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Abstract: Over the past decade, we have witnessed an increasing number of large-scale studies that
have provided multi-omics data by high-throughput sequencing approaches. This has particularly
helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to
the activation of signaling networks through the disruption of normal cellular homeostasis is seen
both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology
approaches have enabled the efficient integration of experimental data with computational algorithms
and the implementation of actionable targeted therapies, as the exceptions, for the treatment of
cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and
experimental model systems will be important in implementing novel cancer systems biology
approaches and increasing their efficacy for tailoring novel personalized treatment modalities in
cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics
data derived from bulk and single-cell genomics studies in addition to existing experimental model
systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance
in cancer.
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1. Introduction to Cancer Systems Biology

Cancer is an extremely complex disease with heterotypic interactions between cancer cells and
neighboring stromal cells that support the proliferation, invasion, and the metastatic cascade of
tumor cells [1,2]. Recently, multi-omics approaches empowered by next-generation technologies have
enabled genomic characterization and evolutionary histories of both primary and metastatic cancer
progression [3–6]. These technologies that shed light on the genome, transcriptome, metabolome,
and proteome of cancer cells corroborate our understanding about systems biology-level approaches
in cancer (Figure 1) [7]. Considering the challenges to unify high-throughput data obtained from
multi-omics studies, system biology applications in cancer hold a key role to tackle this very problem.
For example, cancer as a disease of numerous distinct cell types requires taking into consideration the
combination of data derived from these different cell types together with the integration of various
layers of genetic and non-genetic data that are forming the cellular systems. Thus, cancer systems
biology can simplify the analysis of multi-layer data and offer effective and fast solutions for the
development of novel drug technologies and the identification of predictive biomarkers in cancer
therapies. Cancer systems biology is an emerging field with accumulating data obtained through
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network-driven and interdisciplinary science that ultimately aims to tailor better-personalized treatment
modalities for patients based on their genetic and non-genetic profiles [8].
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Figure 1. Comprehensive picture of systems biology approaches and experimental model systems
constituting the core components of the biology of cancer.

The heterogeneous nature of cancers led to studies mapping the (epi)genomic alterations [9–11]
both in primary [6,12] and metastatic cancers [5]. Through the high-throughput data obtained from
cancer patients, it is now possible to combine this information and assess the genotype-to-phenotype
link to further characterize the disease onset and clinical outcome. The combination of information
derived from the genomic architecture and various gene networks from a single or a group of cells not
only determines the fate of these cells during development but also a progression to cancer occurs
as a result of the deregulation of these interactions. For example, while the regulation of Notch
and Wnt signaling pathways are fine-tuned by each other in normal homeostasis [13], their aberrant
expression and deregulation are commonly seen in cancers [14,15]. Therefore, understanding the
genetic and epigenetic changes that cause persistent signaling activations and disrupting normal
cellular homeostasis is still one of the biggest challenges to address in cancer systems biology.

2. Cancer Systems Biology for Precision Medicine

The vast majority of efforts focus on bridging the “big data” obtained from various multi-omics
studies to new computational algorithms to ultimately offer more effective personalized cancer therapies.
Despite the advancements in cancer therapy through systems biology approaches, treatment resistance
is arguably one of the biggest challenges for better-personalized cancer treatments [16,17]. This is
mainly due to the fact that cancer follows distinct evolutionary trajectories in patients compared to
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their genomic landscapes, not only during the initiation and metastasis cascade of cancer cells but also
in response to the treatment in cancer therapies [18,19]. For this reason, the accurate identification of
subclonal drivers holds great importance for the timing of the subclonal expansion and its diversity in
cancer therapies [20]. This sophisticated subclonal identification tool, empowered by machine learning
and population genetics, will potentially lead to developing more comprehensive computational
methods by integrating with network-driven approaches for cancer systems biology in the future.

