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Graphical Abstract

We generated a single-cell atlas of PBMCs in pregnant women; Pregnancy acti-
vates interferon (IFN) responses versus non-pregnant control in NK/T cells;
T-, B-cell activities attenuated significantly during gestation; Cell-type-specific
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Abstract
Background: During pregnancy, mother–child interactions trigger a variety of
subtle changes in the maternal body, which may be reflected in the status of
peripheral blood mononuclear cells (PBMCs). Although these cells are easy to
access and monitor, a PBMC atlas for pregnant women has not yet been con-
structed.
Methods:Weapplied single-cell RNA sequencing (scRNA-seq) to profile 198,356
PBMCs derived from 136 pregnant women (gestation weeks 6 to 40) and a con-
trol cohort. We also used scRNA-seq data to establish a transcriptomic clock and
thereby predicted the gestational age of normal pregnancy.
Results:We identified reconfiguration of the peripheral immune cell phenotype
during pregnancy, including interferon-stimulated gene upregulation, activation
of RNA splicing-related pathways and immune activity of cell subpopulations.
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We also developed a cell-type-specific model to predict gestational age of normal
pregnancy.
Conclusions:We constructed a single-cell atlas of PBMCs in pregnant women
spanning the entire gestation period, which should help improve our under-
standing of PBMC composition turnover in pregnant women.
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1 INTRODUCTION

During pregnancy, homeostasis of the maternal immune
system is critical for pregnancy success, conferring tol-
erance to the semi-allogenic fetus, while maintaining
the ability to protect against pathogens.1,2 Dysregula-
tion of immunological mechanisms underlies various
pregnancy-related pathologies, such as preterm labour,
preeclampsia and other complications.3,4 Early capture of
these dysregulated processes during pregnancy is highly
desirable for risk prediction and mitigation. Therefore,
there is a great need for a comprehensive understanding
of the changes in immune features that occur throughout
normal pregnancy.
The mechanisms that underpin fetomaternal immune

adaptation during pregnancy have been extensively
researched.5–7 However, most studies have explored
immunomodulatory mechanisms at the local fetomater-
nal interface. Furthermore, due to ethical considerations,
studies have focused on early pregnancy and postpartum,
and therefore may not accurately reflect changes in the
immune system throughout pregnancy. Moreover, feto-
maternal cross-talk not only influences local fetomaternal
cellular mechanisms that control maternal immune
tolerance to the semi-allogeneic fetus, but also systemic
immune adaptations to pregnancy.8 Growing evidence
indicates that pregnancy is accompanied by alterations
in the immune system in maternal systemic circulation,9
e.g., pro-inflammatory activity of natural killer (NK) cells
is upregulated in pregnancy,10 and frequencies of B cells
are significantly downregulated during gestation.9
The application of cytomics and single-cell transcrip-

tomics has provided an unprecedented ability to capture
the complexities of systemic immunological adaptations

during pregnancy.11,12 Recent research showed that
chronological and predictable variations in immune fea-
tures can be tracked in peripheral blood over the course of
a full-term pregnancy, and signal transducer and activator
of transcription (STAT) 5 signalling in several CD4+ T-cell
subsets increases significantly as pregnancy progresses.8
A subsequent study revealed that disruption in STAT5
signalling dynamics in CD4+ T cells is highly correlated
with later stage preeclampsia,13 suggesting that peripheral
blood mononuclear cells (PBMCs) may potentially reflect
normal or pathological pregnancy status. However, a
detailed understanding of the cellular interactions and
mechanisms in PBMCs over the course of gestation is
lacking.
Here, we used single-cell transcriptome analysis to

profile 198,356 cells obtained from pregnant (gestation
weeks 6–40) and non-pregnant women, representing a
comprehensive and systematic immunological signature
of normal pregnancy. Additionally, we developed a cell-
type-specific model to predict gestational age (in days) in
normal pregnancy. By completing PBMC type annotation
and identifying dynamic changes in PBMC abundance
and molecular characteristics, we constructed a detailed
cellular taxonomy of pregnant woman PBMCs spanning
the entire gestational period.

2 RESULTS

2.1 Longitudinal analysis of PBMCs
during pregnancy: unbiased and
high-density sampling

To capture transcriptional dynamics of PBMCs dur-
ing pregnancy, we collected 131 PBMC samples from
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gestational week 6 (GW6) to GW40 and five non-
pregnant samples as the control group (Figure 1A,
Table S1). In total, 198,356 cells were retained after
filtration, which were annotated into 18 main cell
types, including mucosal associated invariant T cells
(MAIT, CD3G+SLC4A10+), CD3+CD4–CD8– dou-
ble negative T cells (dnT, CD3G+CCR7+), prolifera-
tive T cells (proliferative T, CD3G+MKI67+), CD4+
cytotoxic T cells (CD3G+CD4+GZMA+), CD4+
naïve T cells (CD3G+CD4+CCR7+), CD8+ naïve
T cells (CD8A+CCR7+), CD8+ cytotoxic T cells
(CD8A+GZMA+), other T cells (CD3G+), memory B
cells (MS4A1+IGHG1+), naïve B cells (MS4A1+IGHG1-
IGHD+), plasmablasts (MZB1+XBP1+IRF4), CD56-dim
natural killer (NK) cells (CD3G-KLRF1+FCGR3A+),
CD56-bright natural killer cells (NK_CD56-bright cells,
CD3G-KLRF1+NCAM1+), monocytes (FCGR3A+LYZ+),
dendritic cells (DCs, LYZ+CD1C+), Tregs (Regula-
tory T) (CD4+FOXP3+CTLA4+), NK T cells (NKT,
CD3G+KLRF1+FCGR3A+) and platelets (PPBP+)
(Figure 1B–1D, S1A, S1C). Most cell types consisted of cells
frommultiple samples, indicating common immune traits
among pregnant and non-pregnant women (Table S2).
We identified significantly highly expressed genes in each
cell type and performed functional enrichment analysis
using Gene Ontology (GO). The top five most significantly
enriched GO terms in each cell type were consistent
with corresponding function (Figure S1B). Mature T cells
showed activation in lymphocyte immune functions,
including interleukin-2 production and cell adhesion,
while proliferative T cells were involved in synthesis and
metabolism of adenosine triphosphate (ATP). The B cells
were associated with activation of B-cell receptor sig-
nalling. All NK cells and monocytes exhibited functional
characteristics of immune response activation, while
DCs were involved in pre-processing and presentation of
antigens. Platelets were involved in coagulation-associated
functions. These results demonstrated the reliability of
our dataset.

