,
respectively, produces the highest MCC results in the most cases overall across all
ions and datasets and are hence considered the optimal hyperparameters overall.
All models use balanced class weighting. The GNB model uses 1 for the variance
smoothing parameter which produces the highest MCC results overall.

We further explore the prediction results by looking at
the best performing, i.e., highest MCC, classifiers across all
ATSET evaluation scores and hyperparameter combinations
(Table 4) to gauge which evaluation scores produce the
best results in a particular analysis, and since specific ions
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FIGURE 7 | Precision-Recall plots from the SVM classifier created using sham vs. any dose of irradiation of He samples in 3 normalizations (7 stages raw [top row],
prescreen SD normalization [middle row], and 4-stage normalization [bottom row]) with class weighting but without under-sampling (A), with undersampling but
without class weighting (B), and with neither class weighting nor undersampling (C). Points of the same color and shape represent the same feature scores being
utilized but with differing hyperparameter specifications.

and normalizations should have unique model configurations.
This subsequent analysis leads to higher MCC and F1 score
results than those shown in Table 3. After using class
weighting, model evaluation metrics reflect performance after
class imbalance effects have been mitigated. Overall, the ATRC
and Success Rate feature set utilizations lead to the highest
MCC, F1 score, and accuracy classifier results. MCL produces
positive MCC results in only the Ti ion and would hence
be considered the least informative metric for purposes of
exposure prediction. Moreover, PCA on the corresponding
performance scores does lead to improved results in a
majority of the cases with the 7-D non-normalized data
but in only one case with the 4-stage normalization. We
surmise that, consistent with its purposes, PCA aids more
in exposure prediction for higher dimensional feature sets
than lower ones.

DISCUSSION

In this analysis, we apply three different ML techniques with
varying underlying approaches to evaluate consistencies and
differences in their exposure prediction capabilities. The results
illustrate that the performance varies across algorithm, feature
set, and normalization. Overall, the ML classifiers show an
ability to successfully discriminate between and predict GCR
ion irradiation from the ATSET performance scores better than
chance alone (Table 3), suggesting that there are discernable
effects between 0 and up to 150 mGy of radiation. All binary
predictions between sham and individual doses/any irradiation
yield positive correlations between the true class and predicted
class (MCC > 0) with the SVM model—a result consistent
across all ions. We highlight the ability of each model to
discern irradiation from performance scores exceeding random
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TABLE 4 | Results of the SVM classifier for predictions of non-irradiated rodents (sham) vs. 100 mGy or any dose irradiated rodents in the best performing, highest MCC,
classifier with class weighting applied using ATRC, Success Rate, and MCL.

Ion Comparison Dataset normalization MCC F1 score Accuracy ATSET evaluation score

Fe 0 vs. 100 mGy Non-normalized (raw) 0.23 0.35 78% Success rate

4-stage normalization 0.17 0.29 77% ATRC

0 vs. Any Irradiation (10, 30, 50, 100, and 150 mGy) Non-normalized (raw) 0.64 0.79 81% ATRC

4-stage normalization 0.61 0.73 78% ATRC

He 0 vs. 100 mGy Non-normalized (raw) 0.17 0.37 67% ATRC

4-stage normalization 0.25 0.29 79% ATRC

0 vs. Any Irradiation (10, 50, and 100 mGy) Non-normalized (raw) 0.74 0.87 87% Success Rate

4-stage normalization 0.60 0.72 78% ATRC

O 0 vs. 100 mGy Non-normalized (raw) 0.46 0.51 88% Success Rate

4-stage normalization 0.41 0.47 89% ATRC

0 vs. Any Irradiation (15, 50, and 100 mGy) Non-normalized (raw) 0.15 0.34 68% ATRC

4-stage normalization 0.22 0.26 74% ATRC

Si 0 vs. 100 mGy Non-normalized (raw) 0.08 0.32 59% ATRC

4-stage normalization 0.49 0.67 76% Success rate

0 vs. Any Irradiation (10, 30, 50, 100, and 150 mGy) Non-normalized (raw) 0.53 0.81 76% Success rate

