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Autism spectrum disorder (ASD) is a group of complex neurodevelopment disorders
characterized by altered brain connectivity. However, the majority of neuroimaging
studies for ASD focus on the static pattern of brain function and largely neglect brain
activity dynamics, which might provide deeper insight into the underlying mechanism
of brain functions for ASD. Therefore, we proposed a framework with Hidden Markov
Model (HMM) analysis for resting-state functional MRI (fMRI) from a large multicenter
dataset of 507 male subjects. Specifically, the 507 subjects included 209 subjects
with ASD and 298 well-matched health controls across 14 sites from the Autism Brain
Imaging Data Exchange (ABIDE). Based on the HMM, we can identify the recurring
brain function networks over time across ASD and healthy controls (HCs). Then we
assessed the dynamical configuration of the whole-brain networks and further analyzed
the community structure of transitions across the brain states. Based on the 19 HMM
states, we found that the global temporal statistics of the specific HMM states (including
fractional occupancies and lifetimes) were significantly altered in ASD compared to
HCs. These specific HMM states were characterized by the activation pattern of default
mode network (DMN), sensory processing networks [including visual network, auditory
network, and sensory and motor network (SMN)]. Meanwhile, we also find that the
specific modules of transitions between states were closely related to ASD. Our findings
indicate the temporal reconfiguration of the brain network in ASD and provide novel
insights into the dynamics of the whole-brain networks for ASD.

Keywords: autism spectrum disorder, Hidden Markov Models, large-scale whole-brain network, global temporal
dynamics, modularity analysis

INTRODUCTION

Autism spectrum disorders (ASD) are a group of complex neurodevelopment disorders, which
are characterized by repetitive and characteristic patterns of behavior and difficulties with social
communication and interaction (American Psychiatric Association, 2013; Guo et al., 2020). The
current ASD prevalence in the general population is estimated to be approximately 1% or higher
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(Developmental Disabilities, Monitoring Network, Surveillance
Year 2010 Principal Investigators, and Centers for Disease
Control and Prevention, 2014). Previous neuroimaging studies
have indicated that ASD is related to the anomalous responses
in certain brain areas, significant alteration of functional, or
structural brain network and disturbed neural synchronization
between brain areas (Belmonte, 2004; Tang et al., 2014; Zhan
et al., 2014; Cerliani et al., 2015; Duan et al., 2017). Especially,
the majority of functional neuroimaging studies based on resting-
state fMRI have shown the under-connectivity hypothesis has
been proposed based on the reduced intraregional functional
connectivity (FC) between default mode network (DMN) and
sensory processing network (Belmonte, 2004; Just, 2004; Just
et al., 2006, 2012; Anderson et al., 2010; Kana et al., 2011).
For example, the FC between DMN [including the medial
prefrontal cortex (mPFC), posterior cingulate cortex (PCC),
and precuneus], temporal pole, and pallidum was significantly
reduced (Yerys et al., 2015). Other studies also found a similar
reduced FC between mPFC and primary motor and sensory
cortices (Jung et al., 2014), even temporoparietal junction, insula,
and amygdala (Von dem Hagen et al., 2012). Some resting-state
fMRI studies have found the phenomena of the over-connectivity
or a mixture of under- and overconnectivity in ASD (Keown
et al., 2013; Supekar et al., 2013; Cerliani et al., 2015). Although
the underconnectivity patterns are not consistent, the FC from
resting-state fMRI provides new insights into the underlying
neurological mechanisms for ASD.

Numerous previous findings in ASD are based on the
assumption that resting-state FC is relatively stable over time,
which neglects the spontaneous fluctuations in brain activity
and dynamics of brain networks (Chen et al., 2017). However,
abundant evidence has indicated that the human brain can be
seen as a complex dynamic system, in which transition smoothly
and continuously between brain states is directly related to
cognitive function (Sheline et al., 2010; Deco et al., 2011; Gu
et al., 2017; Lin et al., 2017). Recent works also suggest that
the brain activity and brain network from the rest-stating fMRI
are dynamic and that the dynamical FC states can be captured
from resting-state fMRI (Allen et al., 2012; Hutchison et al.,
2013b; Damaraju et al., 2014; Zalesky et al., 2014; Liu, 2016).
Importantly, the latest studies about dynamic FC have shown
that the specifically dynamic FC states found can be characterized
by weaker connectivity strength in ASD and that state-related
dynamic FC can improve the sensitivity in classifying ASD from
the healthy (Wee et al., 2016; He et al., 2018; Xiaonan Guo et al.,
2020). Therefore, advances from extensive studies have suggested
that the dynamic FC may be a potential biomarker of ASD.

