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Abstract

Automated image processing approaches are indispensable for many biomedical experi-

ments and help to cope with the increasing amount of microscopy image data in a fast and

reproducible way. Especially state-of-the-art deep learning-based approaches most often

require large amounts of annotated training data to produce accurate and generalist out-

puts, but they are often compromised by the general lack of those annotated data sets. In

this work, we propose how conditional generative adversarial networks can be utilized to

generate realistic image data for 3D fluorescence microscopy from annotation masks of 3D

cellular structures. In combination with mask simulation approaches, we demonstrate the

generation of fully-annotated 3D microscopy data sets that we make publicly available for

training or benchmarking. An additional positional conditioning of the cellular structures

enables the reconstruction of position-dependent intensity characteristics and allows to gen-

erate image data of different quality levels. A patch-wise working principle and a subsequent

full-size reassemble strategy is used to generate image data of arbitrary size and different

organisms. We present this as a proof-of-concept for the automated generation of fully-

annotated training data sets requiring only a minimum of manual interaction to alleviate the

need of manual annotations.

1 Introduction

Current developments of fluorescence microscopy imaging techniques allow to acquire vast

amounts of image data, capturing different cellular structures for various kinds of biological

experiments in 3D and over time [1, 2]. The growing amount of data that needs to be analyzed,

demands an automation of image processing tasks [3]. To this end, automated approaches

became widely used and especially machine learning and deep learning-based approaches offer

powerful tools for detection, segmentation, and tracking of different cellular structures [4, 5].

However, learning-based approaches need large annotated data sets to become robust and gen-

eralist. On the other hand, the creation of manually annotated data sets is very time-consuming

and tedious, causing those data sets to be rarely available. Although there are many classical and

machine learning-assisted annotation tools accessible [6–9], which reduce the annotation time

for biological experts, especially the dense annotation of 3D data remains difficult. Current
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approaches propose to reduce annotation efforts and increase generalizability of machine learn-

ing-based approaches by collecting a manifold of annotated image data from slightly different

domains, creating a highly diverse training data set [10]. This supports the claim that a large

amount of annotated training data is a key factor in creating robust approaches.

To reduce the need of manual annotations, simulation tools have been proposed, which

rely on known imaging and microscopy parameters [11–13]. Those techniques can be used to

automatically create annotated data samples, but they rely on precise prior knowledge about

each specific experimental setup. With the recent success of generative adversarial networks

(GANs) [14] and their progressive developments, simulation approaches became more realis-

tic, less parameter dependent and, thus, more applicable. Techniques have been proposed to

directly synthesize 2D cellular structures [15–17] or simulate 3D cellular structures [18], which

in turn can be used to synthesize realistic 3D images with existing classical approaches [19] or

GAN-based approaches [20].

In this paper we demonstrate how a conditional generative adversarial network [21] can be

used to transform large realistic 3D annotation masks of multi-cellular structures into realistic

3D microscopy image data in a patch-based manner, by employing a patch merging strategy to

obtain seamless results. Furthermore, the proposed conditioning leverages the synthesis of dif-

ferent image quality levels to further increase diversity of simulated image data. We introduce

different approaches for the simulation of these 3D annotation masks, which can be chosen

with respect to the complexity of cellular structures and the availability of manually obtained

annotation masks. As a contribution to the community, two fully-annotated 3D synthetic data

sets are made publicly available to potentially serve as training or benchmark data sets for 3D

detection and segmentation approaches for fluorescently labeled nuclei and membranes.

2 Generation of cellular 3D structures

The generation of realistic annotation masks of cellular structures is crucial for the synthesis of

realistic image data, since unrealistic and overly artificial structures can impede structural cor-

relation between annotation masks and synthetic images, as demonstrated in [15]. If features

of cellular structures in the annotation masksm 2M deviate too much from those in the

image data ireal 2 I real, the generator network G can no longer find a suitable mapping and

starts to deform annotated structures to resemble those in the image domain, which would

cause the annotated structures to no longer match the structures in the synthetic image data.

Therefore, it is crucial to use simulation techniques that reproduce structures as realistically as

possible.

Realistic annotation masks can be obtained in several ways, depending on the availability of

suitable segmentation approaches, time for manual expert annotations and complexity of cel-

lular structures. Besides manual annotation or automated segmentation, we experimented

with a few modelling approaches that can be used for the simulation of both organism shape

and cell structures. The discussed simulation is divided into three parts (Fig 1): first, the gener-

ation of the foreground region outlining an organism shape, second, determining positions of

cellular structures within the foreground region and finally, modelling of cellular structures at

each given position. Ultimately, cells are either represented as single nuclei or as cellular mem-

branes, i.e., as a structural mesh within the foreground region.