4-stage normalization 0.47 0.77 72% Success rate

Ti 0 vs. 100 mGy Non-normalized (raw) 0.44 0.51 79% MCL

4-stage normalization 0.62 0.67 91% ATRC

0 vs. Any Irradiation (30, 50, 100, and 150 mGy) Non-normalized (raw) 0.65 0.79 83% Success rate

4-stage normalization 0.77 0.89 88% Success rate

The results here are an average across all kernels and includes results with PCA as well. The Comparison column specifies which doses are being examined. Note that
not all ions and dose pairs exist in the parent dataset. The Dataset Normalization column specifies which normalization the analysis uses. The Evaluation Score column
states which evaluation metric (ATRC, Success Rate, MCL) produces this result.

chance rather than hypothesizing whether any of the three
particular ML algorithms are preferred over the others in future
analyses. We do underscore that the addition of class weighting
in the SVM, GNB, and DT models as well as the RF model
leads to marked improvement in classifier performance over
their respective classic implementations for this imbalanced
dataset. As demonstrated by the results of each ML approach
to discern radiation exposure from performance scores, the
research here demonstrates the feasibility of a data-driven ML
approach to analyze and infer the effects of dose and ion on
rodent cognitive performance through an inverse methodology
to predict exposure using rodents’ performance scores. Working
with subject matter experts to develop a cost matrix (Chawla,
2005) that weighs the relative importance of type I and type
II classification errors for GCR ion exposure prediction would
help elucidate the extent of the significance in this greater-than-
chance classifier performance in application. Similarly, a recent
parallel effort by our group (Matar et al., 2021) evaluates the
susceptibility to cognitive performance impairment in rodents
due to space radiation exposure by demonstrating a capability to
predict cognitive performance impairment in individual rodents
using their respective pre-irradiation performance scores with
ML. The findings demonstrate that prescreen performance scores
can be used as features with ML to predict ATSET performance
impairments as a direct method of predicting impairment.

Performance across normalization routines varies. The
analysis shows that ATRC and Success Rate yield the highest
performing prediction capabilities overall across all models
(Table 4). We find the use of prescreen data using the

4-stage normalization with ATRC augments prediction
results over using the ATRC non-normalized data alone in
many cases. For instance, 18 out of 18 SVM predictions
using varying hyperparameters with the ATRC He ion data
produce higher MCC with the prescreen 4-stage normalization
applied than with the raw non-normalized data. This would
suggest that normalization with prescreen data could be
an important step in the prediction of GCR ion exposure
from ATRC performance data. The use of the prescreen
SD normalization does not yield markedly improved results
over the non-normalized and 4-stage normalized datasets
and would be excluded from future analyses. MCL only
produces the highest MCC classifier in one case (Table 4)
and would hence be the least informative metric for exposure
prediction purposes.

The findings in this effort are limited to those associated
with the data available. To generalize the findings, subsequent
research should focus on further validation and inquiry with
other datasets, assays, and mixed-field GCR exposure to reach
a more robust interpretation of the findings. In particular, the
dataset is limited to male subjects whereas studies (Villasana
et al., 2010; Krukowski et al., 2018; Parihar et al., 2020) show
sex-specific differences in the degree to which space radiation
exposure affects cognitive performance. Future work should also
include analyzing datasets comprised of both male and female
rodents since crewed missions will involve astronauts of both
genders. Given these sex-specific effects, sex can be incorporated
as an additional feature to inform the models. Not all rodents
undergo the same or even any level of cognitive decline. In
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this analysis, the objective is to predict exposure irrespective
of the severity of cognitive decline (if any). We note that at
the doses ≤ 150 mGy used in our analysis, subjects have a
probability of not being affected by radiation exposure and can
be misclassified as sham rats by the ML models. In order to
reduce these false negative predictions, one could look at only
subjects irradiated above a threshold dose where all animals show
a cognitive decline. Such experimental data with higher doses can
improve the performance of the ML classifiers but is not relevant
to space radiation exposure of astronauts during a 3-year Mars
mission, expected to be ≤150 mGy for an individual ion.

