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Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract affecting 

millions of people worldwide. Genetic, environmental and microbial factors have been implicated 

in onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses 

and aberrant immune responses remain largely unknown. The integrative Human Microbiome 

Project (iHMP) seeks to close these gaps by examining the dynamics of microbiome functionality 

in disease by profiling the gut microbiomes of more than 100 individuals sampled over a one year 

period. Here, we present the first results based on 78 paired fecal metagenomes/

metatranscriptomes and 222 additional metagenomes from 59 Crohn’s disease (CD), 34 ulcerative 

colitis (UC), and 24 non-IBD control patients. We demonstrate several cases in which measures of 

microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles 

of functional potential. First, while many microbial organisms exhibited concordant DNA and 

RNA abundances, we also detected species-specific biases in transcriptional activity, revealing 

predominant transcription of pathways by individual microbes per host (e.g. by Faecalibacterium 
prausnitzii). Therefore, a loss of these organisms in disease may have more far-reaching 

consequences than suggested by their genomic abundances. Further, we identified organisms that 

were metagenomically abundant but inactive or dormant in the gut with little or no expression (e.g. 

Dialister invisus). Lastly, certain disease-specific microbial characteristics were more pronounced 

or only detectable at the transcript level, such as pathways predominantly expressed by different 

organisms in IBD patients (e.g. Bacteroides vulgatus and Alistipes putredinis). This provides 

potential insights into gut microbial pathway transcription that can vary over time, inducing 

phenotypic changes complementary to those linked to metagenomic abundances. The study’s 

results highlight the strength of analyzing both the activity and presence of gut microbes to 

provide insight into the role of the microbiome in IBD.

Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that affects 

all or part of the digestive tract and incidence rates are increasing worldwide1. IBD is a 

lifelong disease with no effective long-term treatment options, and an estimated 25-30% of 

all patients present with symptoms before the age of 202,3. Several human genetic mutations 

are implicated in an increased susceptibility to IBD; however, not everyone who carries 

these mutations develops IBD, indicating that additional exposures are also involved. 

Recognizing that the gut microbiome is one such factor altered in Crohn’s disease (CD) and 

ulcerative colitis (UC) patients, the two main forms of IBD, is one of the most significant 

developments in the field of IBD in the last decade and provides a wealth of opportunities 

for the discovery of diagnostic and therapeutic approaches4,5.

A gut microbial dysbiosis exists at the community-level in patients with IBD, combining a 

general decrease in alpha diversity with clade-specific enrichments and depletions6,7. 

However, microbial taxonomic profiles can be highly divergent among patients, making it 

difficult to implicate specific microbial species or strains in disease onset and progression. 

Some broad patterns do apply: taxa from the Enterobacteriaceae family are generally 

increased, whereas members of the Firmicutes phylum are decreased8–10. Further, several 

bacterial taxa have been suggested to have protective effects in IBD, such as Lactobacillus 
and Faecalibacterium11–13.
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Most such findings are based on samples from cross-sectional cohorts, emphasizing the need 

for longitudinal studies to explore changes in the gut microbiome within individual patients. 

Indeed, gut microbiome composition is known to vary over time within individuals, and such 

variations may be more pronounced within IBD patients14,15. The links between 

metagenomic functional potential and realized functional activity (gene expression, or other 

molecular products such as proteins or metabolites) remain almost completely unexplored in 

IBD. While the overall functional potential of the gut microbiome tends to be stable relative 

to taxonomic composition16, it can vary over time and across phenotypes. For example, 

short chain fatty acid (SCFA) producing bacteria are depleted in IBD; SFCAs are 

metabolites that are broadly anti-inflammatory in a typical gut17,18. Furthermore, an increase 

in oxidative stress pathways and a decrease in carbohydrate metabolism and amino acid 

biosynthesis have also been consistently reported6, each affecting multiple underlying taxa 

in different individuals. Notably, the functional potential of an organism (i.e. the genes and 

pathways encoded in its genome) provides only indirect information about the level or extent 

to which these functions are active. Such measures of functional activity are critical for 

understanding the mechanisms associating gut microbial dysbioses and aberrant immune 

responses, which to date remain largely unknown. Alterations in transcriptional activity in 

IBD have been established based on rRNA expression and indicate that some bacterial 

populations are active in IBD patients while other groups are inactive or dormant in 

disease19. However, the specific bacterial species and metabolic pathways remain to be 

elucidated.