The most common technique used for dynamic FC is the use
of sliding windows for resting-states fMRI (Wendling et al., 2009;
Allen et al., 2014; Vidaurre et al., 2018a; Mokhtari et al., 2019).
However, the sliding windows approach has some limitations
(Hutchison et al., 2013a; Leonardi and van de Ville, 2015; Zalesky
and Breakspear, 2015; Hindriks et al., 2016; Preti et al., 2017).
For example, the neural process observed from brain activity is
highly dependent on the window (e.g., the temporal width of the
window and length of step). Fortunately, Hidden Markov Model
(HMM) describes the brain activity as a dynamics sequence

of discrete brain states in the timescales directly assessed from
data, which can dramatically overcome the limitations of the
previous sliding window approach (Vidaurre et al., 2016, 2017;
Stevner et al., 2019). Previous studies have confirmed that the
HMM can be able to capture dynamics of brain activity in
minimal timescales (Quinn et al., 2018; Vidaurre et al., 2018b,
2019; Stevner et al., 2019). For example, recent studies on
magnetoencephalography (MEG) have found that the HMM
can capture the dynamics of brain activities in a resting state
as little as 100 ms (Quinn et al., 2018; Vidaurre et al., 2018b,
2019). In addition, previous studies have suggested that the HMM
can provide a rich description for brain dynamics in the short
timescales and can be applied to probe the reconfiguration of
the whole-brain dynamics for psychiatric illnesses [e.g., major
depression disorder (MDD)] (Wang et al., 2020). In this study,
we employed an HMM analysis in a large multicenter data of ASD
to identify the brain states from resting-state fMRI in minimum
timescale. We aim to investigate the temporal dynamics and to
characterize the spatiotemporal specificity of brain activity in
short timescale for ASD.

MATERIALS AND METHODS

Participants
Resting-state fMRI data from 507 subjects, including 209 ASD
subjects and 298 HCs, from 14 sits in the ADIDE database were
analyzed in this study.1 The inclusion and exclusion were adopted
as same as the previous studies (Di Martino et al., 2014; Chen
et al., 2017). Briefly, all subjects were male, from these sites,
in which 75% of subjects had a full-scale IQ score (FIQ). Only
subjects with FIQ within 2 SD + mean across all the Autism
Brain Imaging Data Exchange (ABIDE) samples and with mean
framewise displacement (FD) below 2 SD+mean were included.
Moreover, all the subjects had complete anatomical images and
functional imaging scans. It is important to note that we tried
to build a well-matched dataset to control the effects across
sites, which were consistent with the previous study (Chen et al.,
2017). Specifically, we first applied a data-driven algorithm that
maximized the p-values of the group difference of age, FIQ,
and mean FD (using two-sample t-tests). Then, to exclude the
influence of the site interaction effect, we also maximized the
p-values of the interaction effects between sites and diagnostic
groups of age, FIQ, and FD (using ANOVA). Details of the
demographic information are shown in Table 1.

All the preprocessing of resting state-fMRI was performed
using the Statistical Parameter Mapping 8 (SPM8)2 and the Data
Processing Assistant for Resting-State fMRI (DPARSF) toolbox.3

The main preprocessing steps include removing the first 10 time-
points, temporal and head motion correction, normalization
to Montreal Neurological Institute (MNI), smoothing with a
Gaussian kernel [full width at half maximum (FWHM) = 8 mm]
and band-pass filtering (0.01–0.1 Hz). Spatial smoothing was a

1http://fcon_1000.projects.nitrc.org/indi/abide/
2http://www.fil.ion.ucl.ac.uk/spm
3http://rfmri.org/DPARSF
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TABLE 1 | Demographics of participants.