With the rapid developments in next-generation sequencing (NGS) technologies,
previous microarray studies have been gradually replaced by massively parallel deep sequencing
techniques such as whole-genome, whole-exome, targeted-panel, and RNA sequencing [21].
Initially, the microarray platforms have proved to be a very useful tool for genome-wide association
studies (GWAS) in cancer systems biology; however, they demonstrated limitations such as covering
only a the small fraction of the genome and failure to take into account more than common genetic
risk factors [22]. Later, individual research groups started to apply NGS technologies to identify
somatic alterations (single-nucleotide variations, copy-number alterations, structural variations) in
cancer driver genes and to determine gene expression changes and open chromatin formations both
in coding and non-coding regions of the genome [23–28]. Then, individual studies were followed by
larger multigroup projects [4–6]. One of the remarkable efforts is The International Cancer Genome
Consortium/The Cancer Genome Atlas (ICGC/TCGA) Pan-Cancer Analysis of Whole Genomes (PWAG)
project, comprising a working group of 700 scientists, which recently reported their findings from
2600 whole-genome samples [4,29–31]. In addition to these studies that deciphered the evolutionary
trajectories of tumors prospectively, recent technologies have also allowed the monitoring of clonal
dynamics using “cellular barcodes” integrated into experimental model systems to map the tumor
evolution at the single-cell resolution [32,33].

In addition, investigating cancer genomes at the single-cell resolution has taken a big step forward
in the past few years [3]. Initial studies focused on the understanding of the transcriptome of single
cells in a plate-based system wherein cells were required to be sorted individually, and thus the
system lacked high-throughput capacity [34]. However, recent advances, especially with the use of
droplet-based systems, have advanced our understanding about single-cell genomics through an
increased capacity to profile thousands of single cells at the same time (single-cell RNA sequencing,
scRNA-seq) [35,36]. The scRNA-seq technology provided a high-resolution picture not only of cellular
states in developmental biology [37] but also in cancer biology where intratumoral heterogeneity and
tumor cell plasticity are highly prevalent [38]. Furthermore, the information obtained from the analysis
of single-cell WGS (scWGS) has proved to be informative for understanding intratumor heterogeneity
and the evolutionary history of thousands of single cells comprising the bulk tumor population [39,40].
Recently, the high-throughput capacity for scWGS has improved significantly, and clonal/subclonal
alterations at the single-cell resolution were reported in thousands of cells [41]. To capture the
epigenetic changes at the single-cell level, novel methods to map the single-cell epigenome have also
been reported. For example, single-nuclei chromatin accessibility assays (ATAC-seq) inferring the
chromatin open or closed states in single cells [42,43]. Lastly, the rapid developments in the single-cell
biology have also resulted in novel methods such as parallel sequencing of single-cell genomes and
transcriptomes [44] and joint profiling of single-cell chromatin accessibility and gene expression [45].
Various online databases containing cancer systems biology tools to document molecular profiles
of cancer types are available and offered for the use of the cancer research community (Table 1).
Importantly, various multi-omics data obtained using high-throughput sequencing methods enables
the integration of these data into experimental model systems for the identification of the actionable
targets in cancer. As such, these molecular data integrated with systems biology applications, for the
function of transcriptional and proteomics networks, provide effective solutions for the treatment
of cancer. Given that cancer is a systems biology disease, integration of the cellular information
with the help of computational and mathematical modeling highlights the need to develop more
advanced and sophisticated systems biology applications in cancer. This considerable challenge
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has especially become evident with a rapid increase in the accumulation of sequencing data over
the past decade. Hence, to address this very challenge, systems biology approaches are timely
positioned to offer novel solutions to better understand the underlying mechanisms of drug resistance
and the identification of biomarkers that can predict the disease outcome and response to targeted
therapies. Overall, integrating cellular networks with cancer (epi)genomes in both single and bulk
cell populations has paved a way to advance our understanding for developing systems biology
approaches for precision therapy to advance clinical decisions for patient benefits.

Table 1. A collection of databases.