In order to close these gaps, we compared the functional potential of gut microbial 

communities (from shotgun metagenomics) to direct measures of functional activity (from 

metatranscriptomics) in a longitudinal cohort. Fecal samples were collected biweekly from 

approximately 100 patients over the course of one year and subjected to shotgun 

metagenomic (DNA) and metatranscriptomic (RNA) sequencing. Here, we present the 

results based on 78 paired metagenomes and metatranscriptomes and an additional 222 

metagenomes. For many species, functional potential was well-correlated with functional 

activity. However, we were able to identify species-specific shifts in transcript levels 

indicating that some organisms (e.g. Faecalibacterium prausnitzii) and pathways may play a 

more central role in maintaining gut health than their genomic abundances indicate. We also 

detected organisms that were metagenomically present but with low or non-existent gene 

expression (e.g. Dialister invisus), suggesting that the organism is either dead or inactive and 

hence of questionable importance in the gut community. In addition, we uncovered disease-

specific changes in microbial gene expression that were either more pronounced or only 

detectable on the RNA level (e.g. metabolic pathways contributed by Bacteroides vulgatus 
and Alistipes putredinis). Together, our findings highlight that crucial insight into microbial 

community dynamics can be gained through integrated analysis of metatranscriptomic and 

metagenomic profiles of microbial community structure and function. This approach will 

lead to a better understanding of the underlying mechanisms of gut microbial dysbioses and 

their role in IBD.
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Results

A longitudinal IBD cohort profiled using metagenomic and metatranscriptomic sequencing

As part of the Integrative Human Microbiome Project (iHMP or HMP2), the goal of the IBD 

Multi’omics Database (IBDMDB, http://ibdmdb.org) is to assemble longitudinal multi’omic 

profiles of IBD patients to gain insight into the mechanisms of microbial dysbioses and their 

effects on disease onset and progression (Fig. 1). Participants provided biweekly stool 

samples over the course of one year from which we generated shotgun metagenomic and 

metatranscriptomic sequencing data. In this one of several resulting datasets and studies, we 

analyzed 78 paired metagenomes/metatranscriptomes and an additional 222 metagenomes 

from 117 individuals: 59 CD patients, 34 with UC, and 24 non-IBD controls (Fig. 1a). These 

datasets yielded high-resolution profiles of gut microbial community composition 

(taxonomy), functional potential, and functional activity.

Consistent with previous studies, taxonomic shifts in microbial composition inferred from 

the metagenomic data accounted for significant, but modest effect size, separation among 

the three phenotypes (Fig. 1b). Longitudinal profiling further emphasized that variation in 

microbial community composition is dominated by inter-individual effects, as samples from 

the same subject tended to cluster tightly. However, we also observed taxonomic shifts in 

community composition over time that coincided with changes in disease severity [i.e. as 

measured by the Harvey-Bradshaw Index (HBI)] and antibiotic treatment (Fig. S1). This 

highlights the importance of examining longitudinal profiles in order to establish a better 

understanding of species dynamics within and across patients.

Inter- and intra-personal dynamic patterns of microbial species

In order to better understand the variability in microbial species composition within and 

across individuals, we first examined the taxonomic profiles from six long time courses (i.e. 

2 CD, 2 UC and 2 non-IBD patients with at least 12 samples each over the one-year 

sampling period; Fig. S2a). Three general patterns were observed: 1) intra-personal stability, 

2) global stability, and 3) inter- and intra-personal variability. Intra-personal stability refers 

to species that were only encountered in individual patients or a subset of the patients and 

represented permanent members of their gut microbial community (Fig. S2b). The relative 

abundances of these species often remained fairly stable over the course of the year. Among 

these patient-specific microbial organisms were several Bacteroides species, suggesting that 

these closely related organisms can contribute similar functions in different patients.

In contrast, we also encountered many examples of microbial organisms that were 

universally present in all patients at high abundance (1-10%), including Faecalibacterium 
prausnitzii and Bacteroides vulgatus, two species that are implicated in gut inflammation 

and IBD specifically (Fig. S2c)13,17,20,21. Their tendency to be present in all patients 

irrespective of disease phenotype suggests that their abundance or transcriptional activity 

rather than presence/absence plays a role in gut inflammation. Finally, some species 

displayed inter- and intra-personal variability patterns, intermittently disappearing and 

reappearing in all six patients over time (Fig. S2d). Among these were prominent IBD-

associated organisms such as Ruminococcus gnavus and Roseburia intestinalis, highlighting 
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that taxonomic variability is not only observed between patients but also within a patient 

over time22,23. Furthermore, spikes of R. gnavus were observed in some IBD patients in the 

overall cohort, with relative abundances of up to 19%.

Functional potential is often, but not always, proportional to metatranscriptomic 
expression in the gut microbiome

In order to compare and contrast community functional potential and functional activity, we 

profiled the 78 paired metagenomes and metatranscriptomes with HUMAnN224, which 

outputs per-sample pathway abundance, stratified according to individual species’ 

contributions (Methods). Averaging first within and then across patients, we found that 

species contributing more pathway copies to the total pool of microbial genomic DNA (i.e. 

more metagenomically abundant species) also tended to contribute more pathway transcripts 

(Fig. 2a).