2.1 Geometrical modelling

Modelling cellular structures with geometrical functions is the least complex simulation tech-

nique discussed in this paper and, consequently, offers a limited set of shapes that can be repre-

sented. Nevertheless, it offers a straightforward possibility to model cellular structures.
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For cell positioning we follow a layer-wise assembly, starting to add layers of cells at the

outer boundary of the organism and we progressively add additional layers inwards, if reason-

able. The additional layer locations are determined by shrinking the organism shape and ran-

domly placing new cells along the determined boundary, with random small offsets to add

further realism. Cell distribution and density in each layer and layer thickness are adjusted

using prior knowledge about cell sizes to avoid unnatural shape variations in the 3D space. For

the simulation of cellular membranes, each foreground voxel xfg is assigned to the closest cell

position xcell, creating a Voronoi-like tessellation of the foreground region. Since the resulting

segments show unnaturally straight edges, an additional weighting is applied to the distance

calculation, which is adapted from [22] and bends the planes between different segments,

resulting in the distance metric

distðxfg; xcell;jÞ ¼
kxfg � xcell;jk2

gj
ð1Þ

with weight γj being fixed for cell position xcell,j. The final tessellation is used to either create

annotation masks for cell membranes by considering planes between segments or instance seg-

mentations of whole cells by considering entire segments.

Fig 1. Qualitative 2D illustration of the 3D mask simulation pipeline. The simulation process generates an annotation mask in three refinement

steps, starting with organism shape generation, adding cell positions within the foreground region and final nuclei or membranes structure generation

at each respective positions.

https://doi.org/10.1371/journal.pone.0260509.g001
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2.2 Statistical shape models

If a set of annotations is already available, characteristic shape parameters can be extracted and

used to generate additional data. Statistical shape models offer a way to determine distinctive

shape modes and encode them in an accessible way [23] to generate shapes by changing only a

desirable small number of parameters. As a prerequisite, each voxelized shape needs to be sam-

pled at predefined angular rays starting at the organism centroid or cell centroid and it needs

to be converted into a list of 3D boundary coordinates p = (x1, y1, z1, . . ., xn, yn, zn)T. From

coordinate lists of all shapes, the mean shape �p ¼ 1

k

Pk
j¼1

pj and the covariance matrix Sp ¼

1

k� 1

Pk
j¼1
ðpj � �pÞðpj � �pÞT are computed. To identify distinctive modes, an eigenvalue decom-

position of the covariance matrix Sp is computed, resulting in eigenvectors ϕ and correspond-

ing eigenvalues λ, while modes are ordered so that λ1� λ2� . . .� λN. Accordingly, the first

eigenvectors encode most of the shape variance and account for the most distinctive modes.

New shapes pnew are generated by altering the mean shape by a linear combination of the first

nmodes, while n� N can be chosen as a required level of detail:

pnew ¼ �p þ
Xn

j¼1

bj�j: ð2Þ

Influence of each mode is defined by a weight vector b, which is randomly sampled from but

restricted to the limit bj 2 [−3λj, 3λj] to only allow the generation of shapes that lie within the

determined variance range. The obtained list of boundary points is transformed to a voxelized

mask representation using a Delaunay triangulation. Possible shape variations learned from a

public data set [24] are shown in Fig 2.

2.3 Spherical harmonics

Spherical harmonics (SH) offer another way of encoding shapes in a compact format [25],

facilitating the generation of new shapes by changing a small number of parameters. This con-

cept is related to the Fourier transform, but is inherently suitable for spherical shapes. The gen-

eration of shapes with spherical harmonics is accomplished by defining each shape as a

composition of a predefined set of R weighted orthonormal basis functions, which can be iden-

tified by an order l describing the level of high frequency shape components and a degreem
describing a particular variant of an order. The resulting set of functions is organized in a pyra-

mid scheme with l� 0 and −l�m� l and each spherical harmonics basis function can be

computed by

Yj ¼ Yml ðy; �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p
�
ðl � mÞ!
ðl þmÞ!

s

� Pml ðcos yÞe
i�m�� ð3Þ

with Pml ðcos yÞ describing the Legendre polynomials of degreem and order l and parameters θ
and ϕ denoting the spherical angular sampling coordinates. An individual 3D shape SSH is

defined as a weighted linear combination of the spherical harmonic basis functions

SSH ¼
XR

j¼1

cj � Yj; ð4Þ

with weight cj specifying the influence of the corresponding spherical harmonic basis functions

