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Purpose: The challenge of cone-beam computed tomography (CBCT) is its

low image quality, which limits its application for adaptive radiotherapy (ART).

Despite recent substantial improvement in CBCT imaging using the deep

learning method, the image quality still needs to be improved for effective

ART application. Spurred by the advantages of transformers, which employs

multi-head attention mechanisms to capture long-range contextual relations

between image pixels, we proposed a novel transformer-based network (called

TransCBCT) to generate synthetic CT (sCT) from CBCT. This study aimed to

further improve the accuracy and efficiency of ART.

Materials and methods: In this study, 91 patients diagnosed with prostate

cancer were enrolled. We constructed a transformer-based hierarchical

encoder–decoder structure with skip connection, called TransCBCT. The

network also employed several convolutional layers to capture local context.

The proposed TransCBCT was trained and validated on 6,144 paired CBCT/

deformed CT images from 76 patients and tested on 1,026 paired images from

15 patients. The performance of the proposed TransCBCT was compared with

a widely recognized style transferring deep learning method, the cycle-

consistent adversarial network (CycleGAN). We evaluated the image quality

and clinical value (application in auto-segmentation and dose calculation) for

ART need.

Results: TransCBCT had superior performance in generating sCT from CBCT.

The mean absolute error of TransCBCT was 28.8 ± 16.7 HU, compared to 66.5

± 13.2 for raw CBCT, and 34.3 ± 17.3 for CycleGAN. It can preserve the

structure of raw CBCT and reduce artifacts. When applied in auto-

segmentation, the Dice similarity coefficients of bladder and rectum between

auto-segmentation and oncologist manual contours were 0.92 and 0.84 for

TransCBCT, respectively, compared to 0.90 and 0.83 for CycleGAN. When
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Abbreviations: CBCT, cone-beam computed tomog

radiotherapy; sCT, synthetic CT; CycleGAN, cycle-

network; CNN, convolutional neural network; GAN,

network; MSA, multi-header self-attention; LeF

feedforward network; W-MSA, window-based MSA;

structural similarity; MAE, mean absolute error; RM

error; PSNR, peak signal-to-noise ratio; ROIs, regions

similarity coefficient; MDA, mean distance to agreemen

modulated arc therapy.

Chen et al. 10.3389/fonc.2022.988800

Frontiers in Oncology
applied in dose calculation, the gamma passing rate (1%/1 mm criterion) was

97.5% ± 1.1% for TransCBCT, compared to 96.9% ± 1.8% for CycleGAN.

Conclusions: The proposed TransCBCT can effectively generate sCT for CBCT.

It has the potential to improve radiotherapy accuracy.
KEYWORDS

adaptive radiotherapy, CBCT, deep learning, transformer, image quality
1 Introduction

As a tool for image-guided radiotherapy, cone-beam

computed tomography (CBCT) equipped with radiotherapy

units can acquire three-dimensional images of patients at the

treatment position. The positioning error of fractional treatment

can be corrected by registering fractional CBCT with simulation

CT images. CBCT imaging can also be applied for adaptive

radiation therapy (ART) to ensure the accuracy of dose delivery

when the patient’s anatomy changes significantly during the

treatment course (1–3). However, the greatest challenge of

CBCT is its low image quality, which limits its application for

precise radiotherapy (2, 3).

Several conventional methods have been proposed to

improve the image quality of CBCT. They are classified into

hardware-based and software-based methods. Hardware, such as

anti-scatter grid (4) and x-ray beam blocker with a strip pattern

(5), are employed to reduce the scatter photons, reducing the

imaging system’s quantum efficacy. Meanwhile, additional

devices need to be set up on the onboard imagers to use these

methods. These problems are not exited in software approaches.

Ray tracing (6) and Monte Carlo (7) methods can estimate

scatter distribution to correct the CBCT projections.

Additionally, iterative reconstruction (8, 9) is implemented to

obtain high-quality images from the limited projections. These

methods are promis ing but l imi ted by the huge

computational cost.

Recently, deep learning methods, especial ly the

convolutional neural network (CNN)-based model, have been

proven promising in image processing due to their advantages
raphy; ART, adaptive

consistent adversarial

generative adversarial

F, locally enhanced

MS-SSIM, multiscale

SE, root mean square

of interest; DSC, dice

t; VMAT, volumetric-

02
in leveraging local context and enabling a large reception field.

CNN has been explored to improve the quality of CBCT images

by correcting the projections (10–13) and generating synthetic

CT (sCT) images (14–16). However, it is limited when

substantial anatomical changes exist between CBCT and

planning CT due to its supervised learning pattern (17, 18).

Since the exactly matched CBCT and CT images are nearly

unavailable, some studies employed unsupervised learning to

enhance the quality of CBCT images to CT level in the image

domain. The generative adversarial network (GAN)-based

models, especially the cycle-consistent adversarial network

(CycleGAN) (19), are suitable for image transferring with

unpaired data. Liang et al. (20) used CycleGAN to preserve

the anatomical structure of CBCT and improve its image

quality on the head and neck. For the parts with substantial

organ dislocations, such as the abdomen, Liu et al. (21)

employed a deep-attention CycleGAN and copied the air

pockets observed in CBCT and CT to solve the mismatching

problem. The cycle-consistent is helpful to the keep the raw

structure of the cycle-consistent loss is helpful to the keep the

raw structure of CBCT. Kida et al. (22) employed more loss

function parts to visually enhance the CBCT images. Uh et al.

