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The properties of the conduction band energy states of an electron interacting with a donor impurity center in 
spherical sector-shaped GaAs-Al0.3Ga0.7As quantum dots are theoretically investigated. The study is performed 
within the framework of the effective mass approximation through the numerical solution of the 3D Schrödinger 
equation for the envelope function via the finite element method. The modifications undergone by the spectrum 
due to the changes in the conical structure geometry (radius and apical angle) as well as in the position of the 
donor atom are discussed. With the information regarding electron states the linear optical absorption coefficient 
associated with transition between confined energy levels is evaluated and its features are discussed. The 
comparison of results obtained within the considered model with available experimental data in GaAs truncated-

whisker-like quantum dots shows very good agreement. Besides, our simulation leads to identify the lowest 
energy photoluminescence peak as donor-related, instead of being associated to acceptor atoms, as claimed after 
experimental measurement (Hiruma et al. (1995) [14]). Also, a checking of our numerical approach is performed 
by comparing with analytical solutions to the problem of a spherical cone-shaped GaN with infinite confinement 
and donor impurity located at the cone apex. Coincidence is found to be remarkable.
1. Introduction

Quantum dots (QDs) are crystalline solid structures of nanoscopic 
dimensions that can be considered as quasi-zero-dimensional electronic 
systems, since the motion of charge carriers in them are constrained to 
have only well-defined energy values. Such a discrete spectrum has led 
some authors to name these nanosystems as “artificial atoms”. They are 
mainly made of semiconductor materials and have found broad appli-

cation in distinct areas of technology and science, including medicine. 
Recent advances in the area of QDs are reviewed in Refs. [1, 2, 3, 4].

The study of semiconductor QDs has included different geometries 
for these structures: spherical, lens-shaped, and pyramidal. The cone-

like QDs have also been investigated and their electronic and optical 
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properties, including the effects of donor impurities, electric and mag-

netic fields, have been reported by several authors [5, 6, 7, 8, 9, 10, 11, 
12, 13]. It is worth noting the experimental realization of microcrystals 
and conical-shaped heterostructures reported in the works of Hiruma et 
al. [14] and Schamp et al. [15]. The potential applications of these GaAs 
whiskers for light emitting devices is a source of permanent research be-

cause a semiconductor wire structure employing quantum size effects is 
a very important element of electronic and optical devices.

Modeling of different properties of semiconductor QDs using the fi-

nite element method (FEM) can be traced back to early nineties (see, for 
instance the work of Ref. [16]). Posteriorly, and also in recent years, it 
is possible to mention a number of studies dealing with structural, elec-

tronic and optical behaviors, transport, impurity, and strain effects in 
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Fig. 1. Pictorial view of the 𝑦 = 0 projection of a spherical cone-shaped quantum 
dot. The dimensions of the structure are the radius (𝑅) and the apical angle (𝜃0). 
A donor impurity has been considered with its axial coordinate 𝑧𝑖 . The spherical 
coordinates of the electron are (𝑟, 𝜃, 𝜑). The confinement potential is defined as 
zero inside the quantum dot structure and 𝑉0 elsewhere.

dot-like nanosystems of distinct shapes and composition [17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27]. A general environment that combines 
𝐤 ⋅ 𝐩 and FEM methods for band structure calculation in nanostructures 
has been put forward by Veprek and collaborators [28].

In the present work we investigate the electronic and optical prop-

erties of conical quantum dots with spherical upper cap [abbreviated 
as spherical cone-shaped (SCS) QD]. It is assumed that a donor impu-

rity center is located somewhere along the vertical axis of the cone. The 
allowed electron states in the structure are determined through the nu-

merical solution of the effective mass equation for the envelope function 
under the FEM approach. The coefficient of inter-level optical absorp-

tion is then evaluated as a function of the incident light frequency for 
different geometric configurations of the SCS-QD. The article has the 
following organization: The description of the theoretical framework is 
presented in section 2. The section 3 contains a discussion of the prop-

erties of electronic levels and the intraband optical response. Finally, in 
the section 4 we outline the conclusions.

2. Theoretical framework

The type of QD considered here has a conical shape with spherical 
upper cap as can be schematically seen in the Fig. 1. We are assuming 
that the conduction band profile of the structure incorporates a finite 
height potential energy well (𝑉0) that can be practically achieved by 
embedding the dot system within a matrix of a larger gap material. 
Without a significant loss of generality, the ionized donor atom is taken 
to be located on the vertical cone axis, with the origin of coordinates 
coinciding with the cone vertex.

The allowed electron states are obtained numerically by solving 
the 3D conduction-band-effective-mass Schrödinger equation for the 
smoothly varying envelope wave function, with confining potential 
equal to zero inside the cone region and to 𝑉0 = 𝑐𝑜𝑛𝑠𝑡. outside. In ad-

dition, the differential equation includes a Coulombic potential term 
representing the attractive interaction between the electron and the 
ionized donor impurity center. We are taking into account the depen-

dence of the electron effective mass with position, having constant but 
distinct values on both sides of the QD’s surface. This implies that the 
Ben-Daniel-Duke type matching conditions will have to be imposed over 
it. The calculation process is carried out using the FEM, as implemented 
2

Fig. 2. Pictorial view of the 3D-quantum dot structure inside a 3D cubic box. 
The Dirichlet boundary conditions establish that the wave function is zero on 
the six faces of the cubic region.

in the commercially available COMSOL Multiphysics software [29]. As 
usual, the binding energy of the electron to the impurity center is deter-

mined by subtracting the result obtained when the Coulomb interaction 
is present from the electron energy in the conduction band without the 
electrostatic coupling. In the Fig. 2 we represent a pictorial view of 
the spatial setup used in the simulation, considering Dirichlet boundary 
conditions at long enough distance from the active QD region. In our 
particular case, the material inside the QD is GaAs whilst the “barrier” 
region is taken to be made of Al0.3Ga0.7As.

Summarizing then all the points of the previous paragraph, the prob-

lem to be solved corresponds to an electron confined in a conical region 
of 𝑅-radius and 𝜃0-apical angle with 𝑉 (𝑥, 𝑦, 𝑧)-confinement potentials 
whose values are zero in the inner region of the cone, 𝑉0 in the region 
surrounding the quantum dot, and infinity in the outer region of a paral-

lelepiped (see Fig. 2). The dimensions of the outer box are large enough 
so that it can be considered that there are no confinement effects on the 
carriers. Taking into account the presence of a donor impurity located 
on the 𝑧-axis, the Schrödinger equation of the system is given by[
−ℏ2

2
∇ ⋅

(
1

𝑚∗(𝑥, 𝑦, 𝑧)
∇
)
+ 𝑉 (𝑥, 𝑦, 𝑧)

− 𝑒2

4𝜋𝜀0𝜀𝑟
√

𝑥2 + 𝑦2 + (𝑧− 𝑧𝑖)2

]
Ψ(𝑥, 𝑦, 𝑧) =𝐸Ψ(𝑥, 𝑦, 𝑧) , (1)

where 𝑧𝑖 represents the impurity position along the 𝑧-axis, 𝜀𝑟 = 13.0 is 
the GaAs static dielectric constant, and 𝑚∗(𝑥, 𝑦, 𝑧) is the position depen-

dent effective mass which value is 0.0665 𝑚0/0.092 𝑚0 in the dot/barrier 
region (where 𝑚0 is the free electron mass). The confinement poten-

tial equals zero inside the GaAs dot and 262 meV in the Al0.3Ga0.7As 
surrounding material.