ASD
(n = 209)

HC
(n = 298)

Group
comparisons

(p-value)

Age 16.5 ± 6.2 16.8 ± 6.2 0.5642a

Site × group
interaction

– – 0.9642b

Full Scale IQ 111 ± 13 110 ± 11 0.7191a

Site × group
interaction

– – 0.8502b

Mean FD 0.14 ± 0.1 0.14 ± 0.1 0.7219a

Site × group
interaction

– – 0.8341b

High head motion
timepointsc

14.99 ± 20.78 14.77 ± 21.26 0.9091a

ADI-R

Social score 20 ± 5 – –

Communication
score

16 ± 4 – –

RRB score 6 ± 3 – –

ADOS

Total score 12 ± 4 – –

Social score 8 ± 3 – –

Communication
score

4 ± 1 – –

RRB score 2 ± 1 – –

ADI-R, autism diagnostic interview-revised; ADOS, autism diagnostic observation
Schedule; RRB, restricted and repetitive behaviors.
aThe two-sample t-test.
bANOVA.
cDefined as the number of the timepoints whose framewise displacement
(FD) > 0.5 mm and the preceding time point and the following two timepoints.

very common preprocessing step for functional brain images.
However, there is a great deal of debate about the choice
of smoothing kernel. Previous studies suggested the optimal
FWHM was about 8 mm based on the influence of spatial
smoothing on fMRI group activation and FC analysis. In
addition, signals from white matter (WM) and cerebrospinal fluid
(CSF), as well as 24 rigid body motion parameters, were regressed
out. Finally, it was based on the automated anatomical labeling
(AAL) template extract the averaged fMRI time series in 90 brain
regions (including cortical and subcortical brain areas). The AAL
template was one of the most frequently used in fMRI studies of
FC for ASD. The previous study about non-rapid eye movement
(NREM) sleep based on HMM analysis indicated that the results
were highly robust across different templates (Stevner et al.,
2019). This study was supported by the Academic Committee
of the School of Biological Sciences and Medical Engineering,
Southeast University, China.

Hidden Markov Models
To probe the alteration of whole-brain dynamics for ASD,
we applied the HMM to obtain a group estimation of brain
microstates. Briefly, the HMM can describe brain activity as a
dynamic sequence of discrete recurring brain states (Vidaurre
et al., 2016). All states are mutually exclusive and Markovian
has the same probabilistic distributions but each has different

distribution parameters. Thus, the states correspond to unique
patterns of brain activity that recur in different parts of the time
series. For each time point, a state variable dictates the probability
of each state being active at that moment, thus we can determine
which state is activated according to the maximum probability of
each state. In other words, only one state may occur at a given
time point and the next state is only dependent on the current
state. Notably, we cannot directly observe the state from data
because the state is abstract (hidden). The relationship between
hidden states and our observed data can be observed through an
observation model, as shown in Figure 1. In the HMM approach,
each state has its observation model, from which we can obtain
the probability distribution of our system is in that state based on
the observed data.

In this study, we first obtained the representative time
courses of 90 regions of interests (ROIs) for all subjects
(including 209 patients with ASD and 298 HCs) though
averaged all time courses over voxels within ROI. Then, 90-
time courses from ROIs were demeaned by being divided by
their standard deviation. Next, we respectively concatenate all
time courses for each ROI across participants (including ASD
and controls) and yield a data matrix. It is important to
note that although it is possible to apply the HMM on each
subject or each group independently, we applied the HMM
on all the concatenated all-time courses. Thus, the states and
the transition probabilities inferred by HMM were defined at
the group level to obtain the matched states across ASD and
HC. Finally, we estimated the number of recurring discrete
states across through an HMM with multivariate Gaussian
distribution. Importantly, each HMM state can be modeled as a
multivariate normal distribution (including the mean activation
distribution and an FC matrix). The mean activation distribution
represents the mean level of state activity in brain regions.
The FC matrix summarizes the pairwise temporal co-variations
occurring between brain regions. Moreover, although the HMM
was also considered as a tool for dimensionality reduction of
data, there exist severe overfitting problems during estimating
parameters per state due to the high spatial dimensionality
of fMRI (Vidaurre et al., 2016). To address this problem, we
carry out the principal component analysis for 90 ROI time
courses across all the subjects before HMM inference as the
previous studies (Vidaurre et al., 2016). We finally used the top
32 principal components, which keep approximately 90% of the
signal variance.