Yj. Since the first basis function (l =m = 0) already represents a perfect sphere scalable by a sin-

gle parameter c1, spherical harmonics are well-suited to describe and model cellular structures

[26–28]. Note that SH representations are limited to star-convex shapes, which we, however,
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found sufficient for simulation of nuclei and various early stage embryo shapes. Since the set

of basis functions is already formulated, the generation of shapes reduces to choosing the num-

ber R of desired spherical harmonics and determining corresponding weights c1,. . .,R. R is cho-

sen by specifying the desired level of detail, i.e., the order of high frequency shape components

l, since R = (l + 1)2 when using all available degreesm. Weights c1,. . .,R are designed to have an

exponentially decreasing magnitude to approximate smooth shapes, while further diversity is

added by initializing each weight by a random value drawn from a standard normal distribu-

tion N ð0; 1Þ. This results in

cml ¼ r � wðl;mÞ � e
� gm; c0

0
¼ r ð5Þ

with r defining the approximate radius of the spherical shape, w(l,m) constituting the random

initialization assigned to the coefficient for degreem and order l and γ controlling the smooth-

ness of the resulting shape. Examples for different γ are shown in Fig 3.

3 Synthesis of 3D microscopy data

The proposed synthesis pipeline is designed to transform binary annotations of cellular struc-

tures in 3D image data into realistic microscopy image data. Generating realistic image data

from annotation masks offers several advantages, since it allows to control the outline and

geometry of structures that should be generated and it allows to generate image data sets that

inherently include corresponding annotations, independent from image quality or

degradation.

For the synthesis of realistic 3D microscopy image data, a generative adversarial network

(GAN) [21] is used, which allows for an unsupervised translation between mask annotations

M and microscopy image data I . This concept includes two individual networks (Fig 4): a

generative network G, which is trained to learn a mapping G(m) from a maskm 2M into an

Fig 2. Overview of possible spherical shapes initialized with statistical shape models. Different shape variations are

visualized, with statistics learned from a public data set [24].

https://doi.org/10.1371/journal.pone.0260509.g002

Fig 3. Overview of possible spherical shapes initialized with spherical harmonics. Shapes are shown for different

values of γ and colors indicate a positive (red) or negative (blue) deviation from a perfect sphere.

https://doi.org/10.1371/journal.pone.0260509.g003
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image ifake 2 I fake, and a discriminator network D, which is trained to distinguish between real

ireal 2 I real and generated ifake 2 I fake image data. Consequently, the training procedure is an

adversarial assembly, where the generator wants to outperform the discriminator by generat-

ing realistic images, while the discriminator aims to be as good as possible in distinguishing

real from fake images. In principle, the generator is trained to simulate the image formation

process of a microscope without the necessity of prior knowledge about the acquisition process

parameters.

For the generator network a 3D U-Net [29] is used and the pixel-shuffle technique [30] is

incorporated for higher quality upsampling in the decoding path. The generator training

objective consists of two separate losses, including the adversarial loss Ladv as formulated in

[31] to assess the generated image quality and an identity loss Lidentity ¼ kireal � GðirealÞk1 to

support the generation of realistic intensity characteristics and impose a structural correlation

between the input and output. A Patch-GAN is used as discriminator network and trained

with adversarial losses for real and fake images, as proposed in [31].

Due to large data sizes of 3D microscopy image data and memory limitations of current

graphics processing units (GPUs), processing 3D images as a whole is not feasible, demanding

a patch-based processing. Processing patches, however, causes two sources of errors, including

tiling artifacts when reassembling the full-size image and loss of global positional information

for structures within each patch, which is very crucial in generating realistic image degradation

and positional intensity characteristics. Firstly, tiling artifacts are avoided by overlapping

neighbouring patches by a fixed margin doverlap and averaging the overlap regions based on a

concentric weight map, decreasing the influence of voxels based on their distance to the patch

center, as done in [26]. Additionally, to avoid potential patch border artifacts, output patches

are cropped by a fixed margin dcrop before full-size assembly. Secondly, global positional

Fig 4. Schematic of the conditional generative adversarial network. The generator transforms annotation masksm into realistic images ifake 2 I fake,

which are assessed by the discriminator using realistic image data ireal 2 I real . The positional conditioning is used to generate and assess positional

image characteristics. Note that, for simplicity, visualizations are provided in 2D, despite processing being done in 3D.