Moreover, among metagenomically abundant species (which are less sensitive to 

undersampling), mean pathway abundance at the DNA and RNA levels tended to correlate 

well across samples. This correlation was particularly strong for Parabacteroides merdae, a 

mucin-degrading, short-chain fatty acid (SCFA) producer (Spearman r=0.85, Fig. 2b)25,26. 

Such a strong correlation suggests that the total transcript output of P. merdae is relatively 

constant across samples, and hence samples with a larger P. merdae cell fraction (i.e. 

metagenomic relative abundance) coincide with an increase in contributions from P. merdae 
in the total transcript pool. This behavior is in contrast with that of Dialister invisus: a 

bacterium predominantly associated with the human oral cavity, which has also been 

detected in the gut and been implicated in diseases such as IBD and type-1 diabetes22,27,28. 

While the average DNA abundance of D. invisus was comparable to that of P. merdae, and 

varied across samples, D. invisus was largely absent from our metatranscriptomic data (Fig. 

S3a). This suggests that D. invisus is not actively transcribing in the gastrointestinal tract, 

consistent with a dead or non-growing population. While we infer that organisms such as D. 
invisus are not transcriptionally active when we do not observe any transcripts from those 

organisms, it is technically possible that different microbial species might have different 

RNA stability resulting in faster degradation of RNA from one organism relative to another. 

Nevertheless, such dramatic differences in transcriptional behavior between 

metagenomically similar species underscore the importance of measuring functional 

potential and activity in tandem.

Faecalibacterium prausnitzii exhibited a third distinct pattern of behavior: poor correlation in 

total DNA and RNA abundances across samples despite being abundant on average across 

both data types (Fig. 2c). F. prausnitzii is a known producer of butyrate, a SCFA that plays a 

role in maintaining gut health and barrier function, and previous studies have found the 

species to be depleted in IBD patients13,17,20. While F. prausnitzii remained fairly stably 

abundant in IBD patients with long time courses (Fig. S2c), the metatranscriptomic data 

suggests that the metagenomic abundance of this species is not predictive of its relative 

transcriptional activity (Fig. 2c).
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Disease-specific differences in functional activity of microbial organisms

The patterns of species-specific microbial transcription introduced above can be further 

stratified to identify interactions with IBD phenotype (Fig. S4). More specifically, if we 

define a dysbiosis as a shift in a species’ mean pathway contributions between IBD 

phenotypes (UC or CD) and non-IBD controls, a species can be dysbiotic at the DNA level, 

the RNA level, or both, and in any combination of directions. The seven species that 

exhibited the largest such dysbioses are summarized in Fig. 2d (for a complete list see Table 

S1). Of these, two exhibited a more pronounced dysbiosis in their functional activity 

compared to their functional potential. Ruminococcus gnavus exhibited the largest 

amplification of disease-specific dysbiosis on the RNA level, with greatly increased RNA 

abundance in both CD and UC patients compared to non-IBD controls (~3 orders of 

magnitude) in a background of a smaller increase in DNA abundance (~1 order of 

magnitude). Hence, small changes in the abundance of R. gnavus may be more 

consequential than previously assumed.

The two species that exhibited the largest difference in community DNA compared to RNA 

were Clostridium symbiosum and Bacteroides faecis. One possible implication may be that 

the impact of these species on disease progression is less critical than suggested by the 

metagenomic data alone. While the preceding examples focused on dysbioses that were 

consistent across the two IBD subtypes, this was not always the case. For example, 

Bacteroides fragilis was less abundant in DNA in UC patients compared to non-IBD 

controls, while it was more abundant in CD patients. On the other hand, the species’ mean 

RNA abundance was similar between CD and non-IBD patients but markedly lower in UC. 

Furthermore, we observed many examples of species whose overall expression was 

comparable across disease phenotypes with similar DNA and RNA pathway abundances 

(Fig. 2e). These organisms are thus unlikely to play a role in disease onset and progression.

Contrasting metabolic functional potential and functional activity

To compare the functional potential and activity of the entire microbial community, we next 

investigated overall metabolic pathway abundances in both data types (Fig. 3). We used 

contributional alpha diversity as a measurement to compare the diversity of organisms 

contributing metagenomically and metatranscriptomically to each pathway (Methods). This 

allowed us to distinguish pathways contributed by a single or few microbial organisms, 

representing specialized metabolic processes, from pathways that are contributed by a 

multitude of organisms, representing more essential metabolic processes (Fig. 3a).