Choice of Number of Hidden Markov
Model States
Based on the variational Bayesian inference, the HMM was
implemented by probabilistically estimating the state statistics
and transition probabilities (Vidaurre et al., 2016). Notably, there
is a central and free parameter, the number of HMM states
should be determined before HMM inference (Vidaurre et al.,
2016; Stevner et al., 2019) because different numbers of states
in practice offer only different levels of detail of brain dynamics.
Previous studies have found that we can choose the number of
states underlying the spontaneous brain activity in several ways,
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FIGURE 1 | Schematic illustration of the whole-brain dynamics using a Hidden Markov Model (HMM).

such as using quantitative measures like free energy or using non-
parametric approaches (Vidaurre et al., 2016, 2017, 2018a,b, 2019;
Stevner et al., 2019). Therefore, in this study, we evaluated the
summary statistic (including minimum free energy and medial
fractional occupancy) for the different number of HMM states
with a range of 4–45.

Analysis of Temporal Characterizations
of Hidden Markov Model States
Upon the inferred HMM, a time course of probabilities can
be assessed through the HMM Bayesian inference. Each value
represents the probability that a state is active at a time
point. Then we can compute the global statistics reflecting the
properties and dynamics of the HMM state from the probabilities
courses (Vidaurre et al., 2017; Quinn et al., 2018). In this study,
we obtained three global temporal characterizations of HMM
states, including fractional occupancies, lifetimes, and interval
times. Specifically, fractional occupancies of HMM states are the
ratio of the activated HMM states across the all-time course.
The lifetime is computed as the amount of time spent in a
state before moving into a new state, which interval time is
calculated as the amount of time between consecutive visits
to a state (Vidaurre et al., 2017; Quinn et al., 2018). These
characterizations are the most commonly effectively captured
within-subject temporal dynamics.

Analysis of Transitions of Hidden Markov
Model State
Furthermore, to investigate the organization of the transition
probabilities, which were explicitly modeled by the HMM, a
network-based clustering technique (also called the community
detection technique) was adopted to the matrix of transition
probability between HMM states. The HMMs states into a
certain community have more frequent transitions with others
in the same community than in other communities. In this
study, we adopted a modularity maximization approach to
detect the community of the matrix of transition probabilities
and optimized the modularity quality function using Newman’s

spectral community detection algorithm using Matlab function
from the Brain Connectivity Toolbox4 (Newman, 2006; Rubinov
and Sporns, 2010). Notably, we only keep 25% of the strongest
transitions in a matrix of transition probabilities.

Statistical Analysis
To test significant differences in global dynamics, we performed,
respectively, two-tail two-sample t-tests for fractional occupancy,
lifetimes, and interval times of HMM states between patients with
subjects with ASD and HCs. In particular, age was considered
an irrelevant variable and was regressed out to remove its
effects. And the threshold p < 0.05 Bonferroni correction was
set to determine the significance level. Noteworthy, although
some measures during subject selection were adopted to avoid
the effects of data sites or FIQ and a well-matched dataset
was obtained in this study, we again performed, respectively,
statistical analysis for temporal characterizations of HMM
states with regressing out the sites and FIQ to verify the
robustness of the results.

RESULTS

Nineteen Hidden Markov Model States
Were Identified Using Hidden Markov
Model
First, HMM states were estimated on resting-state fMRI data
from 517 subjects (including 209 subjects with ASD and 298
HCs). Before estimating HMM states, the minimum free energy,
and medial fractional occupancy were used to determine the
number of HMM states. The global statistics mainly included
minimum free energy and medial fractional occupancy across the
HMM states. As shown in Figure 2, we found that the minimum
free energy was monotonically decreased with the increase of the
number of HMM states, showing no negative peak. Therefore,
consistent with previous studies of HMM, the free energy failed

4https://www.nitrc.org/projects/bct
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FIGURE 2 | The choice of the number of HMM states.

to provide valid information for the choice of the number of
HMM states. A similar phenomenon is also reflected in the
development of median fractional occupancy. Fortunately, we
found that the median fractional occupancy decreased rapidly for
the smaller number of states and ceased around the number for
19, which suggested a higher number of states might cause the
occurrence of sporadic states, which might only appear in a few
subjects. Hence, Based on these results above, this study finally
estimated 19 HMM states.