The solution of Eq. (1) consists in finding the Ψ(𝑥, 𝑦, 𝑧) wave func-

tions and their corresponding energies. This is a problem with an exact 
analytical solution in those cases where the confinement potential out-

side the cone region is infinite and the impurity is located at its apex 
(see the details below in subsection 2.1). To proceed with the current 
problem, it is necessary to resort to numerical methods, which in our 
case makes use of the finite element technique (see the details below in 
subsection 2.2).

To include the study of the inter-level optical absorption response 
we calculate the respective coefficients using the following expression 
[30, 31, 32]:
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𝛼𝑓𝑖(𝜔) = 𝜔

√
𝜇

𝜀𝑅

𝜎 ℏΓ𝑓𝑖|�̃�𝑓𝑖|2
(𝐸𝑓 −𝐸𝑖 − ℏ𝜔)2 + (ℏΓ𝑓𝑖)2

, (2)

where 𝜎 = 3.0 × 1022 m−3 is the electron density and the energy-

conserving Dirac delta function 𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ 𝜔) has been replaced by 
a Lorentzian factor, that includes a phenomenological damping term, 
Γ𝑓𝑖 = 1.5 THz, related with |𝑖⟩ → |𝑓 ⟩ transition lifetimes. In the former 
equation 𝜔 is the frequency of the incident photon, 𝜇 is the vacuum 
magnetic permeability, and 𝜀𝑅 = 𝜀0 𝜀𝑟. The quantity �̃�𝑓𝑖 = ⟨𝑖|𝑒 𝜉|𝑓 ⟩ is 
the transition electric dipole moment matrix element between the ini-

tial and final states involved, 𝑒 being the electron charge. In the present 
work, two polarizations of the incident radiation have been considered: 
i) linearly-polarized light, with 𝜉 = 𝑧, and ii) circular-polarized light, 
with 𝜉 = (𝑥 ± 𝑖 𝑦)∕

√
2 ≡ +.

2.1. Analytical solution for on-corner donor impurity in spherical sector 
quantum dots with infinite confinement potential

In this subsection we will discuss the analytical solution for wave 
functions and their corresponding energies of a donor impurity placed 
at the apex of a spherical sector quantum dot (coinciding with the origin 
of coordinates) with infinite confinement potential. Considering spher-

ical coordinates (𝑟, 𝜃, 𝜑) and using the effective Bohr radius 
(
𝑎∗ = ℏ2𝜖

𝑚∗
𝑒 𝑒

2

)
as unit of length and the effective Rydberg 

(
𝑅∗ = 𝑒2

2𝜀(𝑎∗)2

)
as unit of 

energy, the Hamiltonian of the problem in the effective mass approxi-

mation can be written in the form{
−
[
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2

𝜕

𝜕𝑟

)
+ 1

𝑟2 sin𝜃
𝜕

𝜕𝜃

(
sin𝜃 𝜕

𝜕𝜃

)
+ 1

𝑟2 sin2 𝜃
𝜕2

𝜕𝜑2

]
− 2

𝑟
+ 𝑉𝑊

}
Ψ𝐷(𝑟, 𝜃,𝜑) =𝐸𝐷Ψ𝐷(𝑟, 𝜃,𝜑) , (3)

where 𝑚∗
𝑒 represents the conduction effective mass and 𝜀 corresponds to 

the static dielectric constant. The corresponding confinement potential 
is, in this case:

𝑉𝑊 =
{

0 if 𝑟 < 𝑅 and 𝜃 < 𝜃0
∞ otherwhere ,

(4)

thus implying that the probability density for an electron outside the 
structure is zero. Taking into account: i) that the impurity is located 
at the apex of the cone, which implies that the problem has azimuthal 
symmetry around the 𝑧-axis (𝜑 = 0) and ii) the infinite confinement 
potential considered in this part, then the wave function in Eq. (3) can 
be written in the form

Ψ𝐷(𝑟, 𝜃,𝜑) =𝑁ℜ(𝑟)Θ(𝜃) 𝑒𝑖𝑚𝜑 , (5)

where 𝑚 is an integer number, 𝑖2 = −1, and 𝑁 is a normalization con-

stant. Replacing the Eq. (5) into the Eq. (3), it is possible to obtain two 
independent differential equations:

1
sin𝜃

𝑑

𝑑𝜃

(
sin𝜃 𝑑Θ(𝜃)

𝑑𝜃

)
+
(
𝜈2 − 𝑚2

sin2 𝜃

)
Θ(𝜃) = 0 (6)

and

𝑑

𝑑𝑟

(
𝑟2

𝑑ℜ(𝑟)
𝑑𝑟

)
+ (𝑘2𝑟2 − 𝜈2)ℜ(𝑟) − 2 𝑟ℜ(𝑟) = 0 , (7)

where 𝑘 =
√

𝐸𝐷 .

If we choose the special case of 𝑚 = 0 in Eq. (5), then the solutions 
of Eq. (6) are linear combinations of the Legendre polynomials of first 
and second kinds 𝑃𝜈 (cos𝜃) and 𝑄𝜈(cos𝜃), respectively:

Θ(𝜃) = 𝐶1𝑃𝜈(cos𝜃) +𝐶2𝑄𝜈(cos𝜃) . (8)

It is determined by imposing the nullity of the wave function at the 
geometrical limit of the dot (𝜃 = 𝜃0). It turns out that 𝑄𝜈(𝑥) diverges 
when 𝑥 tends to 1. So, the Θ(𝜃) wave function reduces to:
3

Θ(𝜃) = 𝐶1𝑃𝜈(cos𝜃) . (9)

The solution for the Eq. (7) is a linear combination of Whittaker func-

tions of first and second kinds: 𝑀𝑡,𝜈+1∕2(2𝑖𝑘𝑟) and 𝑊𝑡,𝜈+1∕2(2𝑖𝑘𝑟), respec-

tively

ℜ(𝑟) = 1
𝑟

[
𝐶3𝑀𝑡,𝜈+1∕2(2𝑖𝑘𝑟) +𝐶4𝑊𝑡,𝜈+1∕2(2𝑖𝑘𝑟)

]
, (10)

where 𝑡 = − 𝑖

𝐸𝐷
. We note that 𝑊𝑡,𝜈+1∕2(2𝑖𝑘𝑟) diverges when 𝑟 → 0, so 

we choose 𝐶4 = 0. Thus, the expression for the wave function actually 
reduces to:

Ψ𝐷(𝑟, 𝜃) =
𝑁

𝑟
𝑀𝑡,𝜈+1∕2(2𝑖𝑘𝑟)𝑃𝜈 (𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜑 . (11)

The procedure is as follows: i) in Eq. (9) the values of 𝜈 are obtained 
by imposing the condition 𝑃𝜈(cos 𝜃0) = 0 and ii) the values obtained for 
𝜈 in the previous step are replaced in Eq. (10), where 𝐶4 = 0, in order 
to obtain the energies associated with each value of 𝜈 by using the 
condition 𝑀𝑡,𝜈+1∕2(2𝑖𝑘𝑅) = 0. Note that the 𝑘 and 𝑡 parameters depend 
on the energy 𝐸𝐷 .