https://doi.org/10.1371/journal.pone.0260509.g004
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information of patches are maintained by providing an additional conditioning as input,

encoding the position of each voxel in relation to the specimen’s boundary, which is motivated

by the occurrence of depth-dependent intensity decay in microscopy imaging. We choose a

hyperbolic tangent function to further indicate if a voxel lies within a specimen (foreground)

or in a background region to enable the generation of more detailed noise features. To con-

sider different influences of distances within the foreground and background regions, respec-

tively, the positional function is adjustable for both regions individually, leading to the

following formulation:

fposðxÞ ¼

( tanhð distðxÞ=aÞ if x in foreground

tanhð� distðxÞ=bÞ if x in background
ð6Þ

where x is the 3D position vector of a voxel and dist(x) measures the smallest distance to the

specimen’s boundary. Scaling parameters α and β are used to adjust the saturation of the

hyperbolic tangent to realistically simulate the limited penetration depth of the imaging sys-

tem. Applying this function to each voxel, an encoded distance map is created, which matches

the spatial dimension of the corresponding annotation mask and is used as conditional input

for both, the generator and discriminator network (Fig 4).

During training with small data sets, we observed the generator to preferably generate spe-

cific intensity and noise patterns, resulting in a slight overfitting to the training samples. In

order to counteract this problem, augmentation strategies could be employed to further

increase diversity of the image training data, which, however, needs to be configured carefully

to create as much diversity as possible, but to include as little alterations as possible to still

enable a smooth and realistic generator training. We follow the concept proposed in [32], stat-

ing that overfitting to small data sets can be avoided by utilizing an adaptive discriminator aug-

mentation (ADA), i.e., augmentation of real I real and generated I fake images before they are

being assessed by the discriminator. This helps to include as much diversity as possible by

simultaneously controlling the impact of those alterations. To establish this control, a set of

augmentations is predefined and each individual transformation is sequentially applied to an

image with probability paug. To automatically identify the optimal value for paug, an overfitting

measure is determined, which calculates the fraction of real image samples I real that are cor-

rectly classified by the discriminator, leading to the following heuristic:

rADA ¼ E½signðDðI realÞÞ� ð7Þ

As proposed in [32], a target value of rADA = 0.6 is chosen, indicating that the augmentation

probability paug should increase for larger values and decrease for smaller values by a step size

of δaug every eaug epochs. To enhance robustness of the training procedure, we use rectified

Adam [33] as an optimizer for all networks.

3.1 Putting it all together

Our data generation pipeline consists of two major parts (Fig 5). First, the simulation or acqui-

sition of annotations of cellular structures, which either represent nuclei or cellular mem-

branes. The generation of annotations has different stages, starting with organism shape

generation, cell positioning and final generation of cellular structures, while each simulation

stage can be implemented by manual interaction or automated detection and segmentation

approaches. Second, the final annotations are used to generate image data with the proposed

GAN training and they are further used to generate corresponding instance segmentations,

allowing to create fully-annotated data sets for further utilization.
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4 Experiments and quality assessment

Two publicly available data sets are used for the evaluation of our approach:

Data set DAT The first data set includes 125 3D image stacks showing fluorescently labeled

cell membranes in six different Arabidopsis thaliana shoot apical meristem that were imaged

with confocal microscopy at a resolution of 0.22 × 0.22 × 0.26 μm3 per voxel using a 63×/1.0 N.

A. water immersion objective [24]. Additionally, 3D instance segmentations are available for

all image stacks, which were automatically obtained and partly manually corrected by the

authors. All images have a spatial size ranging between 326 × 367 × 107 and 512 × 512 × 396

voxel.

Data set DDR The second data set consists of a total of 394 3D image stacks showing fluo-

rescently labeled cell membranes and nuclei in two different Danio rerio (DR1 and DR2) [34].

Image stacks were captured with multi-photon microscopy at a resolution of 1.37 × 1.37 × 1.37

μm3 per voxel [34]. No ground truth annotations are available and all images have a spatial size

of 512 × 512 × z voxel, while z is ranging from 104 to 120.

Ideally, a sufficiently large fully-annotated data set is available for the training of the pro-

posed image synthesis pipeline, as cellular structures have to be as similar as possible to the

structures in the real data. However, due to the lack of fully-annotated 3D image data sets, a

more realistic scenario would consider automatically-annotated image stacks or desirably even

fully-simulated annotations, where no tedious and time-consuming manual annotation is

required. To evaluate different aspects of our simulation pipeline and influences of different

annotation acquisition techniques, we conduct multiple experiments ranging from an ideal

case scenario to more practical scenarios, as described in the following.