Global Temporal Statistics Exhibited
Specific Alteration for Autism Spectrum
Disorder
Then, to probe the temporal alterations of brain network for
ASD, we calculated and compared the global temporal statistics
of HMM states, including the fractional occupancies, lifetimes

and interval times. Specifically, as shown in Figure 3, compared
to HCs, we found that fractional occupancies of HMM states
4, 8, 9, and 10 for ASD subjects were significantly decreased
(Without regressing out sites and FIQ: State 4: p = 4.71 × 10−5,
t-value = −4.09; State 8: p = 4.78 × 10−5, t-value = −4.09;
State 9: p = 0.0015, t-value = −3.18; State 10: p = 3.93 × 10−7,
t-value = −5.12; With regressing out sites and FIQ: State 4:
p = 1.00 × 10−4, t-value = −3.90; State 8: p = 5.7 × 10−4,
t-value = −3.46; State 9: p = 4.5 × 10−4, t-value = −3.52; State
10: p = 2.11 × 10−6, t-value = −4.78; two-tailed two-sample,
Bonferroni correction). And fractional occupancies 2, 3, 14, and
17 for ASD were significantly increased (Without regressing out
sites and FIQ: State 2: p = 3.03 × 10−5, t-value = 4.20; State
3: p = 8.01 × 10−5, t-value = 3.96; State 14: p = 3.61 × 10-4,
t-value = 3.58; and State 17: p = 3.07 × 10−4, t-value = 3.66;
With regressing out sites and FIQ: State 2: p = 2.09 × 10−4,
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t-value = 3.73; State 3: p = −0.0015, t-value = 3.19; State 14:
p = 2.04 × 10−4, t-value = 3.73; and State 17: p = 0.0049,
t-value = 2.82; two-tailed two-sample, Bonferroni correction).
As expected, lifetimes of participants with ASD had a similar
alteration with fractional occupancies. Lifetimes of ASD subjects
expressed significantly decreased in HMM 8, 9, and 10 (Without
regressing out sites and FIQ: State 8: p = 1.24 × 10−6,
t-value = −4.89; State 9: p = 0.0012, t-value = −3.26; State 10:
p = 1.86 × 10−6, t-value = −4.31; With regressing out sites
and FIQ: State 8: p = 5.11 × 10−5, t-value = −4.07; State
9: p = 0.0017, t-value = −3.15; State 10: p = 1.51 × 10−4,
t-value = −3.81; two-tailed two-sample, Bonferroni correction)
and increased in HMM 2, 3 and 17 (Without regressing out
sites and FIQ: State 2: p = 2.76 × 10−4, t-value = 3.62; State
3: p = 0.0016, t-value = 3.23; State 17: p = 3.45 × 10−5,
t-value = 4.16; With regressing out sites and FIQ: State 2:
p = 0.0026, t-value = 3.03; State 3: p = 0.006, t-value = 2.75; State
17: p = 0.001, t-value = 3.28; two-tailed two-sample, Bonferroni
correction). Meanwhile, interval times of HMM State 17 was
increased for ASD subjects (Without regressing out sites and
FIQ: State 17: p = 0.003, t-value = 4.17, two-tailed two-sample,
Bonferroni correction). Our results indicated that there was the
temporal reconfiguration of large-scale brain network for ASD
subjects, which were able to be characterized by global temporal
statistics of brain microstates.

Specific Community Structure of
Transitions for Autism Spectrum
Disorder
Next, we organize the whole-brain network states into a
transition map and carried out a modularity analysis about the
19× 19 transition probability matrix. Based on the most frequent
transitions between the HMM states across all the subjects
(including subjects with ASD and HCs), we found that the
transition map was organized into a specific community structure
with three partitions (modularity index = 0.3332) (Figure 4).
Further combined with the global statistics, three modules in the
transition map were respectively considered as the HC-related
module and the ASD-related modules (including modules I and
II). The HC-related module was characterized by the HMM
state 4, 8, 9, and 10, whose global statistics, including fractional
occupancies and lifetimes, were significantly increased in HCs.
Correspondingly, the HMM states 2 and 17 were included in
the ASD-related module I and the HMM states 3 and 14 in the
ASD-related module II. These HMM states were higher fractional
occupancies and longer lifetimes for subjects with ASD.