(23) combined adjacent anatomic data and normalized age-

dependent body sizes in children and young adults to improve

the training set, and got a better CycleGAN model.

In the past few years, the transformer has been one of the

popular architectures for deep learning task, since it can take

advantage of modeling long-range dependencies based on the

attention mechanism (24, 25). Now, the transformer is

expected to handle the more medical image processing tasks.

Wu et al. (26) successfully employed Vision Transformer (27)

to recognize diabetic retinopathy grade with more accuracy

than the CNN-based model. Yang et al. (28) designed a

transformer-based deformable image registration network

and ach i eved robus t r eg i s t r a t i on and promis ing

generalizability. Zhang et al. (29) employed the transformer

blocks for low dose CT denoising and produced superior

results. Liu et al. (30) proposed the Swin transformer to

implement hierarchical architecture using a non-overlapping

shifted windowing scheme to obtain greater efficiency,
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https://doi.org/10.3389/fonc.2022.988800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.988800
achieving great progress in image classification, dense

prediction, and semantic segmentation.

Inspired by the emerging advantages of transformers, we

proposed a novel transformer-based network, called

“TransCBCT”, to convert CBCT to sCT. We hypothesized that

sCT generated by the proposed TransCBCT can improve image

quality CBCT-based image-guided radiotherapy. The clinical

value was tested on segmentation and dose calculation, which

is significant to radiotherapy. To the best of our knowledge, this

is the first attempt to apply transformer in synthesizing CT from

CBCT. The experiments have demonstrated that it is superior to

the state-of-the-art method (CycleGAN) in improving CBCT.

This study may provide a more effective network to the long-

standing challenges in the clinical application of CBCT.
2 Materials and methods

2.1 Data collection

Data of 91 patients with prostate cancer were collected in

this study. The planning CT images and daily CBCT images

were acquired and registered. The planning CT images were

acquired with a CT simulator (SOMATOM Definition AS 40,

Siemens or Brilliance CT Big Bore, Philips) with the following

parameters: voltage: 120 kV; exposure: 280 (Siemens) or 240

(Philips) mAs; image resolution: 512 × 512; pixel size: 1.27 × 1.27

mm2; slice thickness: 3 mm. The CBCT images were scanned on

a Varian On-board Imager with the following parameters:

voltage: 125 kV; exposure: 1,080 mAs; rotation range: 360°;

projections: 900 frames; image resolution: 512 × 512; pixel size:

0.91 × 0.91 mm2; slice thickness: 1.91 mm. The radiotherapy was

implemented on a Varian Edge radiosurgery system.

Deformable registration was implemented using the MIM

software (v.7.0.1, MIM Software Inc., Cleveland, OH, USA) to

make the planning CT images paired to the CBCT images. The

deformed CT images were resampled to have the same spatial

resolution and pixel size as the reference CBCT images. The gray

value of pixels outside the patient body was set to zero to avoid

background influence. Institutional Review Board approval was

obtained for this retrospective analysis.
2.2 The transformer framework

Figure 1 shows the architecture of the proposed transformer

network (named as “TransCBCT”), which was a U-shape

hierarchical encoder–decoder structure with skip connection.

For the training stages, the input of TransCBCT was a 2D CBCT

image, and the output was the corresponding 2D deformed CT

image. The transformer blocks were adopted into the encoder

and decoder. The main design for the transformer part is

hierarchical structure and shifted-window based multi-head
Frontiers in Oncology 03
self-attention method (SW-MSA). This is helpful to capture

global information and save computing source. Instead of using

a pure transformer-based structure, some convolution layers

were employed to help enhance the local detail.

The input projection adopted a 3 × 3 convolution layer with

LeakyReLU to extract shallow feature maps X ∈ RC×H×W from

the CBCT image I ∈R1×H×W withH andW being the height and

width of the map. A 3 × 3 convolutional layer was used as the

output projection. Four transformer-based encoders and one

transformer-based bottleneck were used to extract the CBCT

image features. Then, we used four transformer-based decoders

with skip-connected feature maps to recover the image details.

Figure 2 shows that the hierarchical network used two

transformer blocks to capture long-range dependencies in

encoder or decoder. For the self-attention calculation, the 2D

future maps must be transformed to tokens using the

Img2Tokens layer (31) . However , we adopted the

downsampling and upsampling operators on the 2D feature

maps, which need the tokens reshaped to 2D maps by the

Tokens2Img layer. For the downsampling, we used a 4 × 4

convolution layer with a stride of 2. Meanwhile, we adopted a 2 ×

2 transpose convolution layer with a stride of 2 for the

up-sampling.

Each transformer block consists of two main parts with a

normal layer: a multi-header self-attention (MSA) layer and a
FIGURE 1

Architecture of the proposed TransCBCT. The network was
constructed using a hierarchical encoder–decoder structure
with skip connection. The encoder and decoder used a
transformer block to construct a hierarchical structure, which
was efficient to extract features and recover the image
structures and details.
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locally enhanced feedforward network (LeFF) layer, as shown in

Figure 3. Instead of using global self-attention on the whole

image, we implemented self-attention within non-overlapping

local windows to reduce the computational cost, the window-

based MSA (W-MSA). For the 2D feature maps X ∈ RC×H×W

with H and W as the height and width of the maps, we split X

into non-overlapping windows with a window size of M × M.