A pertinent limitation for this study’s application to space
flight decision making is that the ATSET experiment uses single
ion exposure and results are not necessarily characteristic of
multi-ion GCR exposure which astronauts will encounter in
deep space. Combining the effects from single ion irradiation
to multi-ion irradiation is still an active and critical area under
investigation, which will assuredly provide essential insights for
generalizing these results to mixed-field GCR exposure. Another
notable limitation in the analysis is the relatively small amount
of data (∼700 across all ions) and the inherent noise associated
with quantifying rodent behavior and cognitive performance.
Both the relatively small size of the dataset and noise can
lead to overfitting in the model, which is why cross-validation
was employed. Future work would be validation with other
datasets using the models and hyperparameters formulated
here in order to extract more robust conclusions from the
findings. Another future work recommendation would be to
assess the predictive capabilities of using subsets of the ATSET
by performing a more rigorous 2-D analysis similar to Figure 3
and Table 2 using individual performance score features against
other individual performance score features after class weighting
and normalization routines are applied. Moreover, methods exist
that couple both undersampling and class weighting which could
be investigated (Anand et al., 2010). Another assumption to be
noted is the use of a uniform prior for the GNB model. This
is because the number of samples for each dose is not assumed
or expected to be representative of its prior probability. This
assumption impacts the model decision-making in that a more
representative prior for the exposure samples to be encountered
would likely lead to better results. A possible path forward for a
spaceflight simulation application would be to have a prior that
is integrated by time — i.e., the longer the mission duration, the
higher the likelihood that larger radiation doses will be prevalent.
This would likely augment the performance of the model by more
accurately reflecting the prior probability of exposure.

The translatability from rodents to human models of how
to generalize the findings in any murine model or study to
humans is often nebulous and undefined given the current state
of knowledge (Mak et al., 2014). In terms of future work for
this “translation,” we note another line of investigation (Meadows
et al., 2008; Lucas et al., 2014) pertaining to radiation exposure’s
effect on the change in gene expressions in mice and humans.
A machine learning approach adopting a similar methodology to
those studies could be leveraged for the purposes of predicting
exposure—and potentially other important phenomena—in
astronauts subjected to GCR. In this methodology, one would use

biomarkers such as gene expressions present in both humans and
rodents as a feature set, identify those correlated with radiation
exposure, then only use those biomarkers as input to the ML
models. This would ideally allow direct prediction and model
assessment on human subjects rather than solely on rodents. As a
prospective analysis, this current study did not contribute to the
experimental design and available features.

One limitation is that the analysis would not necessarily
inherit the full benefits of ML in that only the performance
scores features are used as inputs in the model. This is
sufficient for the purposes described in this study, where the
dose and performance are assessed. More generally, training
with additional idiosyncratic input features on the rodent
individuals, particularly features not directly correlated with
their performance, potentially represents new information that
captures linkages to existing and unidentified features of the
rodent population that are important to assessing performance
decrement from GCR ion exposure. This type of idiosyncratic
subject-level approach could be valuable considering NASA’s
objectives in determining space flight conditions contributing
to the overall impact on humans’ cognitive abilities. This
relationship, albeit with rodents, has already been observed in
literature where a performance decrement transpires in only
subsets of the population. For instance, in investigations where
the age varies across subjects, performance decrements are often
age-dependent (Carrihill-Knoll et al., 2007; Britten et al., 2014;
Rabin et al., 2018) and identifying which subsets of the population
are more likely to undergo impairment, through ML and its
subfields such as anomaly detection, could be a fruitful endeavor
to explore in light of the mission objectives. Ascertaining
whether performance decrement is unique to a specific subset
of the rodent population with particular characteristics would
benefit subsequent research by informing that the consequent
performance effects of ionizing radiation for astronauts in
deep space should be assessed on an individual basis rather
than assuming astronauts would be affected uniformly. All of
this underscores the ever-accelerating utility of complete and
comprehensive subject-level data in rodent and human studies
where ML-based approaches like these can be capitalized on and
used for prediction.
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