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Abstract: We successfully prepared two different classes of hypercrosslinked porous organic polymers
(HPPs)—the tetraphenylethene (TPE) and (4-(5,6-Diphenyl-1H-Benzimidazol-2-yl)-triphenylamine
(DPT) HPPs—through the Friedel−Crafts polymerization of tetraphenylethene and 4-(5,6
-diphenyl-1H-benzimidazol-2-yl)-triphenylamine, respectively, with 1,4-bis(chloromethyl)benzene
(Ph-2Cl) in the presence of anhydrous FeCl3 as a catalyst. Our porous materials exhibited high BET
surface areas (up to 1000 m2 g−1) and good thermal stabilities. According to electrochemical and dyes
adsorption applications, the as-prepared DPT-HPP exhibited a high specific capacitance of 110 F g−1

at a current density of 0.5 A g−1, with an excellent cycling stability of over 2000 times at 10 A g−1.
In addition, DPT-HPP showed a high adsorption capacity up to 256.40 mg g−1 for the removal of RhB
dye from water.

Keywords: tetraphenylethene; triphenylamine; porous polymers; dyes adsorption; supercapacitor

1. Introduction

Microporous organic polymers (MOPs) have attracted much attention as next-generation materials
in the industry and academic areas because of their good thermal stability, low density, low regeneration
energy, high pore volume and large BET (Brunauer–Emmett–Teller) surface area, synthetic diversity,
and easier preparation [1–7]. MOPs have been used in many potential applications, such as water
treatment, drug delivery, chemical sensing, heterogeneous catalysis, energy storage, hydrogen evolution,
nanofiltration, oil scavenging, carbon dioxide reduction, gas separation and gas storage [8–17]. There are
different kinds of MOPs, such as conjugated microporous polymers (CMPs) [15–18], covalent organic
frameworks (COFs) [16–20], polymers of intrinsic microporosity (PIMs) [21–23], covalent triazine-based
frameworks (CTFs) [24–28], and hypercrosslinked polymers (HCPs) [29–32].

Among MOPs, HCPs can be easily synthesized through the simple Friedel–Crafts alkylation
reaction in the presence of building aromatic monomers and an external crosslinker [33–35].
These materials exhibited many unique features, such as large surface areas, excellent chemical
and thermal properties, controlled reaction conditions, and easy functionalizations. Moreover, HCPs
can be synthesized to afford a framework with a well-defined porous topology by controlling the length
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of the crosslinker [36–41]. The preparation HCPs can be easily synthesized through three methods:
(i) knitting rigid aromatic building blocks with an external crosslinker, such as 1,3,5-trichlorotriazine,
1,4-bis(chloromethyl)benzene or formaldehyde dimethyl acetal, (ii) the one-step polycondensation
of functional monomers, and (iii) using post-crosslinking polymer precursors [39,42]. At present,
HCP materials are still interesting porous polymers for energy storage applications because of their
hierarchical porous structures, the extended π-conjugated systems in their frameworks, and their
large surface areas [43–45]. The enhancement of the electronic conductivity, electroactive surface area
and supercapacitor performance of the HCP materials can be achieved through the incorporation of
heteroatoms such as sulfur, nitrogen, boron, and phosphorus into their polymeric frameworks, and
also by using versatile building blocks for increasing their pore volumes and BET surface areas [46,47].
The preparation of heterocyclic imidazole derivatives has drawn much attention because of their
unusual fluorescent, two-photon absorption, and phosphorescent properties. Such materials have been
also used as optical materials, electroluminescent materials, three-dimensional optical data storages,
and photographic materials [48–55].

Herein, we prepared two types of hypercrosslinked porous organic polymers,
TPE-HPP and DPT-HPP, using the Friedel−Crafts polymerization of tetraphenylethene
(TPE) and 4-(5,6-diphenyl-1H-benzimidazol- 2-yl)-triphenylamine (DPT), respectively, with
1,4-bis(chloromethyl)benzene (Ph-2Cl) as an external crosslinker in the presence of anhydrous
FeCl3. The chemical structures of these materials were confirmed by solid-state 13C
cross-polarization/magic-angle spinning (CP/MAS) nuclear magnetic resonance (NMR) and
Fourier-transform infrared (FTIR) spectroscopy. Furthermore, the porous structure, morphology
and crystallinity of these two porous materials were also investigated using different instruments,
such as SEM, TEM, BET and PXRD measurements. We found that the resulting materials displayed
high thermal stabilities and surface areas. Thus, we expect that our new hypercrosslinked polymers
TPE-HPP and DPT-HPP could be used in energy storage and dye-uptake applications.