Then, we obtained the flattened and transposed features

Xi ∈ RM2

×C from each window i. Next, we performed self-
Frontiers in Oncology 04
attention on the flattened features in each window. When

computing self-attention, the head number is k, and the head

dimension is d = C/k. We included relative position bias B to

each head in computing similarity:

Attention Q,K ,Vð Þ = SoftMax QK=
ffiffiffi
d

p
+ B

� �
V (1)

where Q, K, and V are the query, key, and value matrices.

Moreover, Q, K, V, and B are learning parameters. The shift
FIGURE 2

Illustration of encoder, decoder, and bottleneck in the proposed TransCBCT shown in Figure 1.
FIGURE 3

Details of the transformer blocks in the encoder, decoder, and bottleneck shown in Figure 2.
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window stage was used to obtain the connection between

different windows. As proved in the Swin transformer, shift

window-based self-attention was essential to enhance modeling

power (30). In transformer block 1, a basal window partitioning

scheme was used, and self-attention was conducted in each

window. In transformer block 2, the window partitioning was

shifted, resulting in new windows. The self-attention

computation in the new windows crosses the boundaries of

the previous windows in transformer block 1.

To enhance the capability to leverage local context, we

employed the LeFF layer that contained a 2D convolutional

layer, as shown in Figure 3. A linear projection layer was applied

to each token to increase its feature dimension. Next, we

reshaped the tokens to 2D feature maps and adopted a 3 × 3

depth-wise convolutional layer to capture local information.

Then, we flatten back the features to tokens and shrink the

channels using another linear layer. The Gaussian Error Linear

Unit (GELU) was set as the activation function after each linear/

convolutional layer, which is a function that simply multiplies its

input by the cumulative density function of the normal

distribution at this input.

The loss function contained Charbonnier loss and multiscale

structural similarity (MS-SSIM). The Charbonnier loss calibrates

the CT numbers as follows:

Charbonnier loss =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjy − xjj2+e2

q
(2)

where x is the ground truth image, y is the predicted image, and e

is a constant, which is 10−3.

The MS-SSIM consists of three parts: luminance (L),

contrast (C), and structure (S) comparison measures, given as

follows:

L x, yð Þ = 2uxuy + C1

� �
ux2 + uy2 + C1

� � (3)

C x, yð Þ = 2sxsy + C2

� �
sx2 + sy2 + C2

� �   (4)

S x, yð Þ = sxy + C3

� �
sxsy + C3

� � (5)

where my and sy are the https://en.wikipedia.org/wiki/

Average and standard deviation of y, respectively; sxy is the

covariance of x and y; C1, C2, and C3 are constants, set as 1.

The MS-SSIM is defined as follows:

MS − SSIM x, yð Þ = LM x, yð Þ½ �aM
YM
j=1

Cj x, yð Þ� �bj Sj x, yð Þ� �gj (6)

where j is the image downsampling factor, and j = 1 represents

the original image.
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To quickly restore the image details and calibrate the CT

numbers, the Charbonnier loss and MS-SSIM must be added

with suitable proportions. Our final result was obtained with a

proportion of 9:1 for Charbonnier loss and MS-SSIM,

respectively, achieving the best performance in our testing.
2.3 Experiments

The paired CT/CBCT images were randomly divided into a

training set, a validation set, and a test set. The training set

consisted of 4,922 pairs of images from 61 patients, the

validation set consisted of 1,222 pairs of images from 15

patients, whereas the test set consisted of 1,206 pairs of images

from the remaining 15 patients. Lookahead with a learning rate

of 0.001 was set as the optimizer, which is more effective for

convergence based on Adam. The CycleGAN was selected for

comparation, whose architecture is the same as the study where

synthetic kV-CT is generated from megavoltage CT. We chose

the “CycleGAN-Resnet” for this work, which contained nine

residual blocks in the generator (32). The loss function of

CycleGAN contained adversarial loss, cycle-consistent loss,

and identity loss (19). In this experiment, all training and

testing were conducted on an Nvidia GeForce RTX 3090 GPU.
2.4 Evaluation

To validate the proposed TransCBCT, we compared its

performance with CycleGAN, which is the state-of-the-art

method for CBCT improvement. The evaluation covered

image quality of CBCT and its clinical application value: auto-

segmentation and dose calculation. The paired t-test was

performed if the data were normally distributed; otherwise, the

Wilcoxon signed-rank test for paired samples non-parametric

test was performed. Statistical significance was set at p < 0.05.
2.4.1 Image quality
For analyzing the image quality of sCT, the deformable

planning CT images were used as the ground truth. The

evaluation metrics included mean absolute error (MAE), root

mean square error (RMSE), and peak signal-to-noise ratio

(PSNR). Their definitions are presented as below:

MAE =  
1
No

N

i=1
ŷ i − yi
		 		 (7)

RMSE =  
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1
ŷ i − yi
		 		2

s
(8)
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PSNR = 10log
Max 2

p

1
NoN

i=1 ŷ i − yi
� �2 (9)

where N is the number of pixels involved in the calculation; i is

the ith pixel; ŷ and y are the test and reference CT number,

respectively; and Maxp is the possible maximum pixel value in

the image.