2.2. The finite element method

The FEM is a very powerful numerical technique for solving partial 
differential equations (PDEs) defined in complex or irregular geometry 
domains. Hence, the Schrödinger equation is a candidate to be solved by 
this method since the cases in which an analytical solution is available 
are very limited and with respect to the shape, real structures usually 
show not regular or very complex geometries. This method consists of 
dividing a problem from the continuous domain into a large but finite 
set of algebraic equations each being defined in a small domain called 
the finite element.

The weak formulation is used in conjunction with the discretization 
of the PDE. This consists of transforming the PDE from its differential 
operatorial form into an integral form, and in terms of discretization 
the integrals are replaced by sums. In systems formed by two or more 
materials, the effective mass is not a constant in the whole structure. 
Hence, a more general form of the Schrödinger equation for a potential 
𝑉 is

∇ ⋅
[(

− ℏ2

2𝑚∗

)
∇
]
𝜓 + 𝑉 𝜓 =𝐸𝜓 , (12)

where ℏ is the reduced Planck’s constant, 𝑚∗ is the carrier effective 
mass, 𝜓 the wave function, and 𝐸 the energy. Multiplying this equation 
by some test function 𝜙, integrating in the volume Ω, and by using the 
property ∇ ⋅ (⃖⃖⃗𝐹 𝑣) = ⃖⃖⃗𝐹 ⋅∇𝑣 + (∇ ⋅ ⃖⃖⃗𝐹 )𝑣, where ⃖⃖⃗𝐹 = − ℏ2

2𝑚∗ ∇𝜓 and 𝑣 = 𝜙, the 
Eq. (12) becomes

∫
Ω

ℏ2

2𝑚∗ ∇𝜓 ⋅∇𝜙𝑑Ω+ ∫
Ω

∇ ⋅
[(

− ℏ2

2𝑚∗ ∇𝜓

)
𝜙

]
𝑑Ω+ ∫

Ω

(𝑉 −𝐸)𝜓 𝜙𝑑Ω= 0 .

(13)

Using the Green’s theorem and the flow condition for a stationary 
problem, it is easy to prove that the second term on the left side in 
Eq. (13) is zero. Consequently, that expression is finally transformed 
into:

∫
Ω

ℏ2

2𝑚∗ ∇𝜓 ⋅∇𝜙𝑑Ω+ ∫
Ω

(𝑉 −𝐸)𝜓 𝜙𝑑Ω= 0 . (14)

Note that Eq. (14) includes the overlap either of functions or gradient 
of them, which simplifies the calculations to small regions where the 
overlap is not zero. The great advantage of the weak form is that no 
second order derivative is involved and the functions 𝜓 and 𝜙 have to 
be continuous and differentiable only in subdomains.

The Fig. 3 illustrates how a domain is discretized in order to use the 
FEM. In this example, the function 𝜓 has been divided into 𝑛 − 1 sub-

domains (elements) with the same length 𝑙𝑒 (regular partition), which 
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Fig. 3. Illustration of the FEM discretization. The 𝑢𝑛 are linear base functions 
and 𝜓𝑛 are the coefficients that adjust the numerical solution to the exact solu-

tion.

corresponds to 𝑛 nodes. The red dotted line is the approximation by 
FEM of the exact values illustrated with solid line. Inside a subdomain, 
delimited by the vertical black dotted lines, only two base functions 
contribute, the others being zero. In the figure is used a base of linear 
functions 𝑢𝑖, 𝑖 = 1, .., 𝑛 with a value of 1 for its respective node and 0 
in any other node. Therefore, the function 𝜓 can be approximated by 
the linear combination 𝜓 =

∑
𝑖 𝑢𝑖𝜓𝑖. Note that the coefficients 𝜓𝑖 are ex-

act solutions in the respective 𝑥−values of the nodes because 𝑢𝑖 is 1
there. The coefficients 𝜓𝑖 are obtained from the equation that governs 
the problem under study, simplified as a set of algebraic equations due 
to the discretization.

There are two common ways to choose the functions in the dis-

cretization, the Rayleigh-Ritz and Galerkin methods [33]. The main 
difference between the two is that Galerkin method uses the same set 
of functions as the base and test functions. In practice, the discretiza-

tion is obtained by turning the PDE into the weak form. The integrals 
that appear in the transformation are evaluated within a single element 
and a representation in the whole domain of the equation corresponds 
to the sum of each partition contribution. This results in a system of 𝑛
algebraic equations corresponding to the 𝑛 − 1 partitions (𝑛 nodes).

In Fig. 3, the shaded base function represents the periodic behavior 
in a regular partition. Taking into account that the PDE weak form con-

tains the multiplication of the solution and the base functions or their 
gradients, the integral overlapping only occurs between two neighbor-

ing functions, which facilitates the calculations. One of the advantages 
of using this method is that irregular partitions can be made, for ex-

ample, in those regions where the gradient is large, smaller elements 
can be built. Another advantage is the possibility of using several base 
functions adapting to the problem under study.

In the next section we present and discuss our results for the energy 
spectrum, the binding energy of the ground state, the expected values 
of the dipole moments, and optical absorption for a confined electron in 
a SCS-QD, all this considering multiple variants of the heterostructure 
dimensions (radius and apical angle) and impurity position.