2. Experimental Section

2.1. Materials

Benzophenone (99%), potassium carbonate (K2CO3, 99.995%), rhodamine B (RhB, 95%), and
1,4-bis(chloromethyl)benzene (98%) were purchased from Alfa Aesar. Titanium tetrachloride (TiCl4,
99.9%), zinc (Zn, 98%), phosphorus trichloride (POCl3, 99%), benzil (98%), ammonium acetate
(CH3COONH4, 98%), acetic acid (CH3COOH, 99%), and 1,2-dichloroethane (DCE, 99.8%) were
purchased from Alfa Aesar. Triphenylamine (TPA, 98%) and ethyl acetate (EA) were ordered from
Acros Organics. Anhydrous magnesium sulfate (MgSO4, 99.5%) and iron(III) chloride (FeCl3, 99.99%),
tetrahydrofuran (THF), acetone, methanol (CH3OH), dimethyl sulfoxide (DMSO), and dichloromethane
(DCM), were purchased from Showa Corporation (Japan). 4-(Diphenylamino)benzaldehyde
(TPA-CHO) was prepared as reported in the previous study [50].

2.2. Synthesis of Tetraphenylethylene (TPE)

A mixture of benzophenone (5.00 g, 0.027 mol) and zinc (6.52 g, 0.099 mol) in dry THF (200 mL)
was stirred at 0 ◦C for 30 min. Then, TiCl4 (5.43 mL, 0.049 mol) was added slowly over 10 min and
then the reaction mixture was refluxed at 80 ◦C for 24 h. The reaction mixture was cooled to room
temperature and quenched with a 10% aqueous solution of K2CO3, followed by the removing of THF
under vacuum. The crude product was extracted with ethylacetate (EA), and the organic EA layer was
dried over anhydrous MgSO4, filtered and removed using a rotary evaporator. The crude product
was then washed with ethanol and filtered to afford a white crystalline solid (yield: 97%). 1H-NMR
(500 MHz, δ, ppm, CDCl3, Figure S1): 7.05–7.15 (m, 20H). 13C-NMR (125 MHz, δ, ppm, CDCl3, Figure
S2): 140.7; 141.0; 131.3; 127.7; 126.4.
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2.3. Synthesis of 4-(5,6-Diphenyl-1H-Benzimidazol-2-yl)-Triphenylamine (DPT)

A mixture of TPA-CHO (1.21 g, 5.74 mmol), benzil (1.00 g, 4.76 mmol), and ammonium acetate
(1.84 g, 23.78 mmol) in glacial acetic acid (10 mL) was refluxed at 90 ◦C for 12 h under a N2 atmosphere.
The reaction mixture was then poured into an aqueous solution of sodium hydrogen sulfite (200 mL,
3 wt.%) to afford a yellow powder (yield: 80%). 500 MHz, δ, ppm, DMSO-d6, (Figure S3): 12.54 (s, 1H),
7.99 (d, J = 8.4 Hz, 2H), 7.32–7.52 (m, 14H), 7.03–7.10 (m, 8H). 13C-NMR (125 MHz, δ, ppm, DMSO-d6,
Figure S4): 148.2, 147.8, 146.4, 130.5, 129.3, 127.3, 125.3, 125.2, 124.3, 123.6. m/z (high-resolution mass
spectrometry, HRMS) found 463.2050 (M+), Anal. Calc. for C33H25N3: 463.2048 (Figure S5).

2.4. Synthesis of TPE-HPP

A mixture of tetraphenylethylene (0.523 g, 1.573 mmol) and 1,4-bis(chloromethyl)benzene (1.652 g,
9.44 mmol) in 1,2-dichloroethane (20 mL) was added to anhydrous FeCl3 (1.531 g, 9.44 mmol) under
an N2 atmosphere. The mixture was refluxed at 70 ◦C for 48 h. After cooling to room temperature,
the insoluble residue was filtered off and successively washed several times with methanol, water,
DCM, acetone and THF. The product was gained as a brown powder (yield: 75%).