Spatial Activation Maps of Whole-Brain
States for Autism Spectrum Disorder
Finally, we further probed the spatial activation maps of the
whole-brain microstates in the HC-related module and the ASD-
related module. As shown in Figure 5, we found that in the
HC-related module, the HMM state 4 was mainly characterized
by the decreased activation in the bilateral medial and superior
frontal gyrus, the bilateral middle and superior temporal and the
cingulate cortex [including the bilateral anterior and posterior

FIGURE 3 | Alteration of the global temporal characterizes in autism spectrum
disorder (ASD). *Represented the significant difference between ASD and HC
(p < 0.05).

cingulate cortex (ACC and PCC)] and the increased activation
in the bilateral superior and middle occipital gyrus and fusiform.
The HMM state 8 showed the decrease in the bilateral medial
orbitofrontal gyrus, the left PCC, precuneus, para-hippocampal
and angular, the bilateral rectus, and the bilateral medial temporal
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FIGURE 4 | The modules of transitions between HMM states.

FIGURE 5 | The mean activation maps for states 4, 8, 9, and 10 in the healthy control (HC)-related module.

pole and the bilateral superior temporal gyrus, the bilateral
inferior frontal gyrus, and the supramarginal gyrus. The HMM
state 9 showed the decreased activation in subcortical areas
and sensory (the bilateral thalamus, the bilateral putamen, left
insula, and the bilateral pallidum) and motor and sensory areas
(including the bilateral central gyrus, bilateral lingual gyrus,
the bilateral Rolandic operculum area, the bilateral middle
occipital gyrus, and the bilateral supramarginal gyrus), and the
increased activation in DMN (including the bilateral medial and

superior frontal gyrus, the bilateral anterior and PCC and the
bilateral rectus). The HMM state 10 was mainly characterized
by decreased activation in the bilateral thalamus, precuneus,
PCC, calcarine lingual gyrus, and superior temporal gyrus and by
increased activation in the bilateral superior and medial temporal
and inferior orbitofrontal gyrus. Then we found the ASD-related
module included two partitions. One was mainly characterized
by the HMM state 2 and 17 (the ASD-related module I) and
another by the HMM 3 and 14 (the ASD-related module II).
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FIGURE 6 | The mean activation maps for states 2 and 17 in the ASD-related module I.

FIGURE 7 | The mean activation maps for states 3 and 14 in the ASD-related module II.

As shown in Figure 6, in the ASD-related module I, the HMM
state 2 showed the decrease in orbit-frontal gyrus, ACC, rectus,
the superior and medial frontal gyrus, and the decrease in sensor
and motor network and (including postcentral gyrus, paracentral
lobule, supplementary motor area, and superior parietal lobule),
auditory network (Heschel gyrus and superior temporal gyrus)
and DMN (including PCC and precuneus). The HMM states
17 showed the decrease in temporal gyrus and superior and
medial frontal gyrus and the increase in the visual and auditory
network (calcarine, cuneus, lingual gyrus, and occipital gyrus).
Meanwhile, as shown in Figure 7, in another ASD-related module
(the ASD-related module II), state 3 showed the decrease in the
visual network (including the bilateral occipital gyrus, fusiform
and superior parietal gurus), and the increase in the DMN (the
bilateral ACC and the bilateral superior and medial frontal gyrus).
State 14 showed the decreased activation in the bilateral inferior
parietal gyrus, the ACC, the middle frontal gyrus, and the middle
and inferior occipital gyrus and the increased activation in the
middle temporal gyrus.

DISCUSSION

In this study based on a large sample dataset, we probe
the dynamic complexity and dissimilarity in spatiotemporal
patterns of brain activity between subjects with ASD and
the health. We identified 19 recurring brain states for all

subjects from multicohorts through the HMM approach and
found the temporal reconfiguration of HMM states for ASD,
which provides a richer temporal description in a smaller time
scale compared with previous studies using the sliding-window
approach. Meanwhile, we adopted the community analysis to the
HMM transition map and found the special transition pattern
between HMM states for subjects with ASD, which previous
studies did not fully capture.