3. Results and discussion

We are interested in studying the effect of the impurity position. In 
accordance, the calculation started by putting the donor atom at the 
very vertex of the conical QD. The results obtained for the lowest con-

fined state energies are depicted in Fig. 4 as functions of the cone size 
(radius, 𝑅, see Fig. 1), with two different values of the apical angle, 𝜃0. 
It can be noticed that for a small value 𝜃0 = 15◦ (Fig. 4(a)), and in the 
entire range of considered radii, the system supports at least five states 
confined in the cone. Note that for 𝑅 = 20 nm, the fifth state has slightly 
less energy than the height of the potential barrier, 𝑉0 = 262 meV. For 
𝑅 > 35 nm, the fifteen reported states are confined in the cone. Besides, 
the energy of the higher excited levels for small radii approaches the 
4

Fig. 4. Energy of the lowest fifteen energy levels for a confined electron in 
a spherical cone-shaped GaAs-Al0.3Ga0.7As quantum dot as a function of the 
structure radius. The results are for 𝑧𝑖 = 0 with 𝜃0 = 15◦ (a) and 𝜃0 = 30◦ (b). 
Labels 2 and 3 indicate doubly or triple degenerate states. The insets show the 
binding energy for the ground state.

upper bound posed by the potential barrier height and starts having a 
decreasing variation when the dot’s size becomes large enough. Eventu-

ally, all levels will decrease with the increment of 𝑅, but excited states 
with higher energies will do that in a slower manner than for the case 
in Fig. 4(b). Clearly, it is a consequence of the greater electron spatial 
localization associated to a stronger confinement when the apical an-

gle is small. The contrasting situation is shown in Fig. 4(b). One may 
observe that when 𝜃0 = 30◦ there are already fifteen energy levels for 
𝑅 = 20 nm, and the rate of energy reduction is larger when the radius 
augments. It is worth bringing the reader’s attention to the fact that we 
are depicting the first fifteen electron levels, including degenerate ones. 
So, although only ten curves are seen, all energies are actually shown. 
The labels 2 and 3 in Fig. 4 indicate the states degeneration degree that 
have been shown.

With regard to the impurity binding energy, 𝐸𝑏 = 𝐸0 − 𝐸 (where 
𝐸0/𝐸 represents the eigenvalues of the Eq. (1) without/with the 
Coulomb term), the insets in Figs. 4(a, b) present only the case asso-

ciated with the ground state. There it is observed a slight increase in 
this quantity mainly for the narrower conical dot (the binding energy 
curve in Fig. 4(a) is blueshifted with respect to the corresponding re-

sults in Fig. 4(b)). For large values of the apical angle, in Fig. 4(b), the 
wave functions of the uncorrelated electrons tend to be located near 
the cone gravity center, that is, at an average distance to the impurity 
of 2∕3 of the cone height (note that in this case the impurity is located at 
the vertex of the structure). By decreasing the cone angle, Fig. 4(a), two 
effects appear: i) by the presence of lateral potential barriers, the con-

finement effect on the carriers increases, and consequently their kinetic 
energy, and ii) the system tends to approximate a 1D quantum wire, 
where the wave functions are distributed regularly along the wire. This 
second effect translates into an effective decrease in electron-impurity 
distance, which, combined with the increase in geometric confinement, 
ultimately leads to larger binding energy. The reduction of the electron 
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Fig. 5. Energy of the lowest fifteen energy levels for a confined electron in 
a spherical cone-shaped GaAs-Al0.3Ga0.7As quantum dot as a function of the 
apical angle of the structure. The results are for 𝑧𝑖 = 0 with 𝑅 = 15 nm (a) and 
𝑅 = 25 nm (b). Labels 2 and 3 indicate doubly and triple degenerate states. The 
circle in panel (b), localized at 𝜃0 = 29◦ with 𝐸 = 79 meV, indicates the presence 
of the accidentally triply degenerate states, as depicted in Fig. 4(b). The insets 
show the binding energy for the ground state.

binding energy for greater values of 𝑅 is related to the increase in the 
effective electron-impurity distance due to the enlargement of SCS-QD 
size.

An analogous situation for the electron energies in the SCS-QD can 
be observed in Fig. 5 in which two cases of fixed dot’s radius and vary-

ing apical angle are shown. The changes in the allowed levels can be, 
again, explained by the analysis of spatial electron confinement, pro-

vided that augmenting the apical angle implies the enlargement of the 
GaAs region size. However, in this case it is possible to note that at 
certain values of 𝜃0 there are crossings between some degenerate ex-

cited states. The more noticeable feature is that the general behavior 
of the ground state binding energy is now an increasing one. The phys-

ical reason behind this phenomenon is the reduction of the effective 
electron-impurity distance resulting from the increment of the spatial 
localization of the ground state probability density in the region adja-

cent to the cone vertex, where the impurity is placed. In fact, because 
the range of geometric parameters considered, the wider the angle, the 
greater will be the spatial confinement of the ground state wave func-

tion around the vertex.

With respect to the results shown in Figs. 4 and 5, it is important to 
say that when 𝑅 → 0 (𝜃0 → 0) in Fig. 4 (in Fig. 5) and without impu-

rity effects, the energies of the system tend to the exact spectrum values 
of a quantum box with infinite confinement potential, whose solutions 
are analytical and very well-known from the literature. In that case, the 
spectrum of the box has as reference energy the value of 𝑉0 = 262 meV 
(which is the value used in this study). When considering the effects of 
an impurity, in the limit in which the volume of the cone tends to zero 
(i.e. when 𝑅 → 0 or 𝜃0 → 0), the energy spectrum corresponds to the so-

lution of an impurity confined inside a box with infinite confinement. 
Due to the fact that they are outside the cone region, such solutions 
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are not of interest for the study reported in this article. Our studies 
have shown that as the cone dimensions tend to zero the system has a 
binding energy for the ground state of 1.5 effective Rydbergs, which is 
slightly greater than the value of 1 effective Rydberg corresponding to 
hydrogenic atoms in the bulk. This value demonstrates a confinement 
effect associated with the large box (see Fig. 2) used in the numerical 
process to obtain solutions of the eigenvalues differential equation. The 
confinement effect of the large box is imperceptible in the results re-

ported in this study since for the considered dimensions more than 95% 
of the wave functions of the reported states are confined in the cone re-

gion. It is important to say that in the study the convergence of energies 
is down to 0.1 meV for the first 15 confined states.

To clarify the degenerations and symmetries of the different states 
reported in Figs. 4 and 5, we proceed to present in Fig. 6 the 𝑧 = 20 nm 
and 𝑦 = 0 projections of the first five confined state wave functions of 
an electron in a spherical cone-shaped GaAs-Al0.3Ga0.7As QD. We have 
chosen a fixed value of the radius and two different values of the apical 
angle. The reason for this choice lies in the fact that in Fig. 4 there is no 
presence of crossings between levels and therefore in the entire range 
of calculated radii each state retains its symmetry. In the case of Fig. 5, 
it is clearly observed that for both 𝑅 = 15 nm and 𝑅 = 25 nm a level 
crossing appears for 𝜃0 ≅ 29◦. Therefore, we have decided to choose two 
angles, one before the crossing and another after the crossing. For both 
values of the apical angle it is observed that the ground state has 𝑠-like 
symmetry deformed along the 𝑧-axis such that the wave function adjusts 
to the shape of the structure. In the case of the states Ψ2, Ψ3, and Ψ4
states the 𝑝-like symmetries are clearly appreciated, but note that while 
for 𝜃0 = 20◦ the 𝑝𝑧-like state is the first excited (not degenerate), in the 
case of 𝜃0 = 40◦ it is the third excited one.