2.2 Dynamics of immune cell
abundance during pregnancy

All immune cells were divided into four stages based
on gestational week (i.e., early-, mid- and late-pregnancy
stage and non-pregnant) (Figure 2A). To investigate
whether the PBMC abundance changed during pregnancy,
we calculated the percentages of all cell types in dif-
ferent pregnancy stages and different gestational weeks
(Figure 2B). In general, there were no significant differ-
ences among the four stages of pregnancy inmost immune
cell types, except for monocytes, proliferative T cells and

plasmablasts. Monocytes increased significantly during
pregnancy, beginning at the first trimester (Figure 2C),
consistent with previous research.14–17 The increase in
monocyte abundance is usually accompanied by an unre-
sponsive state during pregnancy.18 Except for prolifer-
ative T cells, the percentages of most lymphatic cells
did not differ significantly during pregnancy, as reported
previously.19 Among these lymphatic cells, CD4+ naïve T
cells showed a slight peak in the first trimester of preg-
nancy. Furthermore, proliferative T cells increased signif-
icantly during pregnancy compared to non-pregnancy. It
has been reported that almost all B-cell subtypes decrease
during pregnancy.20 Here, although naïve and memory B
cells did not differ significantly during the four stages of
pregnancy, therewas a slight decrease fromnon-pregnancy
to late pregnancy. Plasmablasts, that is, short-lived differ-
entiation stage between post-germinal centre B cells and
mature plasma cells, increased progressively in the first
and second trimester of pregnancy but decreased in the
third trimester. However, the percentage of plasmablasts
in the third trimester was higher than that during non-
pregnancy, contrary to previous reports.21

2.3 IFN responses enhanced in innate
immune cells

While it is known that the innate immune system is acti-
vated during pregnancy,9 previous studies have focused
on invasive NK cells at the fetomaternal interface, with
NK cells in peripheral blood more poorly understood. To
resolve the dynamic changes in innate immune cells in
maternal systemic circulation with progressing pregnancy,
we examined differences inNK (NK andNK_CD56-bright)
cells among the three periods of pregnancy and the non-
pregnant state. Compared to non-pregnancy, the upregu-
lated DEGs in NK (NK and NK_CD56-bright) cells were
involved in biological processes, including IFN and virus
responses, in all three periods of pregnancy (Figure 3A).
GO analysis also showed that the upregulated genes in
NK cells were enriched in defense response to virus, pos-
itive regulation of cytokine production during the third
trimester (Figure 3B), suggesting that IFN responses, virus
responses in NK cells are significantly enhanced during
pregnancy. Furthermore, the expression of genes involved
in responses to IFN and virus increased progressively
with pregnancy, suggesting that responsiveness to IFN
in NK/NK_CD56-bright cells increases during pregnancy
(Figure S2A–C). To estimate the expression level of gene
sets in each cell, we binned features based on average
expression and randomly selected 100 control features
from each bin. Aggregated expression of gene set features
was subtracted by the aggregated expression of the control
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F IGURE 1 Single-cell gene expression profiling of PBMCs of the pregnant and non-pregnant women. (A) Schematic representation of
the study design. (B) The clustering result of 198, 356 cells from 136 donors. Each point represents one single cell, coloured according to cell
type. (C) Violin plots of expression values for cell type-specific marker genes. (D) From left to right are the cell number of each cell type, the
box plot of the number of genes, the box plot of unique molecular identifiers (UMI) and the bubble plot of cell type-specific marker genes
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F IGURE 2 Differences in cell compositions by single-cell transcriptomes of PBMCs during pregnancy. (A) UMAP plot of cell
composition in different pregnancy period. (B) Proportion of each cell type at different pregnancy (left) and different GW (right). Bars are
coloured by cell types. (C)The histogram shows the number of differentially expressed genes (DEGs) during three periods of pregnancy
compared to control group. (upper panel: up-regulated DEGs; lower panel: down-regulated DEGs). (D) Box plot shows cell type proportion
changes of each pregnancy period. Conditions are shown in different colours. Horizontal lines represent median values, with whiskers
extending to the farthest data point within a maximum of 1.5 × interquartile range. Student’s t test was applied. All differences with p < 0.05
are indicated. * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001, ns = not significant

feature set to obtain a gene set score. To demonstrate the
dynamic patterns of responses to IFN and virus, we deter-
mined the activities of two important GO pathways (i.e.,
response to type I IFN and defense response to virus) in
theNK/NK_CD56-bright cells. As expected, the expression
scores of the two immune responses increased significantly
during pregnancy and tended to be higher with pregnancy
progression, suggesting that enhanced responsiveness to

IFN and virus is the result of global enhancement rather
than limited to specific genes (Figure 3C). Moreover, in
the NK/NK_CD56-bright cells, 20 IFN-stimulated genes
(ISGs) were significantly positively correlated with gesta-
tional week (Figure 3E and S2D). STAT1, which mediates
cellular response to IFNs,22,23 showed the strongest corre-
lation (NK: cor 0.67, p = 8.99e-06; NK_CD56-bright: cor
0.77, p = 7.35e-08) (Figure 3E). STAT1 can regulate ISG
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expression by forming the complex ISGF3 in combina-
tion with STAT2 and IRF9.24 In contrast, STAT1 and IRF9
increased progressively during pregnancy (Figure 3F). The
ISG score based on collected ISGs also displayed a progres-
sive increase during pregnancy (Figure 3D). These results
suggest that STAT1 may play an important role in activat-
ing the immune response to IFN in NK/NK_CD56-bright
cells during pregnancy.
We also identified DEGs in monocytes between preg-

nancy and non-pregnancy (Figure 3G). Most significant
DEGs decreased during pregnancy and were associated
with cell chemokines and positive regulation of the cell
activation signalling pathway (Figure 3H). DEGs involved
in these two functions decreased significantly during
pregnancy (Figure S2E and F). We further evaluated the
expression levels of these two GO pathways (i.e., cell
chemokines and positive regulation of cell activation).
Compared to non-pregnancy, the activity of both pathways
decreased significantly in the three periods of pregnancy
(Figure 3I). Among the genes associated with positive reg-
ulation of cell activation, IL1B, CD83 and NFKBIZ, which
are key regulators of immune cell activation,25,26 decreased
during pregnancy (Figure 3J and 3K). To evaluate response
to IFN in the monocytes, we explored ISG expression pat-
terns with pregnancy. Some ISGs (e.g., AIM2, ZBP1, IRF7,
PLSCR1 and IFITM1) displayed a conversion from the early
to late stage in the first trimester of pregnancy (Figure
S2G), indicating there may be a more complex response to
IFN in monocytes during early pregnancy. Based on the
ISG expression patterns in the monocytes in early preg-
nancy, we divided early pregnancy into early stage (GW6–
9) and late stage (GW10–13). IRF1 and IFITM1 showed
higher expression in the early stage than in the late stage