For all experiments in this section real image data is used as the target domain and annota-

tion masks from different sources are used as source domain, i.e., as input to the generative

adversarial network. Training is performed for 5000 epochs using a patch size of 128 × 128 ×
64 voxel and distance scalings of α = β = 100 (Eq 6). During each epoch only one randomly

Fig 5. Qualitative 2D overview of our 3D data generation pipeline. It comprises the acquisition or simulation of annotations and the image synthesis. Annotations

can be obtained from manual, automated, and simulation approaches, and final cellular annotations are used to generate corresponding instance segmentations.

https://doi.org/10.1371/journal.pone.0260509.g005
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located patch is extracted from each of the images to increase data diversity during training.

Furthermore, the set of random augmentations available for the adaptive discriminator aug-

mentation includes linear intensity scaling in the range [0.6, 1.2], additive Gaussian noise sam-

pled from N ð0; 0:1Þ, voxel shuffling in a randomly located region of size 25 × 25 × 25 voxel,

randomly located inpaintings of size 15 × 15 × 15 voxel and linear intensity reduction along a

random dimension. Augmentation updates are performed every eaug = 1 epochs with a step

size of δaug = 0.05 to allow adjusting the augmentation parameters in a reasonable number of

epochs. For resembling of the full-size image, an overlap and crop of doverlap = dcrop = (30, 30,

15) are used.

4.1 Image synthesis with manually annotated data Smanual

As a first experiment, the 3D instance segmentation masks of the DAT data set are used as

input for the generative adversarial network, which serves as a baseline to assess the capability

of the proposed synthesis pipeline. The six different specimens of this data set are divided into

training and test sets, using plants 1, 2, 4 and 13 for training and plants 15 and 18 for testing.

Qualitative results are illustrated in Fig 6 (left column pair), comparing different views of

real and synthetic image data. As further qualitative measures the intensity profile for a real

and the corresponding synthetic center xz- and yz-slice is generated, integrated over the z

dimension and plotted along the x and y dimension, respectively (Fig 6,Membranemanual).
Additionally, intensity spectra are created for a xy-slice of the real and synthetic image (Fig 6,

Membranemanual). Both illustrations demonstrate the similarity between real and synthetic

image data in the spatial and in the spectral domain. A large portion of the images contains

noise, which is non-deterministic and can vary between images without impairing the image

quality. Furthermore, especially since the proposed concept operates in an unsupervised fash-

ion, the trained networks tend to optimize towards a consensus of intensity patterns within the

training data set, causing the resulting images to contain less prominent or differently located

intensity peaks by still realistically reconstructing the given structures. These aspects cause a

visual discrepancy between high-frequency areas in the spectra and peaks in the intensity

profiles.

As quantitative quality metrics the normalized root mean square error (NRMSE), structural

similarity index measure (SSIM) and the zero mean normalized cross-correlation (ZNCC) are

used (Table 1,Membranemanual). By considering that a large portion of the image is back-

ground or random noise and only a small portion of the image contain cellular structures,

these scores prove the synthetic data to be realistic, supporting the impression from the quali-

tative assessment.

4.2 Image synthesis with automatically obtained data Sautomatic

In a second experiment, annotations of cellular structures are automatically obtained for the

DDR data set. For cellular membranes, we used the approach described in [35], which is a 3D

extension of the Cellpose approach [10] using a 3D convolutional neural network to represent

cell shapes as generalist gradient maps. An iterative post-processing technique is used to

reconstruct the individual cell instances. Training of the neural network is performed for 1000

epochs using the manually annotated DAT training data set and the model is applied to images

of the DDR image data. For cell nuclei we used the approach proposed in [36], which makes use

of a Laplacian of Gaussian (LoG) scale-space responding to a predefined range of cell sizes.

The shape-sensitive output is used to determine cell locations and to facilitate a watershed-
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Real
Synthet ic

Fig 6. Synthetic image data. Different views of real image data (blue columns) in comparison to synthetic image data (red columns) generated by our GAN approach.

Examples are shown for different experiments using manually corrected masks from the DAT data set [24] (Membranemanual), and automatically annotated masks for

membranes (Membraneautomatic) and nuclei (Nucleiautomatic) from the DDR data set [34]. Additionally, the spectra and intensity profiles of different slices are shown as

qualitative metrics.

https://doi.org/10.1371/journal.pone.0260509.g006
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based segmentation of cell nuclei. Parameters for this segmentation approach are manually

tweaked to produce good results.

Since there is no ground truth segmentation data available for the DDR data set, segmenta-

tion approaches serve as a straightforward way to create annotations that represent the shapes

and distribution of cellular structures as realistically as possible. Note that no further post-pro-

cessing or manual corrections are performed to represent a realistic scenario with minimum

manual interaction. The first specimen of the DDR data set (DR1) was used for training of the

GAN and the second specimen (DR2) was used for testing.