At 𝜃0 = 20◦, the Ψ3 and Ψ4 states are degenerated. About the Ψ5
state, it is observed that for 𝜃0 = 20◦, it is a state with three anti nodes 
along the 𝑧-direction and that it has even symmetry with respect to the 
𝑥 = 0 and 𝑦 = 0 planes. For 𝜃0 = 40◦, the Ψ5 wave function has quite 
different characteristics. First, it is an odd function with respect to the 
𝑥 = 0 and 𝑦 = 0 planes and it is approximately an even function with re-

spect to the 𝑧 = 0 plane (note that the wave functions take the shape 
of the cone). Note that the wave functions that have azimuthal symme-

try with respect to the 𝑧-axis have anti nodes near the impurity, which 
is located at the vertex of the QD, while the odd states with respect to 
the 𝑥 = 0 and 𝑦 = 0 planes are located mainly in the spherical region of 
the structure. The details presented here will be useful for interpreting 
the matrix elements for different optical transitions considering linear 
polarizations along the 𝑧-direction and circular polarization in the 𝑥𝑦-

plane. Finally, note that for both considered angles, the 𝑝𝑥 and 𝑝𝑦 states 
appear rotated with respect to the 𝑧-axis. This is a phase effect intro-

duced by the calculation method and which requires attention when 
studying optical properties with linear polarizations of the incident ra-

diation along the 𝑥- and 𝑦-axes since some difficulty can be generated 
by the apparent selection rules that are involved.

Here we must clarify what we understand by 𝑝𝑧-like states such as 
those shown for the Ψ2 wave function when 𝜃0 = 20◦ and for the Ψ4
wave function when 𝜃0 = 40◦. In both cases, along the 𝑧-direction the 
wave functions have a node (the wave function is null) and two antin-

odes with opposite signs (two maxima). In a cylindrical structure, due to 
its symmetry, these two nodes would imply odd symmetry with respect 
to the point where the wave function is canceled (the node) and the 𝑝𝑧
assignment is exact. That is not the case in our study given the breaking 
of symmetry imposed by the conical shape of the quantum dot. That 
is the reason why the 𝑝𝑧 assignment to these states is not completely 
accurate and should be viewed carefully.

The displacement of the impurity center location along the sym-

metry axis produces certain modifications to the electron energies. In 
order to verify this we have plotted in Fig. 7 the dependence of the low-

est level energies with respect to 𝑧𝑖. Two different geometries with fixed 
𝑅 and 𝜃0 are taken into account. It can be noticed that, as expected, the 
greater energy values correspond to the narrower cone, Fig. 7(a), and 
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Fig. 6. The 𝑧 = 20 nm and 𝑦 = 0 projections of the normalized wave function for the five lowest confined electron states in a spherical cone-shaped GaAs-Al0.3Ga0.7As 
quantum dot. Results are for 𝑅 = 30 nm with 𝜃0 = 20◦ (first row) and 𝜃0 = 40◦ (second row). In the figure the color bars corresponding to each of the two considered 
angles have been included.
Fig. 7. Energy of the lowest states for a confined electron in a spherical cone-

shaped GaAs-Al0.3Ga0.7As quantum dot as a function of the impurity position 
along the 𝑧-axis. The results are for 𝑅 = 25 nm with 𝜃0 = 15◦ (a) and 𝜃0 = 30◦

(b). Label 2 indicates doubly degenerate states. The insets show the binding 
energy for the ground state.

that there are some slight oscillations of them with minima occurring at 
different angular amplitudes for the ground and first two excited states. 
These minima are associated to the relation between the state symme-

try and the cone symmetry. For instance, in the case of the ground 
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state, the position 𝑧𝑖 ≈ 0.7 𝑅 corresponds to a point of maximum axial 
symmetry of the corresponding probability density. Although it is not 
accurate, in those places where the ground state has its minimum, we 
can affirm that the impurity is located near the gravity center of the 
cone. In Fig. 7(a) it is observed that for 𝑧𝑖 = 0.34 𝑅 a triple degener-

ate state appears (corresponding to three states with 𝑝-like symmetry). 
These three states appear with higher energies than that corresponding 
to the first excited state, which is clearly associated with confinement 
along the axial direction. In Fig. 7(b), that triple degenerate state corre-

sponds to the first excited one and appears in 𝑧𝑖 = 0.6 𝑅. It can then be 
appreciated that the order in which the degenerate states appear with 
respect to the others that are not, depends on the apical angle, which is 
finally the one that controls the relative position of the gravity center of 
the structure. The behavior of the ground state electron-impurity bind-

ing energy follows that of the correlated ground level (𝐸) but inversely. 
That is, when the correlated ground state energy has a minimum, 𝐸𝑏

has a maximum. Such a maximum in the binding energy implies that 
the effective electron-impurity distance reaches its minimum value. We 
have to emphasize that for calculations of the insets in Figs. 7(a) and 
7(b), the uncorrelated energies are constant functions of 𝑧𝑖 and only 
depend on the structure size.

Studying the optical absorption response requires the evaluation of 
the electric dipole moment matrix elements for the involved inter-level 
transition. In the Figs. 8, 9, and 10 we present the calculated squared 
modulus of the reduced elements 𝑀𝑓𝑖 = �̃�𝑓𝑖∕𝑒. Each figure replicates 
the geometry setup chosen for Figs. 4, 5, and 7, respectively. Besides, 
two distinct polarizations for the incident light are assumed: a linear one 
oriented along the 𝑧-direction (parallel to the cone axis) and another, 
circular, oriented in the perpendicular plane. Since we are considering 
low temperatures, it is assumed that only the ground state is populated 
initially. Therefore, all transitions considered have it as the initial one, |𝑖 = 1⟩. The second superscript indicates, in each case, the final state. 
It is worth highlighting the situations observed in the Figs. 9 and 10

in which one may observe intervals of forbidden transitions for which 
the corresponding off-diagonal dipole moment contribution vanishes. 
This takes place in a small region around 𝜃0 = 30◦ for fixed values of 
𝑅 and 𝑧𝑖 = 0 and within two ranges of 𝑧𝑖 values in the specific case of 
𝜃0 = 30◦ and 𝑅 = 25 nm. This kind of selection rule occurs due to sym-

metry reasons because in such cases the geometry of the SCS-QD confers 
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Fig. 8. Square of the nondiagonal reduced dipole matrix elements from the 
ground state to the several lowest excited states (1 → 𝑛, with 𝑛 = 2, 3, 4, … ) for 
a confined electron in a spherical cone-shaped GaAs-Al0.3Ga0.7As quantum dot 
as a function of the structure radius. Calculations are for 𝑧-polarized (𝜉 = 𝑧) 
and circular-polarized (𝜉 = +) incident radiation. The results are for 𝑧𝑖 = 0 with 
𝜃0 = 15◦ (a) and 𝜃0 = 30◦ (b).