(Figure &nbsp;S2H), while LST1, MAFB and CEBPB were
higher in the late stage than in the early stage. LST1 iso-
forms are associated with immunosuppression function.27
MAFB+ macrophages regulate tissue homeostasis and
immunosuppression.28 CEBPB is involved in immuno-
suppression in cancer.29 Gene set enrichment analysis
(GSEA) of DEGs showed that highly expressed genes in
the early stage were enriched in IFN gamma response,
while those in the late stage were involved in negative
regulation of immune system process (Figure S2I and J).
The ISG score based on all collected ISGs and immune
score of response to type I IFN peaked in the early stage,
then decreased significantly in the late stage (Figure 3L
and 3M). These results suggest that immunosuppression
increases during pregnancy, especially after GW9.

2.4 Features of T-cell subsets during
pregnancy

To further explore transcriptomic changes in T cells dur-
ing pregnancy, we compared expression patterns in the
first/second/third trimester with non-pregnant control.
Results showed that the downregulatedDEGsweremainly
involved in positive regulation of cell activation, T-cell acti-
vation, immune response−activating signal transduction
during pregnancy, while the upregulated DEGs primarily
participated in IFN response, virus response, cytokine pro-
duction and RNA splicing-related pathways (Figure 4A,
S3A and B). Moreover, as pregnancy progressed, the num-
ber of downregulated genes related to T-cell activation
and upregulated genes associated with the RNA splic-
ing pathways decreased, whereas the upregulated genes

F IGURE 3 Dynamic functional changes in NK cells and monocytes of PBMCs during pregnancy. (A)Volcano plots of DEGs in all NK
cells (NK and NK_CD56 bright cells). Results from left to right represent first trimester versus non-pregnancy, second trimester versus
non-pregnancy and third trimester versus non-pregnancy respectively. Red points represent upregulated genes, while blue points were
downregulated genes in pregnant women. Genes with |log2(FC)| ≥ 0.3, adjusted p < 0.05 and related IFN were labelled by gene symbols. (B)
GO term enrichment of genes which highly expressed in third trimester compared to non-pregnancy. (C) Box plots of the expression levels of
two GO biological process terms in NK/NK_CD56 bright cells derived from three periods of pregnancy and non-pregnant samples. Wilcoxon
rank-sum test was applied. (D) Box plots of the collected ISGs scores across different clusters and conditions. Statistical significance of
difference in pairs among four pregnant stages were labelled at the top of box plot. Wilcoxon rank-sum test was applied. (E) Correlation test
between ISGs expression level in NK/NK_CD56 bright cells with gestational weeks. Correlation analysis using the Pearson’s product-moment
correlation. (F) Expression level of STAT1 and IRF9 in NK/NK_CD56 bright cells. Statistical significance of difference in pairs among four
stages were labelled at the top of box plot. Wilcoxon rank-sum test was applied. (G) Volcano plots of differentially expressed genes in
monocytes, which the order is consistent with (A). (H) The top 5 significant GO terms enriched by genes highly expressed in three pregnant
stages compared to non-pregnancy. (I) Box plots of the cell scores for two GO biological process terms derived from early, mid, late and
non-pregnant control samples. Wilcoxon rank-sum test was applied. (J) Dot plot of three representative low expressed genes (IL1B, CD83 and
NFKBIZ) in monocytes. Dots sizes represent the proportion of cells expressed in four stages. Dot colours represent average expression levels of
monocytes in four stages. (K) Expression level of IL1B, CD83 and NFKBIZ in monocytes. Statistical significance of difference in pairs among
four stages was labelled at the top of box plot. (L) Box plots of the collected ISGs scores across different periods in monocyte. Wilcoxon
rank-sum test was applied. (M)Box plots of expression levels in GO biological process term of response to type I interferon in monocytes.
Wilcoxon rank-sum test was applied. All differences with p < 0.05 are indicated.* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not
significant
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involved in IFN and virus responses increased in the T
cells (Figure S3A). To gain further insight into T-cell acti-
vation status, RNA splicing and IFN response at various
stages of pregnancy, we assessed the expression levels of
six significant GO pathways (i.e., T-cell receptor [TCR] sig-
nalling pathway, T-cell activation, RNA splicing, alterna-
tivemRNA splicing via spliceosome, response to type I IFN
and defense response to virus) in the T cells (CD4+ naïve
T, CD4+ cytotoxic T, CD8+ naïve T, CD8+ cytotoxic T,
NKT, Treg cells). Results showed that the TCR signalling
pathway and T-cell activation pathway scores were signif-
icantly downregulated in T cells during pregnancy. More-
over, early pregnancy had the lowest scores, whereas late
pregnancy showed slightly higher scores in the CD4+ and
CD8+T cells (Figure 4B andC, S3C andD). Using the cyto-
toxic and exhausted scoring system, most T-cell subsets
had a lower cytotoxicity score but higher exhaustion score
during pregnancy compared to pre-pregnancy. In addition,
the CD8+ cytotoxic T and NKT cells showed higher cyto-
toxicity scores than those of the other subsets.Within these
highly cytotoxic clusters, the cytotoxicity score was slightly
elevated from early to late gestation (Figure 4D and 4E,
S3E and F). These results indicate that T-cell activity is sig-
nificantly attenuated throughout pregnancy but is mildly
enhanced from early to late gestation.
IFN and virus responses were significantly increased in

pregnancy relative to non-pregnancy, and increased with
pregnancy progress (Figure 4F and 4G, S3G-I). We identi-
fied 28 ISGs that showed positive correlation with gesta-
tional weeks in T cells (Figure 4J, S3J). Previous research
has shown that IFN contributes to T-cell activation.30
However, our results suggested that T-cell activity is atten-
uated, while IFN responses are enhanced during preg-
nancy. Effective T-cell activation is achieved only when
the responding T cells integrate three signals: that is, bind-
ing of an antigen to TCR (first signal), ligation of co-