Qualitative results for the synthetic membrane data and further qualitative measures,

including the intensity profile of center xz- and yz-slices and intensity spectra of xy-slices are

illustrated in Fig 6 (Membraneautomatic). Results for the synthetic nuclei data are illustrated in

Fig 6 (Nucleiautomatic).
By keeping in mind, that the precision of the automatically obtained annotation masks can

not be assessed, again NRMSE, SSIM and ZNCC are used as quantitative quality metrics

(Table 1,Membraneautomatic and Nucleiautomatic), which are similar to the scores obtained in the

previous experiment Smanual. Qualitative and quantitative measures and figures again demon-

strate success in generation of realistic 3D microscopy image data from unrefined, automati-

cally generated annotation masks.

4.3 Image synthesis on simulated data

For training of deep learning-based synthesis approaches it is important to use annotations of

cellular structures that are as similar as possible to structures in the real image data to prevent

the generation of image artifacts and structural misalignment [15]. In this experiment, we fur-

ther assessed if the application of a trained model requires the same level of structural correla-

tion. To this end, we simulated annotation masks for both, cellular membranes and cell nuclei

from very sparse annotations and used the models from Smanual and Sautomatic to synthesize real

microscopy image data.

As a first scenario, only automatically obtained point annotations from the DDR data set as

described in Sautomatic are considered and, subsequently, cell nuclei are modelled at each posi-

tion utilizing spherical harmonics. Spherical harmonics coefficients are randomly constructed

using a smoothness factor γ = 5 and approximate radii r 2 N ð9; 1Þ pixel. For each of the 200

raw image stacks of the test set (DR2), one corresponding mask is simulated and the synthe-

sized image data is generated using the trained nuclei model from Sautomatic (Fig 7, top). Since

positional correspondences are maintained and only structural characteristics differ between

real and synthetic image data, again NRMSE, SSIM and ZNCC are used as quantitative quality

metrics (Table 1, Nucleisimulated). The obtained scores are similar to the scores obtained from

the previous experiments and allow us to again conclude success in the generation of realistic

3D image data.

As a second scenario, statistical shape models are utilized to generate organism shapes simi-

lar to the specimen of the DAT data set and, subsequently, cellular structures are simulated

Table 1. Quantitative assessment of image quality. Quality scores obtained for the different synthetic data sets.

NRMSE SSIM ZNCC

Membranemanual 0.130 0.658 0.739

Membraneautomatic 0.123 0.584 0.847

Nucleiautomatic 0.119 0.617 0.751

Nucleisimulated 0.129 0.706 0.632

https://doi.org/10.1371/journal.pone.0260509.t001
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within the foreground region by using geometrical modelling. Corresponding synthesized

image data is obtained with the trained model from Smanual (Fig 7, bottom). Accurate shape

model statistics are derived from the foreground segmentation of the corresponding manually

obtained annotation masks, although foreground segmentation has also been shown to be

automatable, e.g., by automated 3D interpolation techniques using very sparse manually

drawn 2D outlines [37]. This scenario renders pixel-level metrics to be no longer feasible due

to the missing direct structural correspondences between real and synthetic image samples.

However, since the data is ultimately generated to alleviate the need of manually annotated

data for learning-based approaches, we assess how accurate a 3D segmentation approach [38]

performs on the DAT test data set, when trained on synthetic image data. This multi-class seg-

mentation approach predicts probability maps of background, membrane structures, and cen-

troids, which helps to demonstrate how the segmentation of different structures is affected by

the image synthesis. Finally, a watershed-based post-processing technique is used to recon-

struct individual cell instances. Therefore, 125 simulated masks are generated and split into 82

for training and 43 for testing to match the quantity of image data from the real data set (Fig 7,

right). Subsequently, the segmentation approach is trained on the synthetic data for 1000

epochs using a patch size of 128 × 128 × 64 voxel and it is applied to both, the test data of the

synthetic data set (Syn2Syn) and the test data of the DAT data set (Syn2Real), including plants

15 and 18. Additionally, the segmentation approach is trained on the train split of the original

DAT data set and applied to the real (Real2Real) and the synthetic (Real2Syn) test split. Further-

more, a mixed data set is constructed by combining both real and synthetic data sets to further

increase data diversity. The model trained on the combined training set is tested on real (Mix2-

Real) and synthetic (Mix2Syn) test data. The probability map of each class, including back-

ground, cellular membrane and cell centroids, is thresholded by an individual value tbackground
= 0.1, tmembrane = 0.4 and tcentroid = 0.2 and, afterwards, an average intersection over union

(IoU) is computed as a metric for each of the three classes (Fig 8, top). To obtain representative