Previous studies based on fMRI have identified dynamic re-
configurations of large-scale brain activity voxel-wise changes
(Guo et al., 2017), changes in connection strength (Anderson
et al., 2010; Cerliani et al., 2015; Guo et al., 2018), or through
long-temporal dependencies of the blood oxygen level dependent
(BOLD) signal (Falahpour et al., 2016; Chen et al., 2017; He
et al., 2018) for ASD. However, HMM analysis is a probabilistic
representation in the space of whole-brain network states and
transitions, which might provide novel insights into neural
mechanisms of ASD. Here, 19 HMM states recurring across time
were identified for ASD and the healthy, which was consistent
with previous findings that FC of the brain is highly dynamic
and can represent flexibility in functional coordination between
distinct brain systems (Watanabe and Rees, 2017; He et al.,
2018; Guo et al., 2020). Further, we analyzed the alteration
of the global temporal characterization for each HMM state.
Our results showed that compared to the health, fractional
occupancies of states 4, 8, 9, and 10 were significantly decreased
in ASD, while fractional occupancies of states 2, 3, 14, and

Frontiers in Human Neuroscience | www.frontiersin.org 8 February 2022 | Volume 16 | Article 774921

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-774921 February 2, 2022 Time: 16:5 # 9

Lin et al. Brain Dynamic Reconfiguration in ASD

17 were significantly increased. These findings are consistent
with previous findings that subjects with ASD and HCs have a
significantly different pattern of state organization. Numerous
previous studies have reported the significant alteration in time-
vary patterns in ASD. For example, recent work observed that
ASD significantly increased durations of functional connections
in both individual brain regions and distributed networks, and
the abnormal alteration was closely related to the disease severity
(King et al., 2018). Further, the width of cross-correlation curves
between resting-states fMRI time series could be used as a
metric of the relative duration of synchronous activity between
brain regions (also called “sustained connectivity”) in ASD (King
and Anderson, 2018). In addition, the sustained connectivity
in ASD may limit the ability to rapidly shift one brain state
to another and is negatively related to processing speed and
sustained connectivity (King and Anderson, 2018). Meanwhile,
other studies also found that impaired cognition function in ASD
may be associated with the alteration of brain states. Interestingly,
the late study using an energy-landscape analysis reported that
high-functioning adults with ASD show fewer neural transitions
due to an unstable intermediate state (Watanabe and Rees, 2017).
Similar aberrant temporal dynamics were reported by the study
by Rashid et al. (2014) who found longer dwell times related to
a globally disconnected state in youth with higher autistic traits.
A mass of studies has found that individuals with ASD and health
showed significantly different occurrences in two functional
states. Particularly, individuals with ASD spent more time in a
state with weak dynamical FC patterns and less negative dynamic
FC between DMN and other networks, while the health spent
more time in a state with both positive and negative dynamical FC
patterns (Rabany et al., 2019). In summary, our results provide
new insights about the dynamical alteration of brain activity
in ASD and offer additional evidence for the evaluation of the
impacts of psychiatric ASD.

To further, we combined with the community detection for
the transition map between HMM states and indicate that ASD
and HCs have respectively their specific community structures
for the transition map between HMM states. Particularly, two
modules are closely related to ASD. The ASD-related module I
was characterized by the HMM states 2 and 17 and The ASD-
related module II was characterized by the HMM states 3 and 14.
Noteworthy, in ASD-related module II, two characterize HMM
states showed the opposite trend of activation in the DMN. State
3 showed the increase in DMN (including ACC and superior and
medial frontal gyrus), and state 14 showed the decrease in the
corresponding area. Meanwhile, HMM states 3 and 14 showed
similar activation in visual (including fusiform and parietal gyrus
and occipital gyrus). In addition, we also found the other specific
pattern of activation for the HMM states 2 and 17 in the
ASD-related module I. Specifically, the HMM states 2 and 17
respectively showed a similarly increased activation in a part of
sensory and motor network (SMN), visual, and auditory network.
HMM state 2 showed the increased activation in SMN (including
postcentral gyrus, paracentral lobule, supplementary motor area,
and superior parietal lobule) and auditory network (including
Heschel gyrus and superior temporal gyrus). The HMM state 17
showed increased activation in the visual and auditory network