2.5. Synthesis of DPT-HPP

A mixture of 4-(5,6-Diphenyl-1H-benzimidazol-2-yl)-triphenylamine (0.521 g, 1.124 mmol) and
1,4-bis(chloromethyl)benzene (1.181 g, 6.744 mmol) in 1,2-dichloroethane (20 mL) was added to
anhydrous FeCl3 (1.093 g, 6.744 mmol) under a N2 atmosphere. The mixture was refluxed at 70 ◦C for
48 h. After being cooled to room temperature, the insoluble residue was filtered off and successively
washed several times with methanol, water, DCM, and tetrahydrofuran (THF). The product was gained
as a dark green powder (yield: 80%).

3. Results and Discussions

3.1. Synthesis of TPE-HPP and DPT-HPP

Scheme 1A,B show the synthetic methods for the preparation of TPE and DPT monomers.
The TPE monomer was firstly prepared through the reaction of benzophenone with zinc in the
presence of TiCl4 [56,57], while the DPT monomer was synthesized by the reaction of benzil with
4-(diphenylamino)benzaldehyde (TPA-CHO) and ammonium acetate in acetic acid at 90 ◦C [50].
Scheme 2 represented the schematic method for preparing the two different HPPs—TPE and DPT
HPPs—via a Friedel–Crafts reaction of TPE and DPT with 1,4-bis(chloromethyl)benzene in the presence
of anhydrous FeCl3 as a catalysis at 60 ◦C for 24 h. After the reactions were completed, the crude
materials were washed several times with MeOH, THF, acetone, DCM, and DMF to remove any excess
from the unreacted FeCl3 and monomers. In addition, the TPE-HPP and DPT-HPP were insoluble in
all organic solvents, such as DMF, acetone, THF, CH2Cl2 and MeOH.

The chemical molecular structures of TPE and DPT monomers were confirmed by using 1H
and 13C-NMR spectroscopy in CDCl3 and DMSO-d6, respectively (Figure 1). The 1H-NMR spectrum
(Figure 1A) of TPE monomer displayed proton signals centered at 7.14 and 7.04 ppm for the aromatic
rings, while the 1H-NMR spectrum (Figure 1B) of DPT displayed a characteristic proton signal at
9.74 pm for the NH group, in addition to the aromatic proton signals at 8.04–7.04 ppm. Figure 1C,D
presented the 13C-NMR analyses of TPE and DPT. The signals of the carbon nuclei of the aromatic
rings in the TPE and DPT moieties appeared in the range 144.06–126.56 ppm for TPE and 130.56–122.25
ppm for DPT. Furthermore, the 13C-NMR spectrum of DPT (Figure 1D) displayed a signal at 147.31
ppm for the C=N carbon nuclei resonance. The molecular weight of the DPT was m/z 364, which is
consistent with its calculated value (m/z 364.30) (Figure S5). The NMR and high-resolution mass results
confirmed the successful synthesis of the TPE and DPT monomers.
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Figure 2 showed the FTIR profiles of Ph-2Cl, TPE, DPT, TPE-HPP and DPT-HPP, recorded at room
temperature. The FTIR spectra of Ph-2Cl, TPE, DPT, TPE-HPP and DPT-HPP showed a characteristic
absorption band in the range 3050–3084 cm–1 for the stretching C–H aromatic groups, in addition to
an absorption band at 1600 cm–1 for the C=C bonds. The FTIR spectra of TPE-HPP and DPT-HPP
(Figure 2D,E) featured absorptions signals in the range 2970–2850 cm−1 representing their aliphatic
C–H units. These results confirmed the successful incorporation of 4-bis(chloromethyl)benzene as an
external crosslinker into the polymer matrices. In addition, the absorption bands for the stretching NH
groups of the DPT and DPT-HPP appeared at 3435 cm–1 (Figure 2C,E).
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Furthermore, the chemical structures of TPE-HPP and DPT-HPP were checked by using the
solid-state 13C CP/MAS NMR measurement, as shown in Figure 3. The characteristic signals for the
TPE-HPP appeared at 139.67–128.77 and 39.58 ppm, respectively, for its carbon atoms in the aromatic
rings and methylene units (Figure 3A), while such carbon atoms appeared at 139.49–128.98 ppm and
39.79 ppm, respectively, for the DPT-HPP (Figure 3B).
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3.2. TGA, XRD, BET, SEM, and TEM Analyses for TPE-HPP and DPT-HPP