A higher value of PSNR implies good consistency between

sCT and ground truth, while values closer to zero are better for

MAE and RMSE. In addition, we select several regions of interest

(ROIs) to evaluate the accuracy of CT numbers.
2.4.2 Clinical application value
We focused on two steps of ART workflow: segmentation and

dose calculation. Automatic segmentation is often applied in

CBCT-based image-guided radiotherapy to improve treatment

efficiency. Our previously published network was adopted for

segmentation in this study (33). The model is being applied to

assist the radiation oncologists in daily clinical work, which have

helped them to save time. We chose bladder and rectum for

testing, considering their difference between different scan time

are difficult to be totally eliminated by the deformed registration.

Automatic segmentations were generated on deformed CT,

CBCT, sCT (CycleGAN), and sCT (TransCBCT), respectively.

To evaluate the accuracy, manual contours on CBCT image were

referred to as the ground truth for CBCT, sCT (CycleGAN), and

sCT (TransCBCT). The deformed CT were contoured

independently since shapes and locations of the organs are

different between deformed CT and CBCT. These contours

delineated and reviewed by experienced radiation oncologists.

The accuracy was compared with metrics of the dice similarity

coefficient (DSC) and mean distance to agreement (MDA).

Higher DSC and lower MDA values indicate better consistency

between the automatic segmentations and ground truth. It is

worth noting that the model is trained on the planning CT; thus,

theoretically, it would get best result on the deformed CT.

As for dose calculations, the Pinnacle treatment planning

system (Philips Medical Systems, Fitchburg, WI) was used to

create volumetric-modulated arc therapy (VMAT) plans for the

15 patients in the test set. These plans were imported onto

different CT images to calculate the dose distribution with

collapsed cone convolution algorithm. The dose distribution

on deformed CT was regarded as the ground truth of each plan.

Then, the dose distributions on the CBCT, sCT (CycleGAN),

and sCT (TransCBCT) images were compared to the ground

truth using global 3D gamma analysis. In the gamma analysis, a

threshold dose value was set to 10% of the prescription dose, and
Frontiers in Oncology 06
the dose difference criterion was defined as percentage of the

prescription dose.
3 Results

3.1 Image quality

The MAE (HU), RMSE (HU), and PSNR (dB) values of the

original CBCT were 66.5 ± 13.2, 90.5 ± 28.3, and 33.4 ± 2.0,

respectively. Both CycleGAN and the proposed TransCBCT

improved the image quality, with the following metric: MAE,

34.3 ± 17.3 (CycleGAN) vs. 28.8 ± 16.7 (TransCBCT), p < 0.05;

RMSE, 63.2 ± 36.5 (CycleGAN) vs. 57.0 ± 34.5 (TransCBCT),

p < 0.05; PSNR, 37.0 ± 2.8 (CycleGAN) vs. 38.0 ± 3.3

(TransCBCT), p < 0.05, respectively. Compared with CBCT,

the TransCBCT and CycleGAN reduced the MAE value

relatively by 56.7% and 48.4%, reduced the RMSE value

relatively by 33.6% and 30.1%, and improved PSNR relatively

by 13.8% and 10.7%, respectively. The results demonstrate that

the overall performance of the proposed TransCBCT was better

than the CycleGAN (p < 0.05 in MAE, RMSE, and PSNR).

Figure 4A shows an example of a representative patient,

which indicates that sCT is more suitable for contouring than

the deformed CT image. Figure 4B shows a slice of the deformed

CT, CBCT, sCT (CycleGAN), and sCT (TransCBCT), with their

differences from the ground truth. Both deep learning methods

can improve image quality, but the proposed TransCBCT

outperforms the CycleGAN, especially in reducing artifacts. As

shown by the green arrows, the “photon starving” artifacts are

lighter on sCT (TransCBCT) than on CBCT and sCT

(CycleGAN). Figure 4C shows the HU histogram plots of the

entire testing set. Compared to CycleGAN, the proposed

TransCBCT improved the HU accuracy corresponding to the

deformed CT image.

As indicated by the orange arrow, there were “calcification-

like” structures on sCT (CycleGAN), which should not have

been observed there. Although Cycle-GANs can be trained on

unpaired images due to the cycle-consistent loss, structure

preservation remains an issue as input images undergo

ambiguous geometric transformations between domains

because the models are under-constrained. Meanwhile,

TransCBCT did not generate such abnormal structures on

sCT images. Besides the “photon starving” artifacts,

TransCBCT achieved good performance in reducing the beam

hardening effect as marked by the yellow lines. The beam

hardening artifacts would affect the accuracy of CT numbers.

The CycleGAN only transferred the image style of the deformed

CT to CBCT and preserved all structures of CBCT, including the
frontiersin.org
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artifact part. Meanwhile, TransCBCT can effectively reduce

these artifacts. The results of the ROI test are shown in the

Additional file, which shows that the TransCBCT can improve

the accuracy of CT numbers and reduce the noise.
3.2 Clinical application value

We calculated the DSC and MDA between the predicted

contour and ground truth. It is worth noting that the deformed
Frontiers in Oncology 07
CT and CBCT were contoured independently. Due to different