The two pathways with the lowest contributional diversity on the DNA and RNA levels were 

almost entirely from F. prausnitzii: 1) GALACT−GLUCUROCAT−PWY, superpathway of 

galacturonate and glucuronate degradation [synonym: superpathway of hexuronide and 

hexuronate degradation (Fig. S5a)] and 2) GLUCUROCAT−PWY, superpathway of beta-D-

glucuronide and D-glucuronate degradation. A subset of samples broke this trend, with 

Escherichia coli appearing as the dominant transcriber of these pathways. E. coli has been 

previously shown to be able to use beta-D-glucuronides and the hexuronates D-glucuronate 

and D-fructuronate as the sole carbon source for growth. Our data suggest that F. prausnitzii 
is the main utilizer of these sugars, even in samples where E. coli is present (Fig. S5a).
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In contrast, the most ubiquitous pathways with the greatest contributional alpha diversities 

were two biosynthesis pathways for the ribonucleotides adenosine and guanosine (PWY

−7219 and PWY−7221), which are involved in numerous basic biochemical processes 

(including functioning as extracellular signaling molecules). These essential functions were 

contributed by a multitude of organisms and generally all organisms that encoded the 

pathway were also expressing it (Fig. S5b + S6a). Adenosine is an important modulator of 

inflammation with anti-inflammatory effects and therefore a potential therapeutic target in 

IBD29,30. Further, guanosine can inhibit LPS-induced pro-inflammatory responses in the 

context of neuroinflammatory-related diseases31.

Many pathways exhibited similar alpha diversity patterns in DNA and RNA, as illustrated by 

the examples above. However, for a subset of pathways, a lower diversity of contributing 

species was detected on the RNA level, with transcription often dominated by a single 

species. The species with the greatest discrepancies in DNA and RNA transcriptional 

profiles included four Bacteroides species (B. vulgatus, B. uniformis, B. ovatus, B. 
xylanisolvens), Faecalibacterium prausnitzii, Parabacteroides distasonis and Alistipes 
putredinis (Fig. 3b). As an example, F. prausnitzii showed the highest degree of variation in 

DNA-RNA differences and also contributed to the largest number of pathways.

One of the pathways where transcription was dominated by F. prausnitzii was dTDP-L-

rhamnose biosynthesis I (Fig. 3c). The resulting deoxysugar β-L-rhamnopyranose functions 

as a building block of the glycan component of the O-antigens, which is a major target for 

the immune systems and the target of many vaccine development studies32–35. Regulation of 

this biosynthetic pathway has been previously studied in the context of Pseudomonas 
aeruginosa, in which it is transcriptionally regulated specifically by quorum sensing 

systems36. Quorum sensing is a mechanism by which regulation (within or among species) 

can achieve multi-stability, i.e. activate or deactivate expression only after a certain 

concentration of signaling molecule is achieved. As this type of multi-stability is exhibited 

by many pathways in the metatranscriptome - that is, only one of several possible organisms 

upregulated, and others downregulated - we hypothesize that these, and specifically the 

expression of F. prausnitzii for this pathway, may be regulated through quorum-sensing-like 

mechanisms, constituting a potential example of interspecies interactions in the gut.

Disease-specific transcriptional microbial signatures

Differences between pathway encoding versus transcription were particularly evident in the 

pathway contributions of Alistipes putredinis and Bacteroides vulgatus and these 
transcriptional effects were also disease-associated (Fig. 4). A. putredinis exhibited the 

highest discrepancy between functional potential and functional activity across all of its 

pathways (Fig. 3b). One example is the methylerythritol phosphate (MEP) pathway, which 

was consistently overtranscribed by A. putredinis (Fig. 4a). The product of this pathway, 

isopentenyl diphosphate (IPP), is used by organisms in the biosynthesis of terpenes and 

terpenoids: a group of natural products that have been increasingly mined for drug discovery, 

in particular for cancer. In E. coli, the MEP pathway is also involved in the production of 

phosphate-containing antigens recognized by human gamma delta T lymphocytes, which are 

suggested to play an important role in the immune response to microbial organisms37. 
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Furthermore, IPP can be converted to the more-reactive electrophile dimethylallyl 

pyrophosphate (DMAPP), which has been shown to induce acute inflammation38.

Finally, disease-associated transcriptional effects became evident when examining patient 

time courses. For one CD patient, for example (Fig. 4b), we observed fairly constant 

proportions of all microbial species contributing the MEP pathway at the DNA level. 

However, among RNA data, A. putredinis monopolized MEP pathway transcription, and it 

was strikingly the sole contributor at time points 1 and 3. At time points 2 and 4, B. vulgatus 
contributed transcriptional activity for the MEP pathway. Interestingly, this coincided with 

changes in disease severity for this patient, with HBI scores increased at both time points 

where B. vulgatus was a pathway contributor (Fig. S3b). Both species exhibited an overall 

correlation with disease severity, with A. putredinis negatively correlated with disease 

severity and B. vulgatus positively correlated (Fig. S6b+c). We hypothesize that this is likely 

a sufficient but not necessary covariation with disease. Indeed, this correlation was not 

induced on a population-level. This example highlights the importance of examining 

changes in metatranscription over time within individual patients: such changes may 

correlate variation in disease severity, thus suggesting a mechanistic relationship that would 

be masked in DNA data alone.