a spatial dependence to the participating wave functions that produces 
zero values of the associated matrix elements. Let us analyze, for exam-

ple, the way in which in Fig. 9(a), particularly at 𝜃0 = 30◦, the change |𝑀1,2
𝑧 |2 → |𝑀1,4

𝑧 |2 is presented. Throughout the range of calculated an-

gles, the Ψ1 state has 𝑠-like symmetry. For 15◦ < 𝜃0 < 30◦, the Ψ2 state 
has 𝑝𝑧-like symmetry and the Ψ3 and Ψ4 states, which are degenerated, 
have 𝑝𝑥 and 𝑝𝑦 symmetry, respectively (see Fig. 6). For 30◦ < 𝜃0 < 60◦
things are reversed, the Ψ2 and Ψ3 states, which are degenerate, have 
𝑝𝑥 and 𝑝𝑦 symmetry, respectively, and the Ψ4 state has 𝑝𝑧-like sym-

metry (see the Fig. 6 and its corresponding discussion). Given that for 
𝑧-polarized radiation the matrix elements are only different of zero 
when the wave functions have simultaneously the same symmetry with 
respect to the 𝑥 = 0 and 𝑦 = 0 planes, this explains why only 1𝑠-like →
𝑝𝑧-like transitions are allowed, giving the behavior shown in Fig. 9(a) 
for that matrix elements.

Here is the place where we must clarify the reason why in our 
studies we have proceeded to solve the full 3D problem of the differ-

ential equation, without making use of the azimuthal symmetry of the 
problem. Because in the study we have been interested in knowing the 
effects of incident radiation with linear polarization in the 𝑧-direction 
and circular polarization in the 𝑥𝑦-plane, the particular situation of the 
circular polarization forces us to take into account the full distribution 
of the wave function. Solving the axis-symmetric problem does not pro-

vide direct information on how the wave functions behave when the 
azimuthal angle is swept, that is, there is no 𝑥𝑦-description of the wave 
function. Therefore it is not possible to predict what they will be the re-

sults of the expected value of the dipole moment for polarized radiation 
along the 𝑥- and 𝑦-axes, which by combining at the end give rise to the 
circular polarization.

The coefficient of optical absorption is then evaluated using Eq. (2)

for intersubband transitions involving the results for the energy spec-
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Fig. 9. Square of the nondiagonal reduced dipole matrix elements from the 
ground state to the several lowest excited states (1 → 𝑛, with 𝑛 = 2, 3, 4, … ) for a 
confined electron in a spherical cone-shaped GaAs-Al0.3Ga0.7As quantum dot as 
a function of the apical angle of the structure. Calculations are for 𝑧-polarized 
(𝜉 = 𝑧) and circular-polarized (𝜉 = +) incident radiation. The results are for 𝑧𝑖 =
0 with 𝑅 = 15 nm (a) and 𝑅 = 25 nm (b).

trum and dipole moment presented in Figs. 4(a) and 8(a), respectively, 
for the variation of the allowed energies and electric polarizations with 
respect to the size 𝑅. The choice of this setup is made in order to pro-

vide a particular case for illustration, since it is possible to present an 
analogous discussion for the optical response, based on the behavior of 
electron states as a consequence of the variation of the apical angle. 
The outcome of the calculation appears in Fig. 11(a) for the allowed 
transitions under 𝑧-polarization and in Fig. 11(b) for those under cir-

cular polarization of the incoming light. It is possible to identify in all 
cases the redshift of the optical response associated to the reduction of 
the inter-level energies caused by the increment in 𝑅, as noticed from 
Fig. 4(a). The amplitude of the most prominent absorption resonant 
peaks evolves in such a way that almost no change is apparent. The 
reason for this phenomenon lies in the quantitative compensation that 
arises when one multiplies the squared modulus of the dipole matrix el-

ements, that is an increasing function of 𝑅 by the resonant frequency 
which is, in fact, a decreasing function of the cone size.

In addition, the Fig. 12 contains the results of the calculated inter-

level light absorption coefficient using as input data the results depicted 
in Figs. 7(a) and 10(a), for the electron energies and electric dipole 
moment matrix elements, respectively. In Fig. 12(a) we present the out-

come corresponding to the allowed transitions under linear, 𝑧-oriented 
polarization of the incident electromagnetic radiation, whereas in the 
Fig. 12(b), the absorption response associated with incident light of cir-

cular polarization. The variation in the energy position of the resonant 
absorption peak is, again, governed by the behavior of the inter-level 
energy differences with respect to the variation in the axial position 
of the donor impurity atom. In consequence, one may notice a mixed 
shifting which is more pronounced in the case of linearly polarized in-

cident light. That is, there is initially a slight redshift, then a noticeable 
blueshift takes place, followed by another displacement towards smaller 
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Fig. 10. Square of the nondiagonal reduced dipole matrix elements from the 
ground state to the several lowest excited states (1 → 𝑛, with 𝑛 = 2, 3, 4, … ) for 
a confined electron in a spherical cone-shaped GaAs-Al0.3Ga0.7As quantum dot 
as a function of the impurity position along the 𝑧-axis. Calculations are for 𝑧-

polarized (𝜉 = 𝑧) and circular-polarized (𝜉 = +) incident radiation. The results 
are for 𝑅 = 25 nm with 𝜃0 = 15◦ (a) and 𝜃0 = 30◦ (b).

frequencies. To just consider a specific example, the explanation for the 
presence of the blueshift in the interval above 𝑧𝑖 > 0.5 𝑅 of Fig. 12(a) 
can be found by noticing from Fig. 7(a) the increment in the separation 
between the ground and first excited levels that leads to the increment 
in the resonant transition energy difference. With regard to the reso-

nant peak amplitude, the reader may observe that there is a very small 
variation along the range of 𝑧𝑖 considered. The explanation for that situ-

ation can be found in the same competition –above discussed– between 
the variations of both the inter-level energies and electric dipole matrix 
elements as functions of the donor impurity position.

3.1. A comparison with other theoretical and experimental reports

In this subsection we proceed to make a comparison between the 
results obtained through the numerical method used in this article with 
some available theoretical and experimental reports. They appear in 
Figs. 13 and 14, respectively.