Name Description Website Reference

CaSNP
CaSNP performs quantitative analysis of copy
number variation from SNP arrays in multiple
cancer types

https://bioinformaticshome.com/tools/cnv/
descriptions/CaSNP.html [46]

OncoLand OncoLand provides oncology data access in
sample and gene directions.

https://omicsoftdocs.github.io/ArraySuiteDoc/
tutorials/OncoLand/Introduction/

[47]

AGCOH

The Atlas of Genetics, Cytogenetics in Oncology
and Hematology perform comprehensive
genomic characterization and analysis of
multiple cancer types

http://atlasgeneticsoncology.org/BackpageAbout.
html [48]

PCWAG

PCWAG—Pan-cancer Analysis of Whole
Genomes provides common patterns of
mutations from more than 2600 cancer whole
genomes

http://dcc.icgc.org/pcawg [4]

ChiTaRS ChiTaRS contains chimeric transcripts and
RNA-Seq data http://chitars.bioinfo.cnio.es/ [49]

CanSAR
CanSAR provides information about
translational research and drug discovery
knowledgebase

https://cansarblack.icr.ac.uk/ [50]

OncoDB.HCC
Oncogenomics Database of Hepatocellular
Carcinoma provides genomic, transcriptomic,
and proteomic data

http://oncodb.hcc.ibms.sinica.edu.tw/index.htm [51]

COSMIC COSMIC performs a comprehensive database of
somatic mutation in multiple cancer types https://cancer.sanger.ac.uk/cosmic [52]

canEvolve

canEvolve is a comprehensive database including
genes, miRNA, and protein expression profiles;
copy number changes for a variety of cancer
types and protein–protein interactions

http://www.canevolve.org/AnalysisResults/
AnalysisResults.html [53]

CancerPPD
CancerPPD provides information about
anticancer peptides and proteins in multiple
cancer types

http://crdd.osdd.net/raghava/cancerppd/ [54]

PED
The Pancreatic Expression Database performs a
comprehensive meta-analysis of pancreatic
cancer

http://www.pancreasexpression.org/ [55]

CGP Cancer Genome Project provides genotype and
copy number changes information in tumors

https://www.sanger.ac.uk/group/cancer-
genome-project [56]

MethyCancer
MethyCancer provides information about DNA
methylation and gene expression in a variety of
cancer types

http://methycancer.psych.ac.cn/ [57]

CPTAC
Clinical Proteomic Tumor Analysis Consortium
is a database containing an integration of
genomic and proteomic data

https://proteomics.cancer.gov/ [58]

intOGen
Integrative Onco Genomics performs
comprehensive genomic data of multiple cancer
types

https://www.intogen.org/search [59]

ArrayExpress ArrayExpress focuses on microarray gene
expression data https://www.ebi.ac.uk/arrayexpress/ [60]

DriverDBv3 DriverDBv3 is a database of cancer omics http://driverdb.tms.cmu.edu.tw/ [61]

PCDB The Pancreatic Cancer Database provides genetic
information in pancreatic cancer http://www.pancreaticcancerdatabase.org [62]

CancerDR CancerDR contains anticancer drugs and their
effectiveness against a variety of cell lines http://crdd.osdd.net/raghava/cancerdr/ [63]

Platinum Platinum provides knowledge about missense
mutations on ligand–proteome interactions http://biosig.unimelb.edu.au/platinum/ [64]

3. Experimental Model Systems of Cancer

Although cancer mortality rates are gradually diminishing, it is still one of the deadliest diseases
in the world [65]. To develop more effective therapeutic solutions, cancer cell lines, 3D spheroids,
in vivo patient-derived xenografts (PDXs), and ex vivo patient-derived organoids (PDOs) have been
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studied by various groups [66–68]. Due to the advances in the development of experimental model
systems, there has been remarkable progress in understanding the underlying mechanisms of initiation,
progression, and the metastatic cascade of cancer cells [69]. In addition to the advantages of each
model system, traditional model systems have failed to recapitulate the response to drugs that are
observed in the clinic. For instance, targeted therapies and chemotherapeutic agents that work well in
preclinical model systems fail to proceed into clinical trials since specific model systems were unable
to recapitulate the disease progression [70]. Therefore, in this section of the review, we sought to
discuss current preclinical model systems used in cancer research and their role in predicting how
cancer will progress and respond to the therapy when these model systems are integrated with system
biology approaches.