We further examined disease-associated transcriptional changes that generalized across IBD 

patients. The most pronounced IBD-specific transcriptional changes were observed for 

Bacteroides vulgatus (Fig. 4c). More specifically, most B. vulgatus pathways were more 

DNA-abundant in non-IBD patients, but many of these pathways were considerably more 

RNA-abundant among UC and CD patients (Fig. 4d). This suggests that B. vulgatus follows 

a different transcriptional program in IBD patients, possibly triggered by disease-specific 

environmental changes in the gut (e.g. inflammation or increased levels of oxygen).

Discussion

Our findings highlight that directly measuring functional activity of the gut microbiome 

through metatranscriptomics reveals important insights that are only partially observable in 

metagenomic functional potential, including disease-linked observations. For some 

pathways, a dominant transcribing organism was identified in a background of mixed 

metagenomic contributions. Several striking examples of this phenomenon involved, for 

example, Faecalibacterium prausnitzii, Bacteroides vulgatus or Alistipes putredinis, which 

often dominated pathway transcription in IBD even when not the most abundant organism in 

a sample. Furthermore, several species displayed altered expression profiles in IBD.

Importantly, many IBD-specific signals were either more pronounced or only detectable on 

the RNA level, such as pathways that were substantially upregulated in disease and species 

that displayed altered expression profiles in IBD patients. These altered expression profiles 

are potentially the result of changes in the gut environment in IBD patients, which include 

increased levels of inflammation (resulting in an aggravated immune response), higher 

concentrations of oxygen (which may be toxic to obligate anaerobes), and a diminished 

mucus layer39. Metatranscriptomics circumvents the challenges of assaying diverse 

biochemical products dynamically in situ (e.g. mucus40,41 or oxygen6,42) and enables us to 
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study the effects of environmental changes on microbial expression patterns in vivo for large 

human populations.

In addition to the direct benefits of measuring community functional activity, coupling such 

measurements with longitudinal sampling enables association of modulated activity with 

disease progression. This longitudinal design resulted in most samples corresponding to a 

minority of patients, thus not appropriate for most cross-sectional analyses. For example, our 

data highlight cases where microbial genomic contributions to a particular pathway 

remained stable over time, while the corresponding expression patterns varied with disease 

severity. Therefore, microbial dysbioses impacting disease progression and severity may be 

mechanistically related to changes in the transcriptional programs of an otherwise stable 

community, thus making metatranscriptomic profiling an important tool for understanding 

such mechanisms. While both RNA and DNA abundances can change in microbial 

communities, they of course do so at very different time scales (minutes or less, versus hours 

or more). This underlying biological difference represents another way in which the 

measurement types may capture complementary microbial processes as they relate to host 

phenotypes, such as disease flares or changes in inflammation.

We hypothesize that behavior such as that of F. prausnitzii involves multi-species bistability 

(or more accurately multi-stability), in which inter-microbial interactions converge on a 

single dominant transcriber for some functions that can differ between individuals. This type 

of behavior in microbial communities is best known from quorum sensing, which itself has 

been mostly studied in the context of biofilm formation and pathogenic bacteria. For 

example, the quorum sensor gene lasR of Pseudomonas aeruginosa (an opportunistic 

pathogen) produces the molecule N-3-oxo-dodecanoyl-l-homoserine lactone (C12), which 

allows a microbial subpopulation to bistably activate (or deactivate) regulation after reaching 

a critical threshold43,44. Other examples include Staphylococcus epidermis, a bacterium that 

uses quorum sensing to evade human innate immune defense mechanisms45. Further, 

quorum sensing molecules have also been shown to affect gut microbial community 

composition in mice, where increased levels of the quorum-sensing signal autoinducer-2 

(AI-2) favored an expansion of Firmicutes following antibiotic treatment46. Since many 

transcriptional systems in the human gut appear to be regulated in a manner that is multi-

stable among microbes and individuals, it remains to be determined whether formal quorum 

sensing molecules or other regulatory mechanisms are responsible, particularly in the 

context of IBD.

Some technical limitations apply to RNA-based measurements in stool. Fecal 

metatranscriptomics captures RNA that is extractable, not degraded during the extraction 

procedure or in the cells beforehand and restricted to the organisms that are present in stool 

samples. While this is a subset of total biological regulatory activity, the same kind of 

caveats and technical limitations apply to any kind of RNA-based measurements of 

transcriptional regulation in other systems. Some of these technical limitations also apply to 

fecal metagenomics. While biopsies may be more representative of microbial abundance and 

expression at the colonic mucosa, frequent longitudinal sampling is implausible due to the 

invasive nature of this procedure, and extracting sufficient amounts of bacterial nucleotides 

for metagenomics or metatranscriptomics is challenging due to the predominance of host 
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tissue. Differences may also arise due to variation in transit time among subjects. 

Furthermore, in this and most studies, samples were processed uniformly, ensuring that the 

same technical limitations apply to all phenotypes and that disease-specific differential 

expression is likely to reflect underlying biological differences.