First, in Fig. 13 we present the energy of some electronic states in 
a spherical cone-shaped GaN QD with infinite confinement potential 
considering a donor impurity located at the apex of the cone. This is a 
very particular case where the problem has an analytical solution. Here, 
the Schrödinger equation in spherical coordinates is separable. The so-

lution for the radial part of the wave function is described by a linear 
combination of Whittaker functions and the angular part results in a lin-

ear combination of Legendre polynomials; all subject to the appropriate 
boundary conditions to ensure that the wave function becomes zero on 
the surfaces of the cone (see above the subsection 2.1). The calculations 
have been made for 𝑚∗

𝑒 = 0.19 𝑚0 and 𝜀𝑟 = 8.9, whereby the effective 
Bohr radius and the effective Rydberg are 2.47 nm and 32.6 meV, re-

spectively. In Fig. 13, the lines correspond to our findings using the FEM 
technique while the solid symbols correspond to the results through the 
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Fig. 11. The optical absorption coefficient calculated as a function of the 
incident photon energy and the radius of the cone-shaped GaAs-Al0.3Ga0.7As 
quantum dot, with the data presented in the Figs. 4(a) and 8(a): for linear 𝑧-

polarization (a) and for circular polarization of the resonant incident light (b).

exact solution. As can be seen noticed, there is an excellent agreement 
between the two types of results which confirms the validity of the nu-

merical FEM used in this work.

In Fig. 14 we show our results for the photoluminescence peak 
(PL-peak) energy position in a conical spherical-shaped GaAs QD sur-

rounded by a matrix of Al𝑥Ga1−𝑥As. The experimental results are rep-

resented by the trembling line and correspond to those published in 
Ref. [14] where the system consists of GaAs truncated whiskers with 
hexagonal base. The authors report that the average dimensions of the 
structures are 150 nm and 20 nm in the major and minor diameters, 
respectively, with a total height of 1 μm. In Fig. 19 of the mentioned 
reference, the authors present two very well defined structures. The au-

thors associate the first structure, which has an energy of 1515.4 meV, 
with a free exciton peak and the second, whose energy is 1512.5 meV, 
with a neutral carbon acceptor bound exciton peak.

Here, we have proceeded to simulate that study using our model of a 
cone-shaped GaAs QD. For that purpose, the dimensions of our structure 
are 𝑅 = 1000 nm and 𝜃0 = 5◦, with which the radius of the cone base is 
150 nm. The values employed for the effective mass and confinement 
potential parameters are 0.0665 𝑚0 and 262 meV (0.45 𝑚0 and 174 meV) 
for the electron (for the heavy hole). The static dielectric constant is set 
at 13, corresponding to GaAs; since the carriers are essentially confined 
within the cone region. Besides, we have considered a donor impurity 
located at the cone gravity center.

Given that the cone can be considered as a convolution of many 
cylindrical structures whose average effective radius is 400 nm and 
following the works of Brown and Spector [34, 35], we have used a 
binding energy of 1 effective Rydberg (1 Ry = 4.737 meV) for the free 
exciton and 1.3 effective Rydberg (1 Ry = 5.43 meV) for the donor im-

purity. Our calculations yield 1512.54 meV for the PL-peak associated 
with the donor impurity and 1515.33 meV for the free exciton. As com-

mented, the comparison between calculations and measurements from 
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Fig. 12. The optical absorption coefficient calculated as a function of the in-

cident photon energy and the impurity position for a confined electron in a 
cone-shaped GaAs-Al0.3Ga0.7As quantum dot. The results are obtained with the 
data presented in the Figs. 7(a) and 10(a): for linear 𝑧-polarization (a) and for 
circular polarization of the resonant incident light (b).

Ref. [14] appear in Fig. 14. We have considered a Lorentzian distribu-

tion of the PL-peak with a damping parameter of 0.3 meV for the donor 
impurity and 0.5 meV for the free exciton. As can be noticed, there is 
an excellent agreement between our findings and those of Hiruma et 
al. [14]. This fact confirms the interpretation related with the peak as-

sociated to a free exciton, but raises a controversy about the origin of 
the peak associated with impurities. While those authors associate it 
with acceptor impurities, our work concludes that, in order to exhibit 
a PL-peak at the reported energy value, the system has to be doped 
with donor impurities because that is, precisely, the kind of impurities 
the lowest energy peak matches with. The probability densities for the 
ground state of an electron and a heavy hole have also been presented 
in Fig. 14 confirming that the maximum is concentrated around the cen-

ter of gravity of the cone and that the state of the hole is more extended 
in the space given its less effective Bohr radius.

4. Conclusions

In this work we have investigated the properties of the conduc-

tion band spectrum in spherical cone-shaped GaAs-Al0.3Ga0.7As quan-

tum dots, with the influence of a donor impurity center. The effect 
of modifying the size and apical angle of the conical structure on the 
electron-impurity energy levels is particularly discussed. It is found that 
certain specific geometric and impurity-position configurations lead to 
forbidden inter-level transitions due to the particular symmetry of the 
associated wave functions. Taking into account those features, we calcu-

lated the coefficient of optical absorption due to the allowed transitions 
in two particular geometric setups. From such an evaluation it is possi-

ble to identify the behavior of the optical response under linearly and 
circularly polarized incident radiation, identifying very small changes 
in the resonant peak amplitudes and a progressive redshift of the curve 
when the cone size changes under fixed apical angle conditions. At the 
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Fig. 13. Energy of the lowest confined electron states in a spherical cone-shaped 
GaN quantum dot –with donor impurity located at the cone apex– as a function 
of the structure radius (a) and apical angle (b). The results are for 𝑧𝑖 = 0 with 
𝜃0 = 𝜋∕21 (a) and 𝑅 = 2.47 nm (b). The lines are obtained via the numerical FEM 
calculations whereas the full symbols result from an analytical procedure (see 
the text).

same time, for a given cone size (lateral and angular dimensions fixed) 
one may detect a mixed shifting to the red and the blue of the absorp-

tion coefficient, associated with the change in the impurity position 
along the cone axis.

Additionally, two comparison processes were performed in order to 
validate our theoretical procedure. The first relates with a particular 
situation in which a conical-spherical sector quantum dots exhibits a 
donor atom at the cone apex, with an additional infinite confinement 
potential at the dot surface. In this case, analytical solutions can be 
derived and numerical data on GaN structure have been produced. The 
agreement with the same calculation using our finite element scheme is 
excellent.

The second comparison involves experimental reports on photolumi-

nescence peak energies in GaAs-based truncated-whisker-like quantum 
dots with hexagonal base. It is obtained a very good coincidence be-

tween calculated and measured results. Besides, we have been able to 
identify the impurity-related peak energy as one with donor center in-

stead of acceptor one, as previously claimed. This could encourage to 
perform additional experiments on this kind of quantum dot structures. 
Up to our knowledge, this is the first time that a theoretical investiga-

tion is carried out in order to compare with those experimental results.

Declarations

Author contribution statement

M.E. Mora-Ramos: Analyzed and interpreted the data; Wrote the pa-

per.