stimulatory molecules (second signal) and activation of
specific cytokine signals (third signal). IFNs were widely
studied third signal for T cells.30 Hence, we compared the
expression levels of associated receptors and molecules of
T cells (CD4+ naïveT, CD4+ cytotoxic T, CD8+ naïve T,
CD8+ cytotoxic T, NKT, Treg cells) between the first, sec-
ond and third trimester and non-pregnancy.We found that
TCRs (TRAC, TRBC1 and TRBC2), CD3D, CD3E andCD3G
(proteins encoded by CD3D, CD3E and CD3G combine
with TCRs to form a TCR-CD3 complex, which promotes
T-cell activation31) and co-stimulatory receptors (CD2 and
CD27)32,33 were all significantly downregulated in T cells
(CD4+ naïve T, CD4+ cytotoxic T, CD8+ naïve T, CD8+
cytotoxic T, Treg cells). Moreover, LCK, which encodes the
first kinase transducing TCR signal critical for T-cell devel-
opment and activation,34 and CD45, a positive regulator of
LCK,35 were also reduced in the T-cell subsets during preg-
nancy (Figure 4K-4L).
RNA splicing, especially alternative splicing, is critical

in eukaryotic gene regulation. Alternative splicing plays an
important role in maintaining T- and B-cell homeostasis
in the peripheral immune system.36,37 Here, we observed
that RNA splicing and alternative mRNA splicing via
spliceosome pathways were significantly upregulated in
the T-cell subsets across pregnancy, although the pathway
scores gradually decreased as pregnancy progressed
(Figure 4H-4I, S3K). Moreover, HNRNPL, which encodes
a well-characterised RNA-binding protein involved in
alternative splicing and plays an important role in reg-
ulating both TCR and BCR-dependent activation,37,38
was overexpressed in T cells (CD4+ naïve T, CD4+
cytotoxic T, CD8+ naïve T, CD8+ cytotoxic T, NKT, Treg
cells) throughout pregnancy, especially in early gestation
(Figure 4M). These results suggest that alternative mRNA
splicing may play an important role in regulating T-cell
activity during pregnancy.

F IGURE 4 Features of T-cell subsets during pregnancy. (A) GO term enrichment of genes which highly expressed in different trimester
compared to non-pregnancy in T cell (CD8+ naïve T, CD8+ cytotoxic T, CD4+ naïve T, CD4+ cytotoxic T, NKT, Treg, proliferative T, MAIT
and other T). Red means upregulation compared to non-pregnancy, blue means downregulation compared to non-pregnancy. (B and C)
Boxplots of the cell scores of two GO biological process terms (T-cell receptor signalling pathway and T-cell activation) in CD4+ T, CD8+ T,
NKT and Treg cells across four conditions. Wilcoxon rank-sum test was applied. (D and E) Box plots of the cell scores for CD4+ T, CD8+ T,
NKT and Treg cells of cytotoxic and exhausted associated genes across four conditions. Wilcoxon rank-sum test was applied. (F and G) Box
plots of the cell scores of two GO biological process terms (response to type I interferon and defense response to virus) in CD4+ T, CD8+ T,
NKT and Treg cells across four conditions. Wilcoxon rank-sum test was applied. (H and I) Box plots of the cell scores of two GO biological
process terms (RNA splicing and alternative mRNA splicing via spliceosome) in CD4+ T, CD8+ T, NKT and Treg cells across four conditions.
Wilcoxon rank-sum test was applied. (J) Correlation test between ISGs expression level in CD4+ T, CD8+ T, NKT and Treg cells with
gestational weeks. Correlation analysis using the Pearson’s product-moment correlation. (K) Dot plot of ten genes expression pattern across
four conditions, including CD27, TRAC, TRBC1, TRBC2, CD3D, CD3E, CD3G, CD2, LCK and PTPRC. (L) The difference in expression levels of
above ten genes in CD4+ T, CD8+ T, NKT and Treg cells between three periods of pregnancy and non-pregnant controls. (M) HNRNPL
expression pattern across four conditions, the graph on the right shows the significance of three periods of pregnancy compared to
non-pregnant controls. Wilcoxon rank-sum test was applied. All differences with p < 0.05 are indicated. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001, ns = not significant
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Collectively, our findings indicated that T-cell activity
decreased throughout pregnancy, possibly due to first and
second signal deficiencies and upregulation of alternative
mRNA splicing. Furthermore, the limited enhancement
in T-cell activity from early to late pregnancy may be
due, in part, to the upregulation of IFN responses during
pregnancy.

2.5 Attenuation of B-cell activity during
gestation

Pregnancy is also associated with changes in B-cell sub-
sets. Compared with non-pregnancy, the downregulated
DEGs in the peripheral blood of pregnant women were
mostly associated with B-cell function (Figure 5A), with
enrichment in the “B-cell receptor signalling pathway”
and “B-cell activation” (Figure 5B). Moreover, many genes
related to “signal transduction pathways”, “B-cell activa-
tion” and “immune responses” were markedly downreg-
ulated throughout gestation (Figure S4A–E), including
MS4A1, CD79B and BLNK (Figure 5C and 5D). The pro-
tein encoded by MS4A1 is a membrane protein specific
to B lymphocytes and plays a critical role in regulating
the influx of cellular calcium necessary for B lymphocyte
activation.39 CD79B cooperates with CD79A to initiate the
signal transduction cascade activated by the B-cell anti-
gen receptor complex. BLNK encodes a cytoplasmic junc-
tion or adaptor protein important in B-cell development.
This protein is located downstream of the B-cell receptor,
which connects SYK kinase with various signalling path-
ways and regulates B-cell function and development.40 To
verify our results, we assessed the expression levels of two
significant GO pathways (i.e., B-cell receptor signalling
pathway and B-cell activation) in B cells (memory, naïve,
plasmablast cells). Consistent with the above results, the
pathway scores decreased significantly during pregnancy
compared to the control group (Figure 5E and 5F). Com-
pared to non-pregnant women, most upregulated DEGs
in the B cells were involved in RNA splicing-related path-
ways during early gestation, although the number of genes
related to RNA splicing decreased as pregnancy progressed
(Figure 5A and 5B, S4H). The RNA splicing and alternative
mRNA splicing via spliceosome pathway scores were also
significantly elevated in B cells and plasmablasts during
early-mid gestation (Figure 5G and 5H), as was HNRNPL
expression in the memory B cells (Figure 5I). These results
suggest that upregulation of alternative splicing may con-
tribute to the inhibition of B-cell activity. In addition, to
gain insight into the changes in B-cell responses to IFN
during pregnancy, we compared the score of ISGs (based
on all collected ISGs) and response to type I IFN pathway
across all four stages (Figure S4F and G). Results showed

no significant change in B-cell response to IFN during the
first and second trimesters, but a slight increase in B-cell
response to IFN in the third trimester.