In conclusion, metagenomics and metatranscriptomics can provide complementary insights 

into community interactions and disease-specific alterations in population-scale human 

microbiomes, here demonstrated in the IBD gut microbial community. In particular, disease-

related changes in the gut environment may specifically affect microbial expression patterns, 

in different organisms and pathways among individuals, and in some cases without altering 

metagenomically-measured functional potential. In order to understand the underlying 

mechanisms associating microbial dysbiosis with aberrant immune responses, we need to 

understand how the behavior of individual organisms, as well as the gut community as a 

whole, changes in disease. Furthermore, disease-specific changes may be patient-specific 

and the specific microbial organisms in a patient’s gut may react differently to 

environmental changes, resulting in different short-term expression dynamics. Longitudinal, 

multi’omic, patient-focused studies will thus provide an important step towards 

understanding microbiome-related diseases and their roles in personalized medicine.

Methods

Experimental Model and Subject Details

Human Cohort—Patients at Massachusetts General Hospital [as part of the Prospective 

Registry in IBD Study (PRISM)], Emory University, and Cincinnati Children’s Hospital 

Medical Center, with a suspected diagnosis of IBD were approached for participation in the 

new-onset and pediatric portion of the study. Patients were consented prior to a screening 

colonoscopy, which separated them into confirmed IBD patients and non-IBD controls. 

Sampling and data gathering began at a later “baseline” visit no more than 6 months after 

their diagnosis was confirmed. New-onset patients were excluded if they were on an anti-

TNF inhibitor. Established disease patients were recruited from the MLI cohort at the 

Cedars-Sinai IBD Center, and were required to have had a diagnosis of IBD for over 5 years. 

Participants in all groups were excluded if they were pregnant, had a known bleeding 

disorder, had taken antibiotics within the month preceding the screening visit, were actively 

being treated for a malignancy with chemotherapy, had an acute gastrointestinal infection, 

were diagnosed with an indeterminate colitis, or had had bowel/intestinal surgery other than 

an appendectomy or cholecystectomy. Non-IBD controls were further required to have no 

known immune-mediated disease (rheumatoid arthritis, lupus, or type 1 Diabetes mellitus).

In total, 117 patients participated in the study, with 59 CD patients, 34 UC patients and 24 

non-IBD controls. This includes 55 pediatric patients (age ≤ 17 years; 13 non-IBD patients) 

with new-onset disease (13 UC, 29 CD) and 62 adults (age ≥ 18 years, 11 non-IBD patients), 

which were divided into new-onset (9 UC, 13 CD) and those with established disease (12 

UC, 17 CD). Gender was balanced across all cohorts, with 57 male and 60 female patients 

overall, and no more than a difference of 2 patients between genders for any disease type. 

Stool samples were self-collected biweekly for one year from each patient according to the 

protocol established in47, starting from the baseline visit. Disease severity was monitored 
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using the Harvey-Bradshaw Index48 (HBI) for CD patients and the Simple Clinical Colitis 

Activity Index49 (SCCAI) for UC patients.

Ethics statement—Subject recruitment and study procedures were approved by and 

carried out in accordance with the Research Ethics Boards of Massachusetts General 

Hospital (IRB for adult cohort: 2013P002215, IRB for pediatric cohort: 2014P001115), 

Cincinnati Children’s Hospital Medical Center (IRB: 2013-7586), Emory University (IRB: 

IRB00071468), and Cedars-Sinai Medical Center (IRB: 3358). In compliance with the 

Research Ethics Board study approval, informed consent was obtained from all study 

participants immediately prior to the initial sample collection. Further, all experimental 

methods are compliant with the Helsinki Declaration.

Method Details

Shotgun Sequencing—For metagenomic sequencing, the total genomic DNA content of 

the sample was sequenced, allowing us to infer functional potential of the community and 

taxonomic composition at species-level. For metatranscriptomics, messenger RNA (mRNA) 

was extracted, reverse transcribed into complementary DNA (cDNA), and subsequently 

sequenced. DNA was extracted from 300 samples spanning all 117 participants, and RNA 

from a subset of 78 samples spanning 28 participants. Illumina HiSeq sequencing yielded a 

total of 4.59 Gnt and 1.06 Gnt of paired-end reads (2×100 nt) of metagenomic and 

metatranscriptomic sequencing, respectively. Metagenomes averaged 30,581,993 reads 

± 12,567,915 reads (mean ± s.d.) per sample before quality filtering (see below) and 

28,242,423 reads ± 12,437,200 reads afterward. Meanwhile, metatranscriptomes averaged 

27,211,997 reads ± 21,831,783 reads and 20,050,758 reads ± 16,301,242 reads before and 

after quality control, respectively.

Quantification and Statistical Analysis

Preprocessing and Quality Control—Sequence reads were processed with the 

KneadData v0.5.1 quality control (QC) pipeline (http://huttenhower.sph.harvard.edu/

kneaddata), which uses the Trimmomatic50 and BMTagger51 filtering and decontamination 

algorithms to remove low-quality read bases and host (human) reads, respectively. 