4. Cell Line-Based Model Systems

Since the first human cancer cell line was established in 1951, 2D monolayer systems have
provided major advantages in the understanding of tumor biology and cancer therapy [71]. Over the
decades, 2D monolayer systems offered several advantages such as being easy to expand and hence
allowing long-term culture times, being manipulated by gene insertions and deletions, and requiring
inexpensive material for culturing [72]. On the other hand, this platform has many drawbacks, mainly
its inability to mimic the 3D nature of tumor growth. The inadequacies of the 2D monolayer systems
also include a lack of cell-to-extracellular matrix (ECM) contact that has been reported as responsible
for the accurate detection of cell viability/death, drug metabolism, and expression of certain genes and
protein in tumors [73]. Another major limitation of 2D monolayer systems is their inaccurate utility of
oxygen and nutrients when compared to 3D culture systems that have proven to be more successful
in mimicking real tumor masses [74]. Collectively, 2D monolayer systems have played a major role
in understanding and designing cancer therapies for systems biology approaches; however, due to
their insufficiency to predict real tumor outcomes in patients, more suitable model systems such as 3D
culture systems have been developed.

The first 3D culture was performed using a soft agar solution by Hamburger and Salmon in 1977 [75].
Since that time, several 3D culture methods have been documented. Depending on the material used,
the 3D culture systems can be divided into three categories: (i) cultured onto non-adherent plates,
(ii) embedded into matrigel-like substances, and (iii) seeded into scaffold-based systems. The general
approach for 3D culture systems is based on the formation of a spheroid structure in which cancer cells
can form various layers. The 3D nature of spheroids has been demonstrated as a successful system in
mimicking the features of the solid tumor mass [73]. Three-dimensional spheroids can also mimic
tissue-specific functional characteristics in developmental processes. For example, cardiomyocyte
spheroids can exhibit heart-like rhythms, and hepatocyte spheroids exhibit biochemical functions
of the liver [76,77]. Three-dimensional culture systems have also been shown to mimic in vivo-like
microenvironments via the establishment of complex cell-to-cell and cell-to-ECM communications.
These interactions result in cellular signal transduction events similar to tumor tissues that can mediate
their cell shape and proliferation [78]. In addition, drug response assays in 3D culture systems
were shown to resemble in vivo studies more than 2D culture systems in terms of their success rates
in preclinical studies [79,80]. In another study, sensitivities of the same cell line against different
chemotherapeutic agents were reported as different in 2D vs. 3D culture systems [81]. For instance,
in this study, HCT-116 cells grown in both 2D and 3D model systems and their sensitivities against
four commonly used anticancer agents (melphalan, 5-Fluorouracil, oxaliplatin, and irinotecan) were
tested. The efficacy of these inhibitors was higher in the 2D than the 3D culture system, suggesting
that phenotypic differences and distinct cell-to-cell interactions between these model systems might be
responsible for observing the differences in drug sensitivities.
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5. Patient Sample-Based Model Systems

Patient-derived xenografts (PDXs) are preclinical models established by directly transplanting
patient-derived tumor specimens into immunodeficient mice [82]. PDXs have been accepted as
promising preclinical model systems that successfully mimic the testing of anticancer drugs [66].
This system provides several advantages, such as the preservation of tumor heterogeneity, molecular
subtypes and the clinicopathological features of the tumors obtained from patients [83]. In addition,
PDXs have been shown to successfully predict the drug response in the preclinical setting to test
the effectiveness of therapeutic agents [84]. While PDXs offer several advantages as a preclinical
model system, an increasing body of evidence suggests there are limitations [85]. Firstly, a significant
proportion of tumor samples engrafted in mice may not successfully grow due to the host mouse
environment causing a bottleneck. Secondly, engraftment times can be long so that the maintenance
costs associated with each PDX prove prohibitive. Thirdly, there is still no standardized method for
choosing the type of mouse or engraftment technique specific for each cancer type, which raises the
possibility of obtaining non-reproducible results between different studies. Studies that overcome these
limitations have shed light on the mechanisms of acquired drug resistance, especially in metastatic
colorectal cancer (mCRC). For instance, a series of seminal studies published by the Bertotti Lab has
demonstrated the use of a large PDX biobank to investigate the underlying mechanisms of drug
resistance in mCRC [86–89]. Importantly, one of these studies played a critical role in assessing the
genomic landscape of anti-EGFR antibody blockage in PDXs and functional consequences linked to
clinical data in cancer patients [87]. Thus, PDXs have paved a way to develop a platform for the
systematic analysis and evaluation of cancer therapies.