2.6 Global comparison analysis of
communication among immune cells

Complex cellular responses are triggered by ligand-
receptor binding and the subsequent activation of specific
signalling pathways. To identify differences in molecular
interactions between the major immune cell types in
pregnant versus non-pregnant women, we conducted
bioinformatics analysis of cell-cell communication using
CellChat.41 Results showed that the number of inferred
interactions and interaction strength decreased obviously
during gestation (Figure S5A). The overall signalling pat-
terns determined by CellChat showed that signalling and
immune activity-related pathways, such as the SELPLG,
GALECTIN, MHC-II, MHC-I, IL16, CD45, TNF, LCK and
MIF signalling pathways (Figure 6A), were significantly
downregulated, in agreement with our previous results.
Furthermore, we identified 11 specific ligand-receptor
pairs involved in immune cell communication that were
significantly decreased in pregnancy compared to healthy
controls (Figure 6B). Specifically, many ligand/receptor
pairs associated with T-cell signalling were downreg-
ulated during gestation, including HLA-DRB1/CD4,
HLA-DRA/CD4, HLA-DRB5/CD4, HLA-DMA/CD4,
HLA-E/CD8B and HLA-B/CD8B. Notably, the downreg-
ulation of CD45/CD22 was highly significant in the B-B,
CD4T-B, CD8T-B, NKT-B, DC-B, NKT-B and monocyte–
B-cell interactions throughout pregnancy (Figure 6B).
CD22 is an inhibitory co-receptor on the B-cell surface
that inhibits B-cell receptor-induced signalling,42 which
can be reversed by CD45 to maintain tonic B-cell antigen
receptor signalling.43 These results demonstrate that B-cell
signalling is attenuated during pregnancy, in part due to
weakened CD45/CD22 interactions. Furthermore, CD45
and CD22 contribute to a broad spectrum of immune cell
interactions, through which B cells interact with CD4 T,
CD8 T, NKT, DC, NK and monocyte cells. In addition,
monocytes were the prominent influencer controlling
TNF signalling (primarily TNF-TNFRSF1B) (Figure 6B,
S5B), with TNF/TNFRSF1B markedly decreased during
pregnancy (Figure 6B). This may contribute to monocyte
dysfunction during pregnancy.
The SELPLG and MIF signalling pathways play impor-

tant roles in immune cell activation and migration.44,45
Here, CellChat predicted that the SELPLG and MIF
signalling pathways were downregulated during preg-
nancy (Figure S5C and D). Moreover, interactions of
ligand/receptor pairs involved in these pathways, such
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F IGURE 5 Dynamic functional changes in B cells during pregnancy. (A) Volcano plots of DEGs in B cells (naïve B cells, memory B cells
and plasmablast). Genes with |log2(FC)| ≥ 0.3, adjusted p < 0.05, related B-cell activation and RNA splicing were labelled by gene symbols.
(B) GO term enrichment of genes which highly expressed in different trimester compared to non-pregnancy in B cell. Red means
up-regulation compared to non-pregnancy, blue means down-regulation compared to non-pregnancy. (C) Dot plot of BLNK,MS4A1 and
CD79B in naïve B cells and memory B cells. Dots sizes represent the proportion of cells expressed in four stages. Dot colours represent average
expression levels of monocytes in four stages. (D) Box plots of the cell scores of BLNK,MS4A1 and CD79B in naïve B cells and memory B cells.
Wilcoxon rank-sum test was applied. (E and F) Box plots of the cell scores of two GO biological process terms (B-cell receptor signalling
pathway and B-cell activation) in naïve/memory B cells and plasmablast across four conditions. (G and H) Box plots of the cell scores of two
GO biological process terms (RNA splicing and alternative mRNA splicing via spliceosome) in naïve/memory B cells and plasmablast across
four conditions. (I) HNRNPL expression pattern across four conditions; the graph on the right shows the significance of three periods of
pregnancy compared to non-pregnant controls. Wilcoxon rank-sum test was applied. All differences with p < 0.05 are indicated. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant
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F IGURE 6 The interactions of peripheral immune cells in pregnant women. (A) Bar graph shows significant signalling pathways were
ranked based on differences in the overall information flow within the inferred networks between first trimester and non-pregnancy. The top
signalling pathways coloured red are enriched in first trimester, and those coloured light blue were enriched in the non-pregnancy. (B) Dot
plot of the predicted interactions between immune cell types in the first trimester and in non-pregnant control. p values are indicated by the
circle sizes, as shown in the scale (permutation test). The means of the average expression level of interacting molecule 1 in cluster 1 and
interacting molecule 2 in cluster 2 are indicated by the colour

as SELPLG/SELL, CD74/CXCR4 and CD74/CD44, also
decreased significantly (Figure 6B). The signalling path-
ways corresponding to ligand/receptor pairs covered
almost all immune cells (Figure 6B). This cell–cell commu-
nication analysis highlighted that cell signalling pathways
and immune cell interactions are attenuated across preg-
nancy, and interactions between immune cells are complex
and redundant.

2.7 Transcriptomic clock of normal
pregnancy identified by machine learning

Next, we investigated the utilization of scRNA-seq data
to establish a transcriptomic clock and thereby predict
gestational age of normal pregnancy (Figure 7A). After
exclusion and imputation, 14 out of 18 cell types from
the 131 subjects were obtained, with the number of sin-
gle cells ranging from 1,268 to 47,043 (Table S3A). For
each cell-type-specific subset, we generated pseudo-cells
and conducted data splitting, leading to 14 pairs of training
datasets and independent testing datasets containing 131–
3, 234 and 126–1, 351 pseudo-cells, respectively (Table S3A).
By applying the LASSO (least absolute shrinkage and
selection operator) algorithm, 147–1, 615 gestational age-

relevant genes were selected (Table S3A). We trained 14
random forest (RF)-based regressionmodels to predict ges-
tational age (in days) using the corresponding 14 cell-type-
specific training datasets, with the optimal hyperparame-
ters determined in a fivefold cross validation (Table S3B).
We then applied the final-trained cell-type-specific mod-
els to the independent testing datasets to yield predicted
gestational age (𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) estimates, which were com-
pared with the estimates obtained by first-trimester ultra-
sound (𝐺𝐴𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑) using Pearson’s correlation coeffi-
cients (R). We filtered out models with R values less than
0.8 (Figure 7B), leading to the top five prediction mod-
els built upon the CD8+ naïve T (R = 0.936, p = 3.86 ×