Fig 7. Fully synthetic image data. Different views of synthetic nuclei image data (top) and synthetic membrane image data (bottom)

generated by our GAN approach using the simulated annotation masks.

https://doi.org/10.1371/journal.pone.0260509.g007
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results, we allow predictions to be within a small range around the ground truth masks, which

accommodates the small sizes of cellular structures and centroids. The allowed misplacement

distances are 1 voxel for the background and cellular membrane classes and 5 voxel for the

centroid class. Additionally, instance segmentations are obtained from the multi-class

approach and another robust instance segmentation approach [35] and resulting average inter-

section over union (IoU) scores are plotted in Fig 8 (bottom). Overall high segmentation

scores support that the generated data is realistic. However, due to differences in structure and

intensity characteristics, the transfer training setups (Real2Syn and Syn2Real) show a decrease

in segmentation scores, which is more severe when training on synthetic and testing on real

data. Since centroids represent the class with the smallest object sizes, the highest difference in

obtained segmentation scores are observed for this class. Nevertheless, the obtained segmenta-

tion scores when training on synthetic and testing on real data motivate the utilization of

Fig 8. Segmentation scores obtained for different data setups. Multi-class segmentation scores obtained with the

approach from [38] (top) and instance segmentation scores obtained with the approaches from [38, 35] (bottom)

trained on real data (Real2Real, Real2Syn) and synthetic data (Syn2Real, Syn2Syn) and a mixed data set containing real

and synthetic data (Mix2Real, Mix2Syn). Trained models are applied to real and synthetic data, respectively.

https://doi.org/10.1371/journal.pone.0260509.g008
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synthetic microscopy image data as a training data set for segmentation approaches, especially

considering that the synthetic training data can be obtained with a minimum of manual inter-

action. Mixed training setups (Mix2Real and Mix2Syn) further motivate the incorporation of

synthetic image data to diversify the training data set and improve results. Due to the con-

trolled generation of synthetic image data, the resulting fully-annotated data sets don’t contain

large segmentation inaccuracies, which accounts for the score difference between the pure

training cases (Real2Real and Syn2Syn).

4.4 Image synthesis on different quality levels

The proposed positional conditioning of the generative adversarial network allows to control

the quality level of the generated data by altering the positional foreground parameter α (Eq 6).

This property is investigated by using different scalings α 2 {10, 50, 100, 500, 1000} to generate

different quality levels of the DAT test set (plants 15 and 18) using the generative network from

experiment Smanual. Image slices of three different quality levels are depicted in Fig 9 (top),

Fig 9. Qualitative assessment of altered image quality. 2D slices of 3D synthetic image data generated by our GAN approach using

the same manually corrected mask from [24], with different foreground distance scalings α (top). For the center xz-slice, intensities

are integrated over the z dimension and plotted along the x dimension (bottom).

https://doi.org/10.1371/journal.pone.0260509.g009
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alongside the integrated intensity profile of the center xz-slices (bottom), with both of these

qualitative illustrations showing the decaying intensity for poor quality levels.

To evaluate the quality of the generated data, we make use of the structural correspondence

to the real image data and compute NRMSE, SSIM, ZNCC and PSNR as metrics (Table 2).

The obtained scores slightly deteriorate for both, worse and improved image quality, which is

caused by the changes in structural quality and noise content. Since these changes are to be

expected and the scores remain in the same value range, the claim of generating realistic image

data holds.

Additionally, we obtain multi-class segmentations for the real and the synthetic test image

data on all quality levels using the approach proposed in [38] and consult these accuracies as a

further quality metric. Again, class probability maps are thresholded by an individual value

tbackground = 0.1, tmembrane = 0.4 and tcentroid = 0.2 and, afterwards, an aggregated intersection

over union (IoU) is computed as a metric for each of the three classes (Fig 10, top). Due to the

small sizes of membrane structures and centroids, small displacements would have a large,

hardly interpretable impact on the obtained segmentation accuracies and, therefore, both clas-

ses are allowed to lie within a small distance to the ground truth of 1 voxel for membrane

structures and 5 voxel for centroids. Instance segmentation results for both segmentation

approaches [35, 38] are evaluated by computing average intersections over union (IoU) scores

(Fig 10, bottom).