A. El Aouami, E. Feddi: Contributed analysis tools or data.

A. Radu: Conceived and designed the analysis; Wrote the paper.



M.E. Mora-Ramos et al. Heliyon 6 (2020) e03194

Fig. 14. Photoluminescence energy transition for a confined electron-hole pair in spherical cone-shaped GaAs quantum dot. Theoretical findings are for heavy-

hole exciton recombination (blue dashed line) and donor-impurity-heavy-hole recombination (red dashed line). The solid green line represents the mentioned two 
recombinations. The solid black line corresponds to the experimental findings by Hiruma et al. [14] for a GaAs truncated whiskers with hexagonal base. Also, the 
density of probability for the uncorrelated electron and heavy-hole are depicted. The parallelepiped contains the conical structure used to model the experimental 
structure.
R.L. Restrepo, J.A. Vinasco: Contributed analysis tools or data; 
Wrote the paper.

A.L. Morales: Conceived and designed the analysis.

C.A. Duque: Conceived and designed the analysis; Analyzed and in-

terpreted the data; Contributed analysis tools or data; Wrote the paper.

Funding statement

This work was supported by Mexican CONACYT (Grant CB-2017-

2018 No. A1-S-8218); Colombian Agencies: CODI-Universidad de An-

tioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and 
projects “Propiedades magneto-ópticas y óptica no lineal en super redes 
de Grafeno” and “Estudio de propiedades ópticas en sistemas semi-

conductores de dimensiones nanoscópicas”) and Facultad de Ciencias 
Exactas y Naturales-Universidad de Antioquia (CADexclusive dedication 
project 2019-2020); and el Patrimonio Autónomo Fondo Nacional de Fi-

nanciamiento para la Ciencia, la Tecnología y la Innovación Francisco 
José de Caldas (project: CD 111580863338, CT FP80740-173-2019). 
M.E. Mora-Ramos, A. Radu, A.L. Morales, and C.A. Duque were sup-

ported by the Universidad EIA and Universidad de Antioquia (project 
“Propiedades optoelectrónicas en puntos cuánticos semiconductores”).

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

MEMR thanks Universidad de Antioquia for kind hospitality during 
sabbatical stay 2019-2020.

References

[1] A. Maiti, S. Bhattacharyya, Review: quantum dots and application in medical sci-

ence, Int. J. Chem. Chem. Eng. 3 (2013) 37–42.

[2] W. Zhou, J.J. Coleman, Semiconductor quantum dots, Curr. Opin. Solid State Mater. 
Sci. 20 (2016) 352–360.

[3] T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, S.J. Rosenthal, Review — quan-

tum dots and their application in lighting, displays, and biology, ECS J. Solid State 
Sci. Technol. 5 (2016) R3019–R3031.

[4] V.G. Reshma, P.V. Mohanan, Quantum dots: applications and safety consequences, 
J. Lumin. 205 (2019) 287–298.

[5] R.V.N. Melnik, M. Willatzen, Bandstructures of conical quantum dots with wetting 
layers, Nanotechnology 15 (2003) 1–8.
10
[6] V. Lozovski, V. Piatnytsia, The analytical study of electronic and optical properties 
of pyramid-like and cone-like quantum dots, J. Comput. Theor. Nanosci. 8 (2011) 
2335–2343.

[7] R. Khordad, H. Bahramiyan, Study of impurity position effect in pyramid and cone 
like quantum dots, Eur. Phys. J. Appl. Phys. 67 (2014) 20402.

[8] R. Khordad, H. Bahramiyan, Optical properties of a GaAs cone-like quantum dot: 
second and third-harmonic generation, Opt. Spectrosc. 117 (2014) 447–452.

[9] D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, Magneto-absorption in conical 
quantum dot ensemble: possible applications for QD LED, Opt. Commun. 371 (2016) 
138–143.

[10] H. Bahramiyan, Electric field and impurity effect on nonlinear optical rectification 
of a double cone like quantum dot, Opt. Mater. 75 (2018) 187–195.

[11] R. Khordad, H.R. Rastegar Sedehi, H. Bahramiyan, Simultaneous effects of impurity 
and electric field on entropy behavior in double cone-like quantum dot, Commun. 
Theor. Phys. 69 (2018) 95–100.

[12] J.A. Vinasco, A. Radu, C.A. Duque, Propiedades electrónicas de un anillo cuántico 
elíptico con sección transversal rectangular, Rev. EIA 16 (2019) 77–87.

[13] A. El Aouami, E. Feddi, M. El-Yadri, N. Aghoutane, F. Dujardin, C.A. Duque, H.V. 
Phuc, Electronic states and optical properties of single donor in GaN conical quan-

tum dot with spherical edge, Superlattices Microstruct. 114 (2018) 214–224.

[14] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kak-

ibayashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers, 
J. Appl. Phys. 77 (1995) 447–462.

[15] C.T. Schamp, W.A. Jesser, B.S. Shivaram, Growth of GaAs nano ice cream cones by 
dual wavelength pulsed laser ablation, Appl. Surf. Sci. 253 (2007) 6326–6329.

[16] Y. Wang, J. Wang, H. Guo, Magnetoconductance of a stadium-shaped quantum dot: 
a finite-element-method approach, Phys. Rev. B 49 (1994) 1928–1934.

[17] H.T. Johnson, L.B. Freund, C.D. Akyüz, A. Zaslavsky, Finite element analysis of 
strain effects on electronic and transport properties in quantum dots and wires, J. 
Appl. Phys. 84 (1998) 3714–3725.

[18] W.-M. Zhou, C.-Y. Wang, Y.-H. Chen, Z.-G. Wang, Finite element analysis of 
stress and strain distributions in InAs/GaAs quantum dots, Chin. Phys. 15 (2006) 
1315–1319.

[19] C. Lang, D. Nguyen-Manh, D.J.H. Cockayne, Modelling Ge/Si quantum dots us-

ing finite element analysis and atomistic simulation, J. Phys. Conf. Ser. 29 (2006) 
141–144.

[20] H. She, B. Wang, Finite element analysis of conical, dome and truncated InAs quan-

tum dots with consideration of surface effects, Semicond. Sci. Technol. 24 (2009) 
025002.

[21] G. Jurczak, T.D. Young, Finite element modelling of semi and nonpolar GaN/AlN 
quantum dots, Appl. Surf. Sci. 260 (2012) 59–64.

[22] H. Satori, A. Sali, The finite element simulation for the shallow impurity in quantum 
dots, Physica E 48 (2013) 171–175.

[23] A. Sali, H. Satori, The combined effect of pressure and temperature on the impurity 
binding energy in a cubic quantum dot using the FEM simulation, Superlattices 
Microstruct. 69 (2014) 38–52.

[24] R. Khordad, H. Bahramiyan, S.A. Mohammadi, Influence of impurity on binding 
energy and optical properties of lens shaped quantum dots: finite element method 
and Arnoldi algorithm, Chin. J. Phys. 54 (2016) 20–32.

[25] E.A. Hussain, J.A. Al-Hawasy, L.H. Ali, Finite element method linear rectangular el-

ement for solving finite nanowire superlattice quantum dot structures GaAs/AlGaAs, 
Int. J. Eng. Sci. 6 (2017) 1–7.
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