10−60, RMSE = 26.162), CD8+ cytotoxic T (R = 0.912, p =
1.05 × 10−51, RMSE = 29.314), CD4+ naïve T (R = 0.905,
p = 1.05 × 10−494, RMSE = 31.257), dnT (R = 0.867, p =
8.43 × 10−41, RMSE= 35.363) andNK cell types (R= 0.813,
p= 3.82 × 10−32, RMSE= 41.542) (Figure 7C and 7D).We
further assessed the prediction capabilities of the models
in early, middle and late pregnancy, respectively. Results
showed that the top five cell-type-specific models in gesta-
tional age prediction were more accurate in middle preg-
nancy than in early or late pregnancy (Figure 7E). In par-
ticular, compared to the other cell types, CD4+ and CD8+
naïve T cells in middle pregnancy showed the highest
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F IGURE 7 Machine learning models to establish transcriptomic clock of normal pregnancy. (A) Flowchart of developing the
cell-type-specific machine learning models. (B) Pearson’s correlation coefficient (R) values demonstrating the correlation of the predicted
gestational age in days (𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) by the 14 cell-type-specific models based upon the independent testing datasets with the estimates by the
first-trimester ultrasound (𝐺𝐴𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑). The x-axis represented the number of pseudo-cells. The red circle points indicated the five models
with the R values greater than 0.8. (C and D) The correlation of the 𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 by the five predominant cell-type-specific models with the
𝐺𝐴𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 during the entire pregnancy period (C), as well as the performance metrics in terms of R values, p values and root mean squared
errors (RMSE) (D). (E) The correlation of the 𝐺𝐴𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 with the 𝐺𝐴𝑢𝑙𝑡𝑟𝑎𝑠𝑜𝑢𝑛𝑑 (plot in the first row), R values (plot in the second row),
p values (plot in the third row) and RMSE values (plot in the last row) during the periods of early, middle and late pregnancy. (F) Top 22 genes
involved in at least two of the five predominant cell-type-specific models were ranked and were prioritised by the mean absolute of SHAP
values. The first two genes of STAT1 and IGKC were involved in all five predominant cell-type-specific models
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prediction ability, with RMSE values of 19.823 and 21.030,
respectively. These results suggested that CD8+ naïve T,
CD8+ cytotoxic T, CD4+ naïve T, dnT and NK cell types
in PBMCs during normal pregnancy, especially in the sec-
ond trimester, have the potential to predict gestational age
with high accuracy.
We then examined feature importance of the five cell-

type-specific models by calculating the mean absolute val-
ues of SHAP (SHapley Addtive exPlanations).46 A total
of 22 genes involved in at least two of the five cell-type-
specific models were then ranked and prioritized. Among
these genes, STAT1 and IGKC exhibited high importance
across all five cell types when predicting gestational age
(Figure 7F). In addition, we performed GO enrichment
analysis of the 159 genes involved in any of the five cell-
type-specific models. Results indicated that these genes
were significantly enriched in immune terms, including
“T cell activation”, “immune response-activating signal
transduction”, “B cell activation” and “cellular response
to interferon-gamma” (Figure S6). These findings were in
line with our above analyses.

3 DISCUSSION

Pregnancy is accompanied by significant systemic
immunological adaptations.9 However, previous studies
have primarily focused on classical experimental methods
such as blood cell count and flow cytometry, making it
difficult to obtain comprehensive scenarios of cellular and
molecular immune responses during gestation. To address
this issue, we profiled the immune landscape in PBMCs
from 6–40 weeks of gestation at single-cell resolution and
determined the dynamic nature of cellular responses in
human pregnancy.
During pregnancy, the maternal immune system is

altered to protect allogeneic fetal tissues against premature
rejection. Monocytes increase during pregnancy, begin-
ning in the first trimester,14 and exhibit anti-inflammatory
activity.18 For example, Susanne et al. reported that mono-
cytes are in an inhibitory state as LPS-induced IL-12 and
TNFα production by monocytes is decreased compared
to that in non-pregnancy.47 In contrast, we observed that
many genes related to the “cell chemokine” and “positive
regulation of cell activation” pathways, such as CD83,48
weremarkedly downregulated in the three periods of preg-
nancy, although IFN responses were activated at the early
stage (GW6–9). Cell communication analysis showed the
pair TNF/TNFRSF1B frommonocyte tomost immune cells
(especially monocytes) markedly decreased during preg-
nancy, which may contribute to immune cell dysfunc-
tion during pregnancy. Additionally, CD83 can upregulate

PGE2 expression in monocytes, which can, in turn, sup-
press T-cell immune responses.26 Thus, we propose that
monocytes play an essential role in maintaining maternal-
fetal immune balance.
Although T-cell response is generally believed to be sup-

pressed during pregnancy based on the symptoms alle-
viated in some patients with autoimmune diseases, the
mechanism is yet unclear.9,49 Here, we verified the sup-
pression of T cells and explored the underlying mech-
anism. Notably, T-cell activity was significantly damp-
ened throughout pregnancy (although IFN responses were
enhanced), possibly due to the significant decrease in the
expression of TCR-CD3 complexes (TRAC,TRBC1, TRBC2,
CD3D, CD3E and CD3G) and ligation of co-stimulatory
molecules (CD2 and CD27), essential components for
effective T-cell activation,30 in CD4+ and CD8+ T cells.
Our results also revealed thatmany cytotoxic-related genes
were downregulated, whereas exhaustion-related genes,
such as LAG3, were upregulated in CD4+ and CD8+ T
cells throughout pregnancy, which further illustrated T-
cell functionality impairs. LAG3 has a negative regulatory
effect on T cells and in combination with PD1 can medi-
ate a state of exhaustion.50 Our results also showed that
circulating B cells were greatly reduced during the third
trimester, probably due to the elevated level of estrogen.51
There was a trend toward reduction in naïve B cells in
our data, although this was not statistically significant. B-
cell function is known to decrease during pregnancy,9 in
agreement with our results. Cell-cell communication anal-
ysis also showed attenuation of CD45/CD22 interactions,
which play an important role in B-cell antigen receptor
signalling,43 thus contributing to maternal-foetal immune
tolerance.
The RNA splicing and alternative mRNA splicing via