The baseline (Fig 10, dashed line) is computed from segmentation scores obtained on the

real DAT test set. Segmentation scores for cellular membranes increase with increasing image

quality until nearly reaching the baseline score, demonstrating the progressively increasing

quality of cellular structures. Background accuracy decreases with increasing image quality,

which is caused by the diminishing noise content within the foreground region, causing the

segmentation approach to confuse regions within cells with background regions. Additionally,

we observed harsh and unnatural intensity transitions for the highest quality level α = 1000,

which causes further segmentation inaccuracies and points out an upper boundary for a natu-

ral increase of the image quality. Although these facts produce segmentation artifacts, overall

background segmentation scores stay close to the baseline scores and promote the claim of

generating increasing image quality. This problem also affects the centroid segmentation and

results in decreased segmentation accuracy for the best quality level. Due to the small sizes of

centroid segmentations, accuracy scores are very sensitive to small imprecisions and, thus,

cause a discrepancy to the baseline scores. The same score progression is shown for instance

segmentations obtained with two segmentation approaches, with a minimum decrease of

around 0.1 IoU from the baseline results. Nevertheless, the increasing progression of

scores according to the increasing quality level demonstrates the utility of the synthesized

image data.

Table 2. Quantitative assessment of altered image quality. Quality scores obtained for synthetic image data generated on different quality levels by varying α from Eq 6,

including the normalized root mean square error (NRMSE), structural similarity index measure (SSIM), zero mean normalized cross-correlation (ZNCC) and peak signal-

to-noise ratio (PSNR).

α = 10 α = 50 α = 100 α = 500 α = 1000

NRMSE 0.134 0.130 0.130 0.136 0.140

SSIM 0.640 0.654 0.658 0.660 0.643

ZNCC 0.704 0.735 0.739 0.721 0.703

PSNR 17.485 17.802 17.768 17.376 17.079

https://doi.org/10.1371/journal.pone.0260509.t002
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5 Conclusion and availability

In this work we demonstrated how a conditional generative adversarial network can be utilized

to synthesize realistic 3D fluorescence microscopy image data from binary annotations of cel-

lular structures in a patch-based manner, allowing for a controlled generation of fully-anno-

tated 3D image data sets. Due to the patch-based approach, data of arbitrary size can be

generated, enabling an image-based simulation of entire organisms. Different techniques for

the generation of annotations of cellular structures were shown in several experiments with

varied necessity of manual interaction. The conducted experiments demonstrated the genera-

tion of realistic 3D image data from an ideal scenario with manually obtained annotations

being available, to a practical scenario with annotations simulated from very sparse detections

or segmentations. Using predefined cellular structures as a source domain allows to generate

fully-annotated data sets, which, we believe, leverages the usage of learning-based approaches

Fig 10. Segmentation scores obtained on altered image quality. Multi-class segmentation scores [15] (top) and

instance segmentation scores [15, 35] (bottom) obtained for synthetic image data generated on different quality levels

by varying α from Eq 6. Dashed lines represent results obtained on the original test data.

https://doi.org/10.1371/journal.pone.0260509.g010
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for many biomedical experiments. The proposed conditioning of the generative adversarial

network establishes the ability to generate data on different quality levels, which further

strengthens control over the generated image data for increased data diversity or detailed

benchmarking. In future work we plan to extend our experiments to additional organisms,

striving for a larger collection of publicly available fully-annotated 3D microscopy data sets

and we plan to further extend the simulation to time series data.

In order to make the generated data accessible to the community for training, we publish

two data sets comprising nuclei (DOI: 10.17605/OSF.IO/9RG2D) and cellular membrane

(DOI: 10.17605/OSF.IO/5EFM9) data generated from automatically obtained annotations

Sautomatic with the corresponding instance segmentation data (Fig 11). Furthermore, we publish

three different quality levels of the DAT test set (plants 15 and 18, Fig 12) with instance segmen-

tations being available from [24], to provide image data with increasing quality for potential

benchmarkings. We decided to publish synthetic image data scaled with α 2 10, 100, 500

(DOI: 10.17605/OSF.IO/E6N7B), as those levels proved to be of increasingly better quality for

segmentation approaches (Fig 10). We also publish the code repository used to generate 3D

Fig 11. Public two channel data set. Samples of the first published data set, including generated 3D image data of nuclei and cellular membrane (top)

and the corresponding automatically obtained instance segmentations for nuclei (middle) and membranes (bottom).

https://doi.org/10.1371/journal.pone.0260509.g011
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Fig 12. Public altered quality data set. Samples of the second published data set, including 3 different quality levels of the same cellular membrane structures.

Corresponding instance segmentations (bottom) are available from [24].

https://doi.org/10.1371/journal.pone.0260509.g012

PLOS ONE 3D microscopy data synthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0260509 December 2, 2021 18 / 21

https://doi.org/10.1371/journal.pone.0260509.g012
https://doi.org/10.1371/journal.pone.0260509


annotations and synthetic image data, which is available at https://github.com/stegmaierj/

CellSynthesis (DOI: 10.5281/zenodo.5118755).
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