Trimmomatic was run with parameters MAXINFO:80:0.5, and Phred quality scores were 

thresholded at <20. Trimmed non-human reads shorter than 50 nt were discarded. Potential 

human contamination was filtered by removing reads that aligned to the human genome 

(reference genome hg19). Additionally, metatranscriptomic reads were filtered against the 

human transcriptome and the SILVA database52. After QC, samples averaged 28 million and 

20 million reads in MGX and MTX respectively (minimum 2 million).

Taxonomic and Functional Profiling—Taxonomic profiling was performed using the 

MetaPhlAn2 classifier53, which unambiguously classifies metagenomic reads to taxonomies 

based on a database of clade-specific marker genes derived from 17,000 microbial genomes 

(corresponding to >7,500 bacterial, viral, archaeal, and eukaryotic species). Functional 

profiling of metagenomes and metatranscriptomes was performed using HUMAnN224 

version 0.9.6 (http://huttenhower.sph.harvard.edu/humann2). Briefly, the MetaPhlAn2 

taxonomic profile generated from a metagenome is used to identify the set of organisms 

Schirmer et al. Page 11

Nat Microbiol. Author manuscript; available in PMC 2018 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://huttenhower.sph.harvard.edu/kneaddata
http://huttenhower.sph.harvard.edu/kneaddata
http://huttenhower.sph.harvard.edu/humann2


present in a sample. Metagenomic and metatranscriptomic reads are then mapped using 

Bowtie254 to sample-specific pangenomes including all gene families in any microbe 

present. A translated search using DIAMOND55 then maps unmapped reads against 

UniRef9056. Hits are counted per gene family and normalized for length and alignment 

quality. Gene family abundances from both the nucleotide and translated searches are then 

combined into structured pathways from MetaCyc57 and sum-normalized to relative 

abundances. We ran HUMAnN2 with the MinPath58 and gap filling options. As a result, 385 

pathways had non-zero abundance in at least one metagenome, and 331 pathways had non-

zero abundance in at least one metatranscriptome. The nucleotide search identified 182 

species contributing these pathways in metagenomes, and 134 species in metatranscriptomes 

(a subset of the MGX species).

All of our datasets consisted of at least 2 million reads (corresponding to at least 20 

observed reads per species) and the majority of them were in excess of 10 million reads 

(corresponding to at least 100 observed reads per species), ensuring that species calls were 

well supported (Fig. S2E).

Measuring Activity of Microbial Species—(Fig. 2A+D+E, 4E, S3C): The total 

contribution of each species to the functional profile was computed by summing their 

contributions over all pathways. Only the 51 species, which contributed at least one pathway 

in DNA and RNA level in >10% of samples (8 samples) were considered. Species 

contributions were first averaged over all samples where the species was detected within 

each patient and then across patients. Fig. 2B+C: For all species we computed Spearman 

correlation coefficients between their total pathway contributions to the metagenomes and 

metatranscriptomes across all samples.

Sample Order in Stacked Bar Plots—Stacked bar plots presented in Figs. 3, 4, S3, and 

S4 were ordered to maximize the similarity of species contributions to the pathway’s 

abundance between adjacent samples. For this, we calculated Bray-Curtis dissimilarities 

between the sum-normalized species contributions to the pathway in a given sample for both 

the metatranscriptomic and metagenomic data. The two dissimilarity matrices were 

combined by a weighted mixture, with metagenomic dissimilarities weighted at 1/100th of 

metatranscriptomic dissimilarities. The final sample order was determined by running 

solve_TSP from the R package TSP on the mixture dissimilarity matrix. To determine which 

sample to place first, we included a “fence” sample with zero dissimilarity to all other 

samples in the above procedure. The fence sample was then placed in the first position by 

rotating the final sample order appropriately, before finally removing it.

Contributional Alpha Diversity of Pathways—We quantified the contributional alpha 

diversity of species contributing to the abundance of a MetaCyc pathway in DNA or RNA by 

the Gini-Simpson index of alpha diversity. Pathways were first excluded if they had non-zero 

abundance in DNA in less than 95% of the samples, or if more than 25% of the pathway was 

attributed to unclassified organisms (from HUMAnN2’s translated search) in more than 25% 

of the samples. For each of the 58 remaining pathways, we then computed the Gini-Simpson 

index from the relative contribution of each species to the pathway for each sample 
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(excluding unclassified organisms). The pathway’s alpha diversity was then defined as the 

mean alpha diversity of samples with non-zero abundance.

Data and Software Availability

Data Resources—All sequencing data and metadata is available on www.ibdmdb.org. 