(calcarine, cuneus, lingual gyrus, and occipital gyrus). Our
findings are also consistent with previous studies on ASD that
suggest FC of DMN, SMN, visual, and auditory networks in
ASD is significantly altered compared with controls. Previous
studies have reported the decreased FC between ACC/mPFC
and other DMN regions for individuals with ASD (Assaf et al.,
2010; Weng et al., 2010). The decreased intra-hemispheric FC in
mPFC, fusiform gyrus, and inferior temporal gyrus for ASD was
also found (Anderson et al., 2010; Lee et al., 2016). The recent
work also suggested that abnormalities in the above regions can
be identified as neurofunctional markers for social impairments
of ASD (Patriquin et al., 2016). Together with our results,
these findings consistently highlight the potential role of the
neural circuits associated with DMN (including ACC and mPFC)
and sensory processing networks (including fusiform gyrus and
inferior temporal gyrus) in the pathophysiological mechanisms
underlying ASD. Meanwhile, consistent with the latest dynamical
FC findings (Guo et al., 2018, 2020), our findings complement
our understanding of the functional organization for ASD from a
dynamic perspective.

Compared to the sliding window approach, the HMM
approach provides a more rich description of brain dynamics
without any predefined timescale information, e.g., the width
of the window and step. However, two main methodological
limitations of this study should be considered: the short-range
dependency between HMM states and the number of HMM
states. The former is mainly caused by two assumptions of the
HMM applied to brain activity data. One assumption of the
HMM is the state, which is mutually exclusive (Vidaurre et al.,
2016, 2018b). Another assumption in the HMM approach is that
when a state at a certain time point is known, the next state
will be predicted without information of time courses before this
point. So, there is a short-range dependency between HMM state
occurrences, which is inconsistent with the previous study that
the brain exhibits the long-range dependency of HMM states.
Therefore, the HMM has methodological limitations for precisely
characterizing the brain states. However, recent studies indicate
the certain type of long-range dependency of HMM in the form
of metastates, even when these are not explicitly parameterized
in the model (Vidaurre et al., 2017, 2018a,b; Stevner et al., 2019).
In a word, the HMM does not infer the long-range dependency
of HMM, but we can freely discover the long-range dependency
inherent to the bran data through the inferred HMM state
sequence. The latter is mainly caused by the choice of the number
of HMM states, which is a free parameter, and is difficult to
determine a correct number of states according to the recording
brain activity. Meanwhile, neither the sliding-window approach
nor the HMM approach has capable of decomposing the explicit
number of intrinsic states of brain activity (Hutchison et al.,
2013a; Hindriks et al., 2016; Vidaurre et al., 2017; Stevner et al.,
2019). In this study, we identify 19 HMM states according to the
global temporal statists, e.g., free energy and median fractional
occupancy, which is not a generalizing number for different
brain datasets. In addition, there was also a limitation regarding
the data organization in this study. Before the HMM inference,
the subject-specific sets of 90 ROI timecourses were demeaned,
divided by their SD, and concatenated across all the subjects
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to obtain a group estimation about the state. Noteworthy, it
is possible to apply the HMM on each subject or each group
independently to explore the different spatial patterns across the
ASD and HC groups, which will bring a new challenge of state
matching across subjects or groups. Moreover, more amount of
time points can infer more robust states during HMM inference.

In summary, we propose a data-driven analysis approach
(the HMM with multivariable Gaussian distribution) allowing
the investigation of the dynamic alterations in the whole-
brain network between ASD and controls. Based on the
brain microstates identified by HMM, we found that the
reorganization of intrinsic brain states at time scales for ASD
and the special communities for ASD was characterized by the
decreased activation in sensory processing networks (including
visual network, auditory network, and SMN) and the increased
activation in the DMN. These findings provide new insights into
the large-scale dynamic circuit organization of the brain and
suggest that brain dynamics should remain a prime target for
further ASD research, especially regarding the intrinsic states
underlying brain activity.
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