The thermal stabilities of TPE-HPP and DPT-HPP and their corresponding monomers were
examined by using TGA analyses under an N2 atmosphere, as presented in Figure 4A,B. The TGA
measurements showed that the Td5, Td10 and char yield values were 158, 273 ◦C and 62% for the Ph-2Cl
monomer, respectively, while they were 246 ◦C, 263 and 0%, for the TPE monomer, respectively. The DPT
monomer exhibited decomposition temperatures (Td5 and Td10) of 186 and 272 ◦C, respectively, and a
char yield value of 11%. After the crosslinking of TPE and DPT with Ph-2Cl through Friedel–Crafts
reactions, the values of Td5 for the resulting TPE-HPP and DPT-HPP were 387 and 263 ◦C, respectively,
and the values of Td10 were 551 and 481 ◦C, respectively. In addition, the char yields of TPE-HPP and
DPT-HPP were 75% and 74%, respectively. The values of Td5 and Td10, and the char yield for TPE-HPP,
DPT-HPP and their corresponding monomers, are summarized in Table 1.
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Table 1. Thermal stability and porosity properties of TPE-HPP and DPT-HPP, and comparison with
their corresponding monomers.

Sample Td5
(◦C)

Td10
(◦C)

Char Yield
(wt.%)

Surface Area
(m2 g−1)

Pore Size
(nm)

Ph-2Cl 158 273 62 - -

TPE 246 263 0 - -

DPT 186 272 11 - -

TPE-HPP 387 551 75 922 1.01–1.98

DPT-HPP 263 481 74 1230 1.21–2.15

Based on XRD analyses, both TPE-HPP and DPT-HPP were shown to be amorphous materials
without crystalline characteristics (Figure S6). Figure 5A,B show the N2 adsorption/desorption
and pore size distribution curves of the TPE-HPP and DPT-HPP, respectively, recorded at 1 bar.
The results revealed that both TPE-HPP and DPT-HPP featured type II with type IV adsorption
isotherms, according to the IUPAC classification. In addition, the BET profiles of TPE-HPP and
DPT-HPP displayed that the N2 uptake capacities were increased at low-pressure and high-pressure
regions, indicating the presence of micro and meso pores in the TPE-HPP and DPT-HPP frameworks.
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The BET surface area, total pore volume, and pore size diameter of the TPE-HPP were 922 m2 g−1,
0.86 cm3 g−1 and 1.10–1.98 nm, respectively (Figure 5C), while the DPT-HPP revealed a BET surface area,
total pore volume and pore size diameter of 1230 m2 g−1, 1.03 cm3 g−1 and 1.21–2.15 nm, respectively
(Figure 5D). Comparing with the reported HCPs, the specific surface area of our DPT-HPP (1230 m2 g−1)
was among the highest values of the other hypercrosslinked microporous polymers; for example,
this includes the tetraphenylanthraquinone-based HCP (1980 m2 g−1), binaphthol-based HCP (1015 m2

g−1), and a porous organic polymer containing triazine and carbazole moieties (913 m2 g−1) [20,58–60].
Furthermore, the SEM and TEM measurements were performed to confirm the porous properties of
the TPE-HPP and DPT-HPP, as displayed in Figure 6. The SEM imaging of TPE-HPP and DPT-HPP
showed the existence of interparticulate porosity between the agglomerated primary microgel particles
(Figure 6A,B), while the high-resolution transmission electron imaging (Figure 6C,D) of the TPE-HPP
and DPT-HPP showed the presence of an alternate bright and dark microstructure with a hole shape.
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3.3. CO2 Uptake, Dye Adsorption and Electrochemical Performance