The metagenomic and metatranscriptomic sequencing data is also available on SRA 

(BioProject: PRJNA389280).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Longitudinal metagenomes and metatranscriptomes in inflammatory bowel disease.
(a) Bi-weekly stool samples were collected from 117 individuals (59 Crohn’s disease (CD), 

34 ulcerative colitis (UC), and 24 non-IBD controls) over the course of one year each. The 

resulting data comprise 78 paired stool metagenomes/metatranscriptomes and 222 additional 

metagenomes. While most samples are part of short time courses, two long time courses per 

disease phenotype (with up to 17 time points) were also included. (b) Principal Coordinate 

Analysis (PCoA) on Bray-Curtis distance at the species level for all 300 metagenomic 

taxonomic profiles from 117 patients. In addition, 19 species are overlaid where their 

position represents the species’ weighted average score and indicates that samples in close 

proximity are likely to contain higher abundances of the respective organism. While the time 

courses highlight that inter-individual effects dominate the variation in taxonomic 

composition, longitudinal shifts were also observed, motivating the investigation of inter- 

and intra-personal dynamic patterns of microbial species.
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Figure 2: Metatranscriptomic activities assigned to specific microbial species and disease 
phenotypes
(a) Summary of metagenomic and metatranscriptomic activities across all analyzed 

pathways as assigned to individual species (n=78). The activity of each species is first 

averaged within and subsequently across participants for DNA and RNA samples, 

respectively; only species that were detected in at least 10% of the samples are shown. 

Comparisons of DNA and RNA pathway levels per species are summarized for each point, 

with examples expanded in (b) and (c): Parabacteroides merdae (high DNA-RNA 

correlation, Spearman r=0.85) and Faecalibacterium prausnitzii (low correlation, Spearman 

r=0.35). Here, each point represents one sample (n=78)., indicating the species’ overall 

contribution to all pathways in its metagenome and metatranscriptome, including a linear fit 

with a 95% confidence interval. (d) and (e): Species that exhibited the largest and smallest 

disease-specific changes, respectively, after repeating the analysis described in (a) for each 

disease group separately. Results are summarized as triangles for each species connecting 

vertices representing the values for each disease group (CD n=46, UC n=21, non-IBD n=11). 

Overall, while functional potential is indicative of functional activity for many microbial 

organisms, others exhibited low DNA-RNA-correlation or disease-specific differences in 

functional activity.
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Figure 3: Comparing species-specific metagenomic functional potential with metatranscriptomic 
functional activity
(a) Contributional alpha diversity of species represented in DNA (metagenomic) and RNA 

(metatranscriptomic) pathway profiles, calculated across all 78 paired samples. The mean, 

first and third quartiles are displayed. Pathways are ordered by the sum of their median 

DNA- and RNA-level diversity measures. While diversity was generally lower on the 

transcriptional level, as expected, we also observed that many specialized pathways were 

contributed by only one or few microbial species. (b) Differences in per-pathway DNA 
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versus RNA contributions of microbial species, each point representing one pathway 

averaged first within samples from the same patient and subsequently across patients. The 

mean, first and third quartiles are displayed. Only pathways detected in at least 20% of 

metagenomic and metatranscriptomic samples (n=78) were included for a particular species, 

and only species contributing to at least 8 pathways across samples are displayed. Some 

microbial organisms exhibited a general tendency for over- or under-transcription, while 

others displayed pathway-specific activity patterns. (c) Example where pathway 

transcription is dominated by a single species. Relative contributions of the top 20 species in 

metagenomes (DNA) versus metatranscriptomes (RNA) for the dTDP-L-rhamnose 

biosynthesis I pathway (n=78). This pathway was one of the most over-transcribed pathways 

of F. prausnitzii, the species with the largest range in pathway-specific over- and 

undertranscription.
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Figure 4: Dynamic changes in IBD-specific metatranscription over time
(a) Relative contribution of organisms to the methylerythritol phosphate pathway I 

(NONMEVIPP-PWY), including all time points and individuals (n=78).. Overtranscription 

is visible for A. putredinis in the absence of metagenomic disruption. (b) Relative 

contribution of organisms to the same pathway, restricted to the samples from one CD 

patient (M2021) over time. A. putredinis consistently over-transcribed this pathway within 

this individual. Increases in the HBI of this patient were observed at time points 2 and 4, 

uniquely where pathway transcription was partially contributed by Bacteroides vulgatus. (c) 
Differences in per-pathway DNA versus RNA contributions of microbial species across 

disease phenotypes, each point representing the perimeter of the disease-specific pathway 

triangles described in Fig. 2d+e. The mean, first and third quartiles are displayed. Only 

pathways detected in at least 20% of metagenomic and metatranscriptomic samples (n=78) 

were included for a particular species, and only species contributing to at least 8 pathways 

across samples are displayed. On average, Bacteroides vulgatus exhibited the largest 
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disease-specific difference. (d) Changes in relative contribution of Bacteroides vulgatus to 

its transcribed pathways stratified by IBD phenotype. For this organism, IBD-specific 

dysbioses were particularly pronounced on the transcriptional level, with many pathways 

upregulated both in UC and in CD.
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