scan times, the bladder and rectum on the images get different

locals and sizes. For CBCT, sCT(CycleGAN), sCT(TransCBCT),

and deformed CT, the mean of the DSC was 0.88, 0.90, 0.92, and

0.93 for the bladder and 0.82, 0.83, 0.84, and 0.85 for the rectum,

respectively, and the mean of the MAD was 2.36, 1.92, 1.48, and

1.46 mm for the bladder and 1.75, 1.80, 1.52, and 1.37 mm for

the rectum, respectively. As shown in Figures 5A–D, the result of

TransCBCT was better than CycleGAN, and closer to the

deformed CT (p > 0.05). The same auto-segmentation model
A

B

C

FIGURE 4

(A) Axial, sagittal, and coronal views of one patient. The orange arrows indicate the abnormal structure on sCT images. Yellow lines indicate the
obvious beam hardening artifacts. Anatomical differences can be obtained, especially on the bladder sizes and locations, because of the time
intervals between CT and CBCT scanning. The TransCBCT and CycleGAN maintained the same structure as CBCT with a clear organ edge. (B)
Example of an axial slice of the deformed CT, CBCT, and sCT with the HU difference compared to the deformed CT image. The green arrows
indicate the “photon starving” artifacts. (C) The HU histogram plot calculated on the entire test set.
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was applied to these images, so the above result demonstrated

that the image features of sCT(TransCBCT) and the deformed

CT were more similar. In other words, TransCBCT improved

CBCT to the level of deformed CT.

Figure 5E shows the result of gamma passing rate for 15

patients. The gamma passing rate of TransCBCT (1%/1 mm
Frontiers in Oncology 08
criterion) was 97.5% ± 1.1%. Compared to the result of 96.9% ±

1.8% for CycleGAN, there was a slight improvement, and the p-

value was below 0.05. All the results of TransCBCT were above

95%. Even though the CycleGAN was in good performance, the

TransCBCT showed more accuracy and robustness, which

import to the ART. It is the result of less artifacts and more
frontiersin.org
A B

D

E

C

FIGURE 5

Statistical analysis of clinical value based on ART need. (A–E) Result of auto-segmentation. (A) DSC of bladder. The p-values were <0.05 (CBCT vs.
deformed CT), <0.05 [sCT(CycleGAN) vs. deformed CT], and 0.196 [sCT(TransCBCT) vs. deformed CT]. (B) DSC of rectum. The p-values were
<0.05 (CBCT vs. deformed CT), <0.05 [sCT(CycleGAN) vs. deformed CT], and 0.144 [sCT(TransCBCT) vs. deformed CT]. (C) MAD of bladder. The
p-values were <0.05 (CBCT vs. deformed CT), <0.05 [sCT(CycleGAN) vs. deformed CT], and 0.450 [sCT(TransCBCT) vs. deformed CT]. (D) MAD of
rectum. The p-values were <0.05 (CBCT vs. deformed CT), <0.05 [sCT(CycleGAN) vs. deformed CT], and 0.058 [sCT(TransCBCT) vs. deformed
CT]. (E) Result of gamma passing rate for 15 patients. The results of TransCBCT were more robust compared to the CycleGAN. Some of
CycleGAN results were under 93%.
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accuracy CT numbers on sCT(TransCBCT).
4 Discussion

The experimental results demonstrated that the proposed

TransCBCT can effectively improve the quality of CBCT images.

It can also preserve the structure of CBCT and calibrate the HUs

effectively. The proposed TransCBCT is more suitable for ART

due to its good performance in reducing the noise and artifacts

than conventional CycleGAN. To the best of our knowledge,

applying a transformer-based network for generating sCT has

not been investigated yet.

The primary motivation of using a transformer-based network

is due to its strength in capturing the long-distance dependence to

the global. To be more specific, after calculating self-attention, one

token is strongly related to other tokens. In comparison, the

convolution-based network normally adopts a 3 × 3 or 7 × 7

convolutional kernel to capture the local context, and one pixel in

the feature maps corresponds to a 3 × 3 or 7 × 7 field. To obtain

long-distance relationship, the convolution-based network needs to

be deeper, followed by other problems, such as diminishing

gradient. There are also many advantages of convolution, such as

low computational cost and translation invariance. The high

computational cost also limits the application of the transformers

on medical images. The proposed TransCBCT combined the

advantages of convolution and transformer. The non-overlapping

window design can reduce the model parameters to make it more

effective. The inductive bias, which kept certain translation

invariance, was still preferable for modeling. The network was

trained on 6,144 paired images without pre-training. For one

patient, the sCT images can be generated within 15 s. The

computational cost was acceptable. To retain the advantage of

capturing global information, hierarchical structure and SW-MSA

were implemented. We also adopted several convolutional layers to

enhance the ability to leverage the local context. In total, the

network combines the power of the transformer in capturing the

long-range dependencies and the advantage of convolution in

leveraging the local context. The hierarchical encoder–decoder
Frontiers in Oncology 09
structure makes the network efficient to extract features and

recover the image structures and details. The non-overlapping

window-based and shift window-based strategies are essential in

reducing the computational cost while maintaining efficiency.

The encoder–decoder structure with skip connection has been

widely used in conventional pure convolution-based networks. U-

net (34) is a typical and successful image processing network.Many

studies (14–16) employed it to generate sCT fromCBCT.However,

when there are substantial structure changes between CBCT and

deformedCT, the convolution-basedUnet can easily bemisled to a

wrong optimized direction. Figure 6 shows that pure convolution-

basedUnet cannot preserve the structure of CBCT.Meanwhile, the

proposed TransCBCT also constructed the U-shape network;

importing the transformer block helped to maintain the same

structure as CBCT. This is important for ART since we want to

obtain accurate online anatomical information from the images.