Because our porous materials had high surface areas (up to 1000 m2 g−1), large pore-volumes, and
meso and microporous architectures, we expected that our new hypercrosslinked polymers TPE-HPP
and DPT-HPP could be used as potential candidates for gas capture, energy storage, and the removal
of dyes from the waste-water. CO2 isotherm measurements at 298 and 273 K (Figure 7A,B) were
performed to investigate the CO2 adsorption capacity of TPE-HPP and DPT-HPP. At 298 K and 1 bar
pressure (Figure 7A), the CO2 adsorption capacity reached 1.65 and 1.85 mmol g−1 for the TPE-HPP
and DPT-HPP, respectively, while the CO2 capture was 1.91 and 2.06 mmol g−1 for the TPE-HPP
and DPT-HPP, respectively, at 273 K (Figure 7B). Both TPE-HPP and DPT-HPP exhibited higher
values of CO2 uptake than that of the tetraphenylanthraquinone-based HCPs such as An-CPOP-1
(1.30 mmol at 298 K and 1.40 mmol g−1 at 273 K) and An-CPOP-2 (1.40 mmol g−1 at 298 K and 1.52
mmol g−1 at 273 K) [20]. In addition, our materials showed higher CO2 capture than silole-based HCPs
(PDMTPAS, 1.02 mmol g−1 at 298 K), COF-102 (1.56 mmol g−1 at 273 K) and C2M1-Al (1.44 mmol g−1

at 273 K) [61–63]. As shown by the above results, DPT-HPP had an excellent performance for CO2

capture compared with the previously reported HCPS materials, which can be attributed to the strong
dipole–quadrupole interactions between the DPT-HPP materials and the CO2 molecules.Polymers 2020, 12, x FOR PEER REVIEW 10 of 18 
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Figure 7. CO2 uptake of TPE-HPP and DPT-HPP at (A) 298 K and (B) 273 K.

It has been previously reported that the nitrogen atoms in the organic polymers can strongly
interact with dye molecules through non-covalent interactions, such as dipole–dipole, and electrostatic
interactions. This interaction ability of nitrogen atoms is due to their basic properties, which resulted
from their high charge densities. Therefore, researchers documented that the incorporation
of N-functionalized groups, such as azo (N=N) and imine (C=N), into organic polymers can
dramatically enhance their adsorption efficiencies towards small organic pollutants in water treatment
applications [64]. In addition, the surface area of the adsorbent materials also plays an important
role in determining the adsorption efficiency; increasing the surface area massively enhances the
adsorption efficiency of the adsorbents [65–68]. Therefore, we have evaluated the suitability of our
hypercrosslinked polymers TPE-HPP and DPT-HPP to be used as adsorbents for water treatment
through testing their adsorption capacities to Rhodamine B (RhB) dye. For quantitative evaluation
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of the adsorptions of TPE-HPP and DPT-HPP polymers, we tracked the RhB adsorption processes
by recording the ultraviolet-visible spectra of aqueous dye solutions at 0, 15, 30, 60 and 90 min after
the addition of our hypercrosslinked polymers. As shown in Figure 8A, after the addition of 5 mg of
TPE-HPP hypercrosslinked polymer to aqueous RhB solution, the intensity of the maximum adsorption
peak of RhB (λmax = 554 nm) gradually decreased as the time increased from 0 to 30 min, and vanished
entirely within 60 min. The insert in Figure 8C shows images of RhB/TPE-HPP supernatants at
different times—here, the color of the aqueous RhB solution has switched from red-violet to colorless
within 60 min. As a result, the TPE-HPP hypercrosslinked polymer revealed high performance for the
elimination of RhB dye from water; the removal efficiency of RhB using TPE-HPP reached up to 97%
within 60 min (Figure 8C). As shown in Figure 8B, the intensity of the maximum adsorption peak of
RhB gradually decreased from 0 to 10 min after the addition of 5 mg of DPT-HPP hypercrosslinked
polymer to aqueous RhB solution, and then completely disappeared after 15 min. This quick adsorption
of the DPT-HPP polymer was also confirmed by switching the color of the aqueous RhB solution from
red-violet to colorless within 15 min, as shown in Figure 8D. Thus, our DPT-HPP hypercrosslinked
polymer exhibited a higher efficiency for the elimination of organic RhB from water, and the removal
efficiency of RhB using DPT-HPP polymer reached up to 97% within 15 min (Figure 8D). These results
indicated that the presence of nitrogen atoms in the backbone structure of the DPT-HPP polymer and
its higher surface area (1230 m2 g−1) can enhance the adsorption process and provide a higher dye
removal efficiency than that of the TPE-HPP polymer, which does not contain nitrogen atoms and has
a lower surface area (922 m2 g−1).
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Figure 8. (A,B) UV–Vis spectra of aqueous RhB recorded at various periods after the addition of
TPE-HPP and DPT-HPP (initial concentration of both RhB: 25 mg L−1). (C,D) Adsorption rates of RhB
(initial concentration: 25 mg L−1) after the addition of TPE-HPP and DPT-HPP at various periods.
Insets: Corresponding photographs. Ce (mg L−1) is the equilibrium concentration of RhB at various
measured times; C (mg L−1) is the initial concentration of RhB (0 min).
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We implemented the Langmuir isothermal model [69] to investigate the kinetic adsorption
behavior of the dye RhB on the surface of hypercrosslinked polymers TPE-HPP and DPT-HPP. By fitting
the equilibrium adsorption data of our synthesized polymers, the resultant Langmuir isothermal
models revealed a linear relationship (Ce/Qe vs. Ce) for both TPE-HPP and DPT-HPP polymers
(Figure 9A). As summarized in Table 2, the correlation coefficients (RL