spliceosome pathway scores were elevated significantly in
B and T cells in the first trimester, but gradually decreased
as pregnancy progressed. Alternative splicing plays an
important role in maintaining T- and B-cell homeosta-
sis in the peripheral immune system.36,37 For example,
PTPRC, one of the genes identified in T and B cells to
undergo alternative splicing,52 plays a crucial role in T-
and B-cell activation and subsequent proliferation and
cytokine production.53–55 Moreover,HNRNPL, an encoded
RNA-binding protein that regulates alternative splicing
of PTPRC, resulting in different CD45 protein isoforms
and functions,37 was also upregulated in T and B cells
during pregnancy. These results suggest that alternative
mRNA splicing may play an important role in regulat-
ing T- and B-cell activity during pregnancy. However, the
specific mechanism remains unclear. In addition, scRNA-
seq data cannot be used to identify protein isoforms,
and protein sequencing is required to learn more about
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how alternative splicing regulates T-cell activity during
pregnancy.
Both NK and T cells play critical roles in maintain-

ing maternal-fetal balance.56,57 In addition, T and NK
cell responses are vital for the control and clearance of
viruses.58,59 The functions of NK and T cells were thought
to be inhibited during pregnancy to protect the fetus,49,60
but recent studies have proposed an alternative view.
Notably, several studies have demonstrated enhanced NK
and CD4+ T-cell responsiveness to type I IFN8 and pH1N1
virus during pregnancy.61 Similarly, our results showed
that IFN/virus responses in NK (NK/NK_CD56-bright)
and T cells (CD4+ cytotoxic T, CD4+ naïve T, CD8+
cytotoxic T, CD8+ naïve T, NKT, Treg cells) increased
significantly and progressively during pregnancy, reaching
a peak in the third trimester (especially NK cells). Addi-
tionally, our results indicate STAT1may play an important
role in activating immune response to interferon in
NK/NK_CD56 bright cells during pregnancy. An excessive
response to IFN/virus during pregnancy may induce a
reversal in immune response from a healthy to destructive
status, leading to increased disease severity. Consistent
with this idea, numerous chemokines are reported to
be related to increased pathogenicity and morbidity in
influenza infection in humans.62 Furthermore, block-
ing influenza-induced cytokines can prevent influenza
death in mice without increasing virus titres in infected
tissues.63 These results indicate that the maternal immune
system induces fine immune regulation for maintenance
of pregnancy.
We also developed cell-type-specific models to predict

gestational age (in days) of normal pregnancy. Five cell
types (i.e., CD8+ cytotoxic T, CD8+ naïve T, CD4+ naïve
T, dnT andNK cells) exhibited high accuracy in gestational
age prediction. Other cell types showed relatively low pre-
diction ability, which may be due to the small number of
captured single cells. Thus, further analysis should be con-
ducted using these cell types with sufficient data. Further-
more, the predictive models showed higher accuracy in
middle pregnancy than in early or late pregnancy, suggest-
ing a steady state of cell evolution during the middle preg-
nancy period.
This study has several limitations. First, our study lacked

postpartum data, and the identified alterations in immune
response during pregnancy need to be further validated
using such samples. Second, different gestational weeks
corresponded to different participants in our study, thus
increasing cohort heterogeneity. However, we were able
to capture the dynamic nature of cellular responses dur-
ing gestation in our data, further illustrating the universal-
ity of maternal PBMC immune adaptations. Future work
should extend and validate our results by examiningmater-

nal PBMC immunological changes in the same woman
from pre-pregnancy to postpartum.
To the best of our knowledge, this is the first study

to visualise the dynamic landscape of maternal PBMC
immune adaptations throughout pregnancy at the single-
cell resolution. This work should help improve our under-
standing of the pathophysiological reactions during preg-
nancy and lay a foundation for linking unfavourable out-
comes ofmother and child to thematernal immune system
during gestation.

4 METHODS

4.1 Ethics statement

All sample collection and research protocols were per-
formedwith the approval of the Institutional ReviewBoard
on Ethics Committee of BGI (approval reference number
BGI-IRB 21082). The PBMCswere collected after obtaining
written informed consent from donor patients. All proce-
dures followed the ‘Interim Measures for the Administra-
tion of Human Genetic Resources’.

4.2 Inclusion and exclusion criteria

Inclusion criteria: Primiparous women aged 20–34 years,
diagnosed with singleton pregnancy, first pregnancy, no
abortion, no drug abortion or ectopic pregnancy. Preg-
nant women registered in Shenzhen Maternity and Child
Healthcare Hospital at 6–8 weeks of gestation. No preg-
nancy complications.
Exclusion criteria: Various types of chronic diseases,

especially immune system diseases, including but not
limited to tumour, asthma, rheumatism, lupus ery-
thematosus, history of hyperthyroidism and history of
hypothyroidism. Appearance during pregnancy: subclin-
ical hypothyroidism during pregnancy, ICP, GDM, HDP,
gestational thrombocytopenia, FGR and macrosomia in
middle and late stages of pregnancy (ICP: intrahepatic
cholestasis of pregnancy, GDM: gestational diabetes melli-
tus, HDP: hypertensive disorders of pregnancy, FGR: fetal
growth restriction).

4.3 PBMC collection and treatment

Peripheral blood samples (3 ml) were collected and gently
rotated to mix thoroughly. Whole blood was first diluted
by adding an equal amount of sterile phosphate-buffered
saline (PBS) (Cat. No. 10010–031) to a 15-ml conical
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centrifuge tube, added 3 ml of Histopaque-1077 (Cat. No.
10771, 6 × 100 ml) and brought to room temperature. The
diluted whole blood was layered onto Histopaque-1077,
then horizontally centrifuged at 500 g for 20 min at 20◦C.
The middle mononuclear cell layer was transferred to a
new 15-ml centrifuge tube, with 5 ml of 1% bovine serum
albumin (BSA) and PBS then added for washing. The solu-
tion was centrifuged at 300 g for 10 min and the super-
natant was discarded. After this, 10 ml of 1% BSA (with
PBS) was added to wash the cells, followed by centrifuga-
tion at 300 g for 5 min and the addition of 2 ml of 1% BSA
(PBS) to resuspend the cells. Trypan blue was used (0.4%)
(Cat. No. C0040, 100 ml) (cell solution: trypan blue = 1:1)
to calculate and count cell viability and number under a
microscope, with cell viability shown to be greater than
90%. Approximately, 100,000 cells were centrifuged at 300
g for 5 min, with 100 μl of Cell Resuspension Buffer (Cat.
No. 1000019895) then added to resuspend the cells.