Therefore, CycleGAN is themost popular network to generate sCT

for ART. The result of CycleGAN shows that it can preserve the

structure of CBCT and keep artifacts. The proposed TransCBCT

can effectively reduce artifacts benefitted by leveraging the global

information. TransCBCT shows more robustness and accuracy in

calibrating the CT numbers.

The segmentation task is an important part of ART

workflow, which affects the efficiency and accuracy. At

present, many studies are focused on this task and contribute

many efficient methods. For now, Yang Lei et al. (35) presented

the best pelvic multi-organ segmentation result on CBCT

images. They employed the CycleGAN to generate the MRI

and then auto-segmentation is implemented on the synthetic

MRI. Our center also employs the deep learning-based method

to assist daily contouring work. The sCT (TransCBCT) showed

more accuracy than sCT (CycleGAN) when using our trained

auto-segment model before. Since the deformed CT is not well-

matched to the CBCT, it is better to use the contour of CBCT as

the ground truth of sCT. As shown in Figure 4, the shape of the

bladder is different between the CBCT and the deformed CT.

Thus, we contoured the organs on the CBCT and the deformed

CT independently as the ground truth. The result of TransCBCT

was close to the deformed CT, which means the features of sCT
FIGURE 6

Result of a pure convolution-based Unet that made the shape of the bladder vary from CBCT. TransCBCT and Unet employed the same U-
shape structure and loss function. However, with transformer block embedded, TransCBCT showed the ability to keep the raw CBCT structure.
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(TransCBCT)were closer to thedeformedCT in image feature. The

promising result might get a more long-term meaning on the

radiomics reproducibility studies (36), which is helpful for ART

clinical decision support. It is worth noting that the auto-segment

model is a relatively objective evaluation standard, rather than a

specific-constructed model for ART. However, since the sCT

(TransCBCT) is close to the deformed CT, the problems on the

segmentation part of theARTworkflowwould be easier to solve. In

the future, a special deep learning network can be trained for ART

workflow to improve accuracy.Our groupperforms relative studies

onmagnetic resonance imaging-guidedadaptive radiotherapy (37).

As for dose calculation, even though the deformed CT cannot

be regarded as the “Gold Standard”, there was no better reference

for this studyatpresent.Other studies (21, 23, 31, 32) also employed

the deformed CT as reference for dosimetry evaluation for sCT

generation from CBCT or MR. Uh et al. (23) used a CycleGAN,

resulting in gamma passing rates of 98.5 ± 1.9% (2%/2 mm

criterion) for proton dose calculation. Kurz et al. (38) obtained a

result of 96% (2%/2 mm criterion) for the proton dose calculation

and89%(1%/1mmcriterion) forVMAT.Weused a relativelywell-

performing CycleGAN and obtained a result of 96.9% ± 1.8% (1%/

1 mm criterion) for photon VMAT, and the TransCBCT product

showed superior results.

Based on our promising findings, the proposed framework

has the potential to be applied in other image generation tasks,

such as CBCT to relative stopping power maps and MVCT to

sCT. The main contribution of CycleGAN is the design of cycle-

consistent loss, which is important to keep the raw image

structure. Our proposed network can also take advantage of

the cycle-consistent loss by designing the cycle structure, which

means that at least two transformer-based networks need to be

employed as generators for the GAN model. The main challenge

is how to deal with the high computing cost and how to balance

the generator and discriminator.
5 Conclusion

In this study, we successfully developed a more effective CT

synthesizer using transformers for CBCT-guided adaptive

radiotherapy. The strength of the proposed method was also

verified relative to the conventional pure convolution-based

network. The sCT generated by TransCBCT is helpful for

contouring and dose calculation, which can be used in ART to

improve radiotherapy accuracy.
Data availability statement

The datasets presented in this article are not readily available

because of data security requirement of our hospital. Requests to

access the datasets should be directed to KM, menkuo126@126.com.
Frontiers in Oncology 10
Ethics statement

The studies involving human participants were reviewed and

approved by the Independent Ethics Committee of Cancer

Hospital, Chinese Academy of Medical Sciences. Written

informed consent for participation was not required for this

study in accordance with the national legislation and the

institutional requirements.

Author contributions

All authors discussed and conceived the study design. XC

wrote the programs and drafted the manuscript. YXL, BY, JZ,

SY, and XX helped to collect the data and performed data

analysis. YXL performed the clinical analysis. KM and JD

guided the study and participated in discussions and

preparation of the manuscript. All authors read, discussed, and

approved the final manuscript.

Funding

This work was supported by the National Natural Science

Foundation of China (12175312), Beijing Nova Program

(Z201100006820058), and the CAMS Innovation Fund for

Medical Sciences (2020-I2M-C&T-B-073, 2021-I2M-C&T-

A-016).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary Material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.988800/full#supplementary-material
frontiersin.org

mailto:menkuo126@126.com
https://www.frontiersin.org/articles/10.3389/fonc.2022.988800/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.988800/full#supplementary-material
https://doi.org/10.3389/fonc.2022.988800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.988800
References
1. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys Med
Biol (1997) 42:123–32. doi: 10.1088/0031-9155/42/1/008

2. Lim-Reinders S, Keller BM, Al-Ward S, Sahgal A, Kim A. Online adaptive
radiation therapy. Int J Radiat Oncol Biol Phys (2017) 99:994–1003. doi: 10.1016/
j.ijrobp.2017.04.023