2) of these Langmuir models
were 0.99266 for TPE-HPP and 0.96436 for DPT-HPP polymer. According to the resultant Langmuir
equations, we calculated the maximum adsorption capacities (Qm) of our hypercrosslinked polymers,
which were found to be 107.41 mg g–1 for TPE-HPP and 256.40 mg g–1 for DPT-HPP (Figure 9B).
The Qm values confirmed the higher adsorption capacity of DPT-HPP over TPE-HPP. Furthermore,
the cyclic adsorption–regeneration test of aqueous RhB dye solution has been utilized to study the
reusability of TPE-HPP and DPT-HPP (Figure S7). The adsorption efficiencies of TPE-HPP and
DPT-HPP exhibited negligible change after four regeneration cycles, confirming the suitability of our
TPE-HPP and DPT-HPP as efficient adsorbents for the removal of RhB from water.
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Table 2. Fitted parameters for the adsorption of RhB on the hypercrosslinked polymers TPE-HPP
and DPT-HPP.

Qm (mg g−1) KL RL
2

TPE-HPP 107.41 0.5649 0.99266
DPT-HPP 256.40 0.6250 0.96436

To investigate and understand the electrochemical ability of the two porous materials (TPE-HPP
and DPT-HPP) in a three-electrode system with 1 M KOH as an aqueous electrolyte, both cyclic
voltammetry (CV) and galvanostatic charge-discharge (GCD) were carried out, as shown in Figure 10.
The CV curves (Figure 10A,B) of TPE-HPP and DPT-HPP were recorded in the potential window from
0.00 to –1.00 V (vs. Hg/HgO) with different sweep rates from 5 to 200 mV s–1. As shown in their CV
profile, both samples displayed humps with rectangle-like shapes, indicating that their capacitive
performance is derived from electric double-layer capacitance (EDLC). In addition, the rectangle-like
shapes (Figure 10A,B) of these materials were maintained even at high sweep rates and current densities,
confirming the facile kinetics and excellent rate capabilities of TPE-HPP and DPT-HPP. The GCD
profiles (Figure 10C,D) of the TPE-HPP and DPT-HPP revealed that these materials possessed triangular
shapes with a slight bend, suggesting a combination of pseudocapacity and EDLC features for these
two materials, which arises from the presence of the electroactive methylene groups [46]. In addition,
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the DPT-HPP sample possessed the redox-active triphenylamine units that can undergo a reversible
redox process [30]. As previously reported, in two successive one-electron steps, the tetraphenylethene
(TPE) can undergo a redox process, forming its reduced form [70], while the triphenylamine (TPA)
possesses a nitrogen atom as its electroactive center connected, to three electron-rich phenyl rings,
in which a reversible radical redox process occurs during charge and discharge processes [39,71,72].
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Figure 10. (A,B) CV and (C,D) GCD profiles, recorded in 1 M KOH, of the (A,C) TPE-HPP and (B,D) 
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(B,D) DPT-HPP.