4.4 scRNA-seq library preparation and
sequencing

ScRNA sequencing libraries were constructed using
DNelabC4 following the manufacturer’s instructions.64
The libraries were quantified using a Qubit ssDNA analy-
sis kit (Thermo Fisher Scientific) and sequenced using the
DIPSEQ T1 sequencer of the China National Gene Bank
(CNGB).

4.5 Processing of raw scRNA-seq data

Raw sequencing datawere processed by PISA. Seurat v4.0.1
was applied for downstream analysis. We filtered the data
using the following criteria: (1) Cells with gene expression
<800 or >6000 were discarded and (2) Cells with a mito-
chondrial gene percentage >5% were filtered out.

4.6 Multiple dataset integration

We adopted the package integration method described
in https://satijalab.org/seurat/articles/integration_intro
duction.html. Seurat v.4.0.4 was used to combine different
scRNA-seq datasets into an integrated and unbatched
dataset. In the first step, we identified 2000 features with
high cell-to-cell variability. In the second step, we used
the FindIntegrationAnchors function to identify ‘anchors’
between a dataset, and input these anchors into the
IntegrateData function to create an aggregated matrix of
all cells.

4.7 Cluster-specific gene identification
and GO enrichment analysis

The FindAllMarkers function in Seurat was used to
identify cluster-specific marker genes (thresh.use = 0.25,
min.pct = 0.25, only.pos = TRUE). The R package
clusterProfiler65 was employed for GO term enrichment
of cluster-specific genes and the BH method was used for
multiple test correction. Both GO and Kyoto Encyclopedia
of Genes and Genomes (KEGG) terms with p < 0.05 were
considered significantly enriched.

4.8 Defining cell state score

We use cell scores to assess howwell a single cell expresses
a certain set of pre-defined expressed genes.66 Cell scores
were initially based on the average expression of the prede-
fined gene set in each group of cells. The AddModuleScore
function in Seurat was used to implement the method
with default settings. We used response to type I interferon
(GO: 0034340), defense response to virus (GO: 0051607), T-
cell receptor signalling pathway (GO: 0050852), T-cell acti-
vation (GO: 0042110), B-cell receptor signalling pathway
(GO: 0050853), B-cell activation (GO: 0042113), RNA splic-
ing (GO:0008380), alternative mRNA splicing via spliceo-
some (GO:0000380), 58 ISGs,67 11 cytotoxicity-associated
genes (PRF1, IFNG,NKG7, GZMB, GZMA, GZMH, KLRK1,
KLRDC1, CTSW and CST7,), 13 apoptosis associated genes
(TNFSF10, TRADD, FAS, FASLG, FADD, TNFSF14, BAD,
BAX, CASP4, DAP3, DAXX, PDCD10 and PDCD6) and 5
well-defined exhaustion markers (LAG3, PDCD1, CTLA4,
HAVCR2 and TOX) to define the response to type I inter-
feron, defense response to virus, T-cell activation, B-
cell activation, RNA splicing, alternative mRNA splicing
via spliceosome, ISG, cytotoxicity and exhaustion score,
respectively.

4.9 Cell communication

The R packet CellChat41 was used for cell communication
analysis with default parameters. Cell ChatDB.humanwas
used for our datasets.

4.10 Machine learning model
development

4.10.1 Data pre-processing and splitting

We excluded annotated cell types with fewer than 1,000
cells and imputed zero expression genes using the MAGIC

https://satijalab.org/seurat/articles/integration_introduction.html
https://satijalab.org/seurat/articles/integration_introduction.html
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algorithm v3.0.0.68 Expression data were normalized by
removing the mean from each gene expression and scaling
to unit variance.Womenwithmultiple single-cell sequenc-
ing data at different time during the pregnancy period
were treated as different subjects with distinct gestational
ages. To build the machine learning models to predict ges-
tational age at the cell-type level, a subset of scRNA-seq
data for each cell type was constructed. For each cell-type-
specific subset, we created a training dataset and an inde-
pendent testing dataset using the stratified random split-
ting approach in a 7:3 ratio. The stratified samplingmethod
was used to ensure similar scRNA-seq data distribution
per subject in both training and testing datasets. As sub-
jects could possess many single cells, it is undesirable to
build a predictive model based on such a large number of
single cells of the same gestational age. Hence, we com-
puted median gene expression for every 10 single cells ran-
domly sampled (without replacement) from the same sub-
ject, denoted as pseudo-cells.

4.10.2 Machine learning model training and
evaluation

In the training dataset, the LASSO algorithm (scikit-learn
v0.24.2: Lasso), with the penalty parameter value of 0.1
set empirically, was employed to select gestational age-
relevant genes. Subsequently, a random forest (RF) regres-
sion model (scikit-learn v0.24.2: RandomForestRegressor)
was trained and optimised by tuning the hyperparameters
to minimise root mean squared error (RMSE) using a ran-
dom search strategy with fivefold cross validation (scikit-
learn v0.24.2: RandomizedSearchCV). After determining
the optimal hyperparameters of the RF models, we re-
trained the final RF regressionmodel to predict gestational
age using the entire training set.
The independent testing dataset was used to evaluate

performance of the predictive model. We obtained the pre-
dicted gestational age of a subject by averaging the outputs
of the final RF regression model based on the pseudo-cells
of the subject. Pearson’s correlation coefficients (R) and
RMSE were used as the evaluation metrics.
We used the SHAP (SHapley Addtive exPlana-

tions, v0.39.0) 46 to determine the importance of genes in
prediction of gestational age. Each SHAP value measured
the change in the predicted value of the gestational age of
subject i attributed to gene j. Mean absolute SHAP values
across all subjects in the dataset represented the overall
importance of a particular gene in the prediction of gesta-
tional age by the final RF regression model. Larger mean
absolute SHAP values of a gene represented higher contri-
butions to gestational age prediction. Genes were initially
ranked by the mean absolute SHAP values calculated

from the training dataset. The optimal number of genes
was then determined by the minimum MSE. We then
retrained the models using the optimal hyperparameters
and genes as the final models.
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