3. Albertini F, Matter M, Nenoff L, Zhang Y, Lomax A. Online daily adaptive
proton therapy. Br J Radiol (2019) 93:20190594. doi: 10.1259/bjr.20190594

4. Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA. The influence
of antiscatter grids on soft-tissue detectability in cone-beam computed tomography
with flat-panel detectors. Med Phys (2004) 31:3506–20. doi: 10.1118/1.1819789

5. Zhu L, Xie Y, Wang J, Xing L. Scatter correction for cone-beam CT in
radiation therapy. Med Phys (2009) 36:2258–68. doi: 10.1118/1.3130047

6. Jia X, Yan H, Cervino L, Folkerts M, Jiang SB. A GPU tool for efficient,
accurate, and realistic simulation of cone beam CT projections. Med Phys (2012)
39:7368–78. doi: 10.1118/1.4766436

7. Zbijewski W, Beekman FJ. Efficient Monte Carlo based scatter artifact
reduction in cone-beam micro-CT. IEEE Trans Med Imag (2006) 25:817–27. doi:
10.1109/TMI.2006.872328

8. Jia X, Dong B, Lou YF, Jiang SB. GPU-Based iterative cone-beam CT
reconstruction using tight frame regularization. Phys Med Biol (2011) 56:3787–
807. doi: 10.1088/0031-9155/56/13/004

9. Wang J, Li TF, Xing L. Iterative image reconstruction for CBCT using edge-
preserving prior. Med Phys (2009) 36:252–60. doi: 10.1118/1.3036112

10. Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter
correction for cone beam computed tomography using a residual convolutional
neural network. Med Phys (2019) 46:3142–55. doi: 10.1002/mp.13583

11. Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, et al. Scatter correction of
cone-beam CT using a deep residual convolution neural network (DRCNN). Phys
Med Biol (2019) 64:145003. doi: 10.1088/1361-6560/ab23a6

12. Rusanov B, Ebert MA, Mukwada G, Hassan GM, Sabet M. A convolutional
neural network for estimating cone-beam CT intensity deviations from virtual CT
projections. Phys Med Biol (2021) 22;66(21). doi: 10.1088/1361-6560/ac27b6

13. Lalonde A, Winey B, Verburg J, Paganetti H, Sharp GC. Evaluation of CBCT
scatter correction using deep convolutional neural networks for head and neck
adaptive proton therapy. Phys Med Biol (2020) 65:245022. doi: 10.1088/1361-6560/
ab9fcb

14. Kida S, Nakamoto T, Nakano M, Nawa K, Haga A, Kotoku J, et al. Cone
beam computed tomography image quality improvement using a deep
convolutional neural network. Cureus (2018) 10(4):e2548. doi: 10.7759/
cureus.2548

15. Yuan NM, Dyer B, Rao S, Chen Q, Benedict S, Shang L, Kang Y, Qi J, et al.
Convolutional neural network enhancement of fast-scan low-dose cone-beam CT
images for head and neck radiotherapy. Phys Med Biol (2020) 65(3)035003. doi:
10.1088/1361-6560/ab6240

16. Li Y, Zhu J, Liu Z, Teng J, Xie Q, Zhang L, et al. A preliminary study of using
a deep convolution neural network to generate synthesized CT images based on
CBCT for adaptive radiotherapy of nasopharyngeal carcinoma. Phys Med Biol
(2019) 64(14):145010. doi: 10.1088/1361-6560/ab2770

17. Zhang Y, Yue N, Su M-Y, Liu B, Ding Y, Zhou Y, et al. Improving CBCT
quality to CT level using deep learning with generative adversarial network. Med
Phys (2021) 48:2816–26. doi: 10.1002/mp.14624

18. Liu Y, Chen X, Zhu J, Yang B, Wei R, Xiong R, et al. A two-step method to
improve image quality of CBCT with phantom-based supervised and patient-based
unsupervised learning strategies. Phys Med Biol (2022) 67:084001. doi: 10.1088/
1361-6560/ac6289

19. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation
using cycle-consistent adversarial networks, in: Proceedings of the IEEE
international conference on computer vision (ICCV) (2017), New York City: (The
Institute of Electrical and Electronics Engineers). pp. 2223–32.

20. Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, et al. Generating
synthesized computed tomography (CT) from cone-beam computed tomography
Frontiers in Oncology 11
(CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol (2019)
64:125002. doi: 10.1088/1361-6560/ab22f9

21. Liu YZ, Lei Y, Wang TH, Fu YB, Tang XY, Curran WJ, et al. CBCT-based
synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive
radiotherapy. Med Phys (2020) 47:2472–83. doi: 10.1002/mp.14121

22. Kida S, Kaji S, Nawa K, Imae T, Nakamoto T, Ozaki S, et al. Visual
enhancement of cone-beam CT by use of CycleGAN. Med Phys (2020) 47:998–
1010. doi: 10.1002/mp.13963

23. Uh J, Wang C, Acharya S, Krasin MJ, Hua C-h. Training a deep neural
network coping with diversities in abdominal and pelvic images of children and
young adults for CBCT-based adaptive proton therapy. Radiother Oncol (2021)
160:250–8. doi: 10.1016/j.radonc.2021.05.006

24. Gillioz A, Casas J, Mugellini E, Abou Khaled O. Overview of the
transformer-based models for NLP tasks, in: 2020 15th Conference on Computer
Science and Information Systems (FedCSIS): IEEE, (New York City: The Institute of
Electrical and Electronics Engineers) (2020). pp. 179–83.

25. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. In: Proceedings of the 31st international conference on
neural information processing systems. Long Beach, California, USA: Curran
Associates Inc (2017). p. 6000–10.

26. Wu J, Hu R, Xiao Z, Chen J, Liu J. Vision transformer-based recognition of
diabetic retinopathy grade. Med Phys (2021) 48(12):7850–63. doi: 10.1002/
mp.15312

27. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner
T, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv (2020). arXiv:201011929.

28. Yang T, Bai X, Cui X, Gong Y, Li L. TransDIR: Deformable imaging
registration network based on transformer to improve the feature extraction ability.
Med Phys (2022) 49:952–65. doi: 10.1002/mp.15420

29. Zhang X, Han Z, Shangguan H, Han X, Cui X, Wang A. Artifact and detail
attention generative adversarial networks for low-dose CT denoising. IEEE Trans
Med Imag (2021) 40:3901–18. doi: 10.1109/TMI.2021.3101616

30. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer:
Hierarchical vision transformer using shifted windows. arXiv (2021).
arXiv:210314030, 10012–10022. doi: 10.1109/ICCV48922.2021.00986

31. Wang Z, Cun X, Bao J, Liu J. Uformer: A general U-shaped transformer for
image restoration. arXiv (2021). arXiv:210603106.

32. Chen X, Yang B, Li J, Zhu J, Ma X, Chen D, et al. A deep-learning method
for generating synthetic kV-CT and improving tumor segmentation for helical
tomotherapy of nasopharyngeal carcinoma. Phys Med Biol (2021) 66:224001. doi:
10.1088/1361-6560/ac3345

33. Men K, Chen X, Yang B, Zhu J, Yi J, Wang S, et al. Automatic segmentation
of three clinical target volumes in radiotherapy using lifelong learning. Radiother
Oncol (2021) 157:1–7. doi: 10.1016/j.radonc.2020.12.034

34. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for
biomedical image segmentation. Cham: Springer International Publishing (2015)
p. 234–41.

35. Lei Y, Wang T, Tian S, Dong X, Jani AB, Schuster D, et al. Male Pelvic
multi-organ segmentation aided by CBCT-based synthetic MRI. Phys Med Biol
(2020) 65(3):035013. doi: 10.1088/1361-6560/ab63bb

36. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of
radiomic features: a systematic review. Int J Radiat Oncol Biol Phys (2018)
102:1143–58. doi: 10.1016/j.ijrobp.2018.05.053

37. Ma X, Chen X, Wang Y, Qin S, Yan X, Cao Y, et al. Personalized modeling to
improve pseudo–computed tomography images for magnetic resonance imaging–
guided adaptive radiation therapy. Int J Radiat Oncology Biology Phys (2022) 113
(4):7850–7863. doi: 10.1016/j.ijrobp.2022.03.032

38. Kurz C, Maspero M, Savenije MHF, Landry G, Kamp F, Pinto M, et al.
CBCT correction using a cycle-consistent generative adversarial network and
unpaired training to enable photon and proton dose calculation. Phys Med Biol
(2019) 64(22):225004. doi: 10.1088/1361-6560/ab4d8c
frontiersin.org

https://doi.org/10.1088/0031-9155/42/1/008
https://doi.org/10.1016/j.ijrobp.2017.04.023
https://doi.org/10.1016/j.ijrobp.2017.04.023
https://doi.org/10.1259/bjr.20190594
https://doi.org/10.1118/1.1819789
https://doi.org/10.1118/1.3130047
https://doi.org/10.1118/1.4766436
https://doi.org/10.1109/TMI.2006.872328
https://doi.org/10.1088/0031-9155/56/13/004
https://doi.org/10.1118/1.3036112
https://doi.org/10.1002/mp.13583
https://doi.org/10.1088/1361-6560/ab23a6
https://doi.org/10.1088/1361-6560/ac27b6
https://doi.org/10.1088/1361-6560/ab9fcb
https://doi.org/10.1088/1361-6560/ab9fcb
https://doi.org/10.7759/cureus.2548
https://doi.org/10.7759/cureus.2548
https://doi.org/10.1088/1361-6560/ab6240
https://doi.org/10.1088/1361-6560/ab2770
https://doi.org/10.1002/mp.14624
https://doi.org/10.1088/1361-6560/ac6289
https://doi.org/10.1088/1361-6560/ac6289
https://doi.org/10.1088/1361-6560/ab22f9
https://doi.org/10.1002/mp.14121
https://doi.org/10.1002/mp.13963
https://doi.org/10.1016/j.radonc.2021.05.006
https://doi.org/10.1002/mp.15312
https://doi.org/10.1002/mp.15312
https://doi.org/10.1002/mp.15420
https://doi.org/10.1109/TMI.2021.3101616
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1088/1361-6560/ac3345
https://doi.org/10.1016/j.radonc.2020.12.034
https://doi.org/10.1088/1361-6560/ab63bb
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1016/j.ijrobp.2022.03.032
https://doi.org/10.1088/1361-6560/ab4d8c
https://doi.org/10.3389/fonc.2022.988800
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 The transformer framework
	2.3 Experiments
	2.4 Evaluation
	2.4.1 Image quality
	2.4.2 Clinical application value


	3 Results
	3.1 Image quality
	3.2 Clinical application value

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