As presented in the GCD curves, DPT-HPP had a longer discharging time compared to that of
TEP-HPP. Thus, the value of the specific capacitance of the DPT-HPP (110.50 F g–1) was higher than
that of the TPE-HPP (67.00 F g–1), recorded at a current density of 0.5 A g–1 (Figure 11). This higher
specific capacitance of the DPT-HPP can be attributed to its higher surface area (1230 m2 g−1), large
pore size (2.15 nm), pore volume (1.03 cm3 g−1) and the fact of its containing heteroatoms such as N
atoms in its framework. We found that Car-TPA, Car-TPP, Car-TPT COFs, TPA-COF-1, TPA-COF-2,
TPA-COF-3, TPT-COF-4, TPT-COF-5 and TPTCOF-6 exhibited the specific capacitances of 13.6, 14.5,
17.4 F g–1, 51.3, 14.4, 5.1, 2.4, 0.34 and 0.24 F g–1, respectively, at 0.2 A g–1 [30,73]. Khattak and his
group revealed that the specific capacitance value of DABTFP COF was 98 F g–1 at 0.5 A g–1 [74].
Furthermore, the TpPa–COF/PANI composite exhibited a capacitance of 95 F g–1 at 0.2 A g–1 [75].
In addition, DAAQ–TFP COF showed capacitance of 48 F g–1 at 0.1 A g–1 [76]. We also reported that
An-CPOP-1 and An-CPOP-2 exhibited high specific capacitances of 72.75 and 98.4 F g–1, respectively,
at 0.5 A g–1, and excellent cycling stability [39].
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Table S1 summarizes the specific surface areas and specific capacitances of TPE-HPP, DPT-HPP,
other reported POPs, and related materials for supercapacitor applications. Furthermore, the cycling
stability of TPE-HPP and DPT-HPP was examined over 2000 repetitions at 10 A g–1 (Figure 12),
which revealed that TPE-HPP and DPT-HPP had excellent cycling stabilities and capacitance retentions
of 86% for TPE-HPP and 92% for DPT-HPP. According to the Ragone plot (Figure S8), these two
TPE-HPP and DPT-HPP electrodes showed good energy and power densities.
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4. Conclusions

According to the FTIR and NMR analyses, two types of HCPs were successfully synthesized
through the simple and effective Friedel−Crafts polymerization of tetraphenylethene and
4-(5,6-diphenyl-1H-benzimidazol-2-yl)-triphenylamine with 1,4-bis(chloromethyl)benzene in the
presence of FeCl3 as a catalyst. Based on dyes and electrochemical measurements, we found
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that the as-prepared DPT-HPP displayed a significant adsorption capacity (up to 256.40 mg g–1) for
RhB dye from water, and a supercapacitor performance (up to 110.50 F g–1 at a current density of
0.5 A g–1) with an excellent cycling stability (up to 95.3% capacitance retention over 2000 cycles).
Consequently, our new DPT-HPP can be considered as an excellent candidate for energy storage and
dye adsorption applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/10/2426/s1,
Figure S1: 1H NMR spectrum of TPE. Figure S2: 13C NMR spectrum of TPE. Figure S3: 1H NMR spectrum of DPT.
Figure S4: 13C NMR spectrum of DPT. Figure S5: FT-MS pattern of DPT. Figure S6: XRD pattern of (A) TPE-HPP
and (B) DPT-HPP. Figure S7: Reusability of (A) TPE-HPP and (B) DPT-HPP for the removal of RhB MB within
60 min. Figure S8: Ragone plots of the energy density and power density of the (A) TPE-HPP and (B) DPT-HPP
electrodes in 1 M KOH. Table S1: Comparison between the specific surface area/specific capacitance of TPE-HPP
and DPT-HPP with those of previously reported POPs and related materials for supercapacitor applications.
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