Patient-derived tumor organoids (PDOs) are ex vivo three-dimensional structures of tumors
obtained from cancer patients and grown in the presence of an extracellular matrix [90].
Accumulating evidence suggests that PDOs can successfully predict the drug response in cancer
patients in the clinic in addition to preserving the genetic and transcriptomic heterogeneity of the
original tumor [67]. In addition, studies focused on comparing the histopathological features of tumors
with PDOs revealed that the PDOs maintain similar morphological characteristics as the original
tumor [90,91]. Importantly, PDOs also mimic the genomic and transcriptomic features of the tumors
that they have derived from even after long ex vivo culture times [91–93]. To date, PDOs have been
established from different cancer types including colorectal [93], gastrointestinal [91], pancreatic [94],
prostate [95], bladder [96], breast [97], glioblastoma [98], and ovarian [99]. Three-dimensional cultures
of PDOs that predict the outcome of drug treatment in cancer patients can be considered an important
milestone for personalized medicine for the benefits of cancer patient [100]. When PDOs are established
from individual patients in a short time, they can provide a window of opportunity to test therapeutic
agents in parallel to the clinic, and thus the outcome of drug testing in the laboratory can prove
informative for the decision making of treatment for patients.

Amongst the key studies about PDOs, van de Wetering et al. (2015) is the first study that reported
a well-established and characterized PDO biobank from 20 primary CRC patients [93]. In this study,
whole-exome sequencing (WES) and the RNA sequencing of samples resulted in preserved genetic
heterogeneity and molecular cancer subtypes both in the primary tumor tissue and PDOs. In addition,
the genetic heterogeneity of the primary tumor was mostly preserved during the establishment and
long culture times of organoids in ex vivo. The histopathological assessment of samples suggested a
very high similarity in terms of the phenotypic heterogeneity between PDOs and the parental tumor.
In this important study, PDOs were treated with 58 chemotherapeutic agents, and those with TP53 loss
of function mutation were resistant to MDM2 inhibitors and as a consequence acquired RAS mutations
and therefore decreased sensitivity to an EGFR inhibitor. Importantly, in this study, colon tumor
organoids carrying the RNF43 mutation were dramatically sensitive to Wnt inhibitors.

In another significant study, PDOs were examined for the first time to investigate whether PDOs
as a preclinical model could predict the drug response seen in the gastrointestinal cancer patients in
the clinic [91]. In this study, a living organoid biobank was established from metastatic gastrointestinal
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cancer patients who were previously recruited for phase I or II clinical trials. According to the
phenotypic and genotypic profiling of organoid and patient tumor samples, both of them exhibited
highly similar profiles. Then, this led the authors to assess drug responses of PDOs in the laboratory
setting in parallel to the clinic. High-throughput drug screening of PDOs with Food and Drug
Administration (FDA)-approved drugs was shown to be successful with a positive predictive value
(predicting that a certain drug worked) of 88% and a negative predictive value (predicting that a certain
drug did not work) of 100%. This suggests a promising forecasting potential for PDOs in terms of the
treatment response.

6. Conclusions

Extensive (epi)genetic heterogeneity in cancer has been demonstrated in several studies. As a
result of the aberrantly activated and sustained complex signaling networks both in cancer cells
and neighboring tumor microenvironment, examples of the hallmarks of cancer were presented.
To address genomic aberrations and signaling network complexity, there has been a growing need to
develop more sophisticated approaches for cancer systems biology. Cancer systems biology can deliver
solutions for the better understanding of intratumor heterogeneity and therapeutic opportunities.
Specifically, improved cancer systems biology approaches integrated not only with multi-omics data
from tumors but also with comprehensive patient-derived experimental model systems can guide
clinicians for their decision-making to offer better therapeutic solutions with an ultimate aim to
overcome treatment failure in cancer.
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