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Mycobacterial Infections can be severe in patients with T-cell deficiency or phagocyte

disorders, and treatment is frequently complicated by antimicrobial resistance.

Restoration of T-cell immunity via stem cell transplantation facilitates control of

mycobacterial infections, but presence of active infections during transplantation is

associated with a higher risk of mortality. Adoptive T cell immunotherapy has been

successful in targeting viruses, but has not been attempted to treat mycobacterial

infections. We sought to expand and characterize mycobacterial-specific T-cells derived

from healthy donors in order to determine suitability for adoptive immunotherapy.

Mycobacteria-specific T-cells (MSTs) were generated from 10 healthy donors using a

rapid ex vivo expansion protocol targeting five known mycobacterial target proteins

(AG85B, PPE68, ESXA, ESXB, and ADK). MSTs were compared to T-cells expanded

from the same donors using lysate fromM. tuberculosis or purified protein derivative from

M. avium (sensitin). MST expansion from seven patients with primary immunodeficiency

disorders (PID) and two patients with IFN-γ autoantibodies and invasive M. avium

infections. MSTs expanded from healthy donors recognized a median of 3 of 5 antigens,

with production of IFN-γ, TNF, and GM-CSF in CD4+ T cells. Comparison of donors

who received BCG vaccine (n = 6) to those who did not (n = 4) showed differential

responses to PPE68 (p= 0.028) and ADK (p= 0.015) by IFN-γ ELISpot. MSTs expanded

from lysate or sensitin also recognized multiple mycobacterial antigens, with a statistically

significant differences noted only in the response to PPE68 (p = 0.016). MSTs expanded

from patients with primary immunodeficiency (PID) and invasive mycobacterial infections

showed activity against mycobacterial antigens in only two of seven subjects, whereas
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both patients with IFN-γ autoantibodies recognized mycobacterial antigens. Thus, MSTs

can be generated from donors using a rapid expansion protocol regardless of history

of BCG immunization. Most tested PID patients had no detectable T-cell immunity to

mycobacteria despite history of infection. MSTs may have clinical utility for adoptive

immunotherapy in T-cell deficient patients with invasive mycobacterial infections.

Keywords: immunotherapy, T cells, mycobacteria, primary immunodeficiency, mendelian suspectibility to

mycobacteria, hematopoietic stem cell transplantation

INTRODUCTION

Mycobacteria species are ubiquitous, and mycobacterial
infections account for over 1.5 million deaths annually (1). The
global disease burden is skewed heavily toward tuberculosis,
which infects ∼1 in 3 people worldwide, but non-tuberculous
mycobacteria are also a major cause of disease particularly
in immunocompromised hosts (2, 3). Antibiotic resistance is
especially common in non-tuberculous mycobacterial species,
which often require long courses of multidrug treatments to
combat infections (4).

Increased susceptibility to opportunistic infections is common
in immunodeficient hosts, including individuals with primary
immunodeficiency disorders (PID), transplant recipients, and
patients receiving chemotherapy or immunosuppression for
rheumatologic disease (5–7). It has been long appreciated that
global T cell deficiency, such as occurs in severe combined
immunodeficiency (SCID) and advanced HIV infection, is
associated with risk of severe mycobacterial infections. Invasive
infections following vaccination with Bacillus Calmette Guerin
(BCG) has unfortunately remained a common presenting sign
in infants with SCID (2, 3). In the past decade, many essential
immunologic pathways that mediate control of mycobacterial
infections have been described, grouped together as Mendelian
Susceptibility to Mycobacterial Disease (MSMD) (8). MSMD
can result from deficiencies in the IL-12/IFN-γ pathway, ISG15,
and signaling pathways downstream of IFN-γ including STAT1,
the CBM/IkB-kinase complex, and the transcription factor NF-
kB (9–13). Developmental defects in myeloid cells caused by
mutations in IRF8 or GATA2 also result in MSMD (14, 15).

Immunologic responses to mycobacterial antigens have been
well-described, and delayed type hypersensitivity to tuberculosis
antigens is utilized for clinical testing for tuberculosis exposure
via IFN-γ ELISpot assay (16, 17). Anergy on tuberculosis
testing has also been well-documented in patients with T cell
immunodeficiencies, even in the presence of mycobacterial
infections (18). Restoration of T cell immunity via antiretroviral
therapy in the setting of HIV substantially reduces the risk
of invasive mycobacterial infections (19). In PID however, the
presence of an invasive mycobacterial infection may significantly
worsen the risks of transplantation (20, 21).

Abbreviations: BCG, bacillus calmette guerin; CTL, cytotoxic T lymphocyte;

G, gravity; HSCT, hematopoietic stem cell transplantation; IFN, interferon; IL,

interleukin; MSMD, mendelian susceptibility to mycobacterial disease; MST,

mycobacteria-specific T cells; PBMC, peripheral blood mononuclear cells; PID,

primary immunodeficiency; SCID, severe combined immunodeficiency; VST,

virus-specific T cells; SEB, staphylococcus enterotoxin B.

In the setting of hematopoietic stem cell transplantation,
adoptive immunotherapy with virus-specific T cells (VST) has
been utilized for over two decades with strong evidence of
safety and efficacy (22–24). Recent efforts have heavily focused
on the use of “third party” banks of well-characterized VSTs
derived from healthy donors, which can be used as partially
HLA-matched, “off the shelf ” therapies for the treatment
of viral infections (25–28). Though matching algorithms for
the use of these products are evolving, the success rate for
partially HLA-matched VSTs has improved. In several cases,
VSTs have been utilized successfully for the treatment of viral
infections prior to HSCT in children with severe PIDs (29,
30). Though mycobacteria are much more complex organisms
than the viruses targeted in previous adoptive immunotherapy
trials, many immunodominant mycobacterial T-cell antigens
have been described (17, 31). Hence, adoptive immunotherapy
targeting mycobacterial antigens may be similarly beneficial as a
therapeutic strategy to control invasive mycobacterial infections
before, during or after HSCT.

In this study, we demonstrate that T cells targeting
mycobacterial antigens can be robustly expanded from healthy
donors using a protocol that is compatible with Good
Manufacturing Practices (32). Many of the targeted epitopes
are conserved across species, allowing cross-reactivity against
different mycobacteria. We also demonstrate decreased to absent
T cell responses against these antigens as a consistent feature in
patients with PIDs with invasive mycobacterial infections.

METHODS

Subjects and Patients
Healthy donors and patients were consented on research
protocols for blood donation at Children’s National Medical
Center, the National Institutes of Health, and All Children’s
Hospital. Donors were evaluated for prior history of BCG
vaccination, and those who were vaccinated were evaluated for
recent histories of positivity on tuberculin or Quantiferon testing.
Patient samples were obtained from individuals with primary
immunodeficiency disorders and the presence of an active or
recent invasive infection withM. avium complex orM. abscessus
(Supplemental Table 1). All research protocols were approved by
the Institutional Review Boards at the host institutions.

Isolation of Peripheral Blood
Mononuclear cells
Peripheral blood mononuclear cells (PBMCs) were isolated via
Ficoll density centrifugation. Blood was diluted 1:1 in phosphate
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FIGURE 1 | Manufacturing schema of ex vivo expansion of

mycobacteria-specific T cells. Peripheral blood mononuclear cells (PBMCs) are

stimulated with overlapping peptide pools encompassing listed mycobacterial

antigens and cultured in a G-Rex-10 bioreactor with cytokines for 10–12 days.

buffered saline, layered on top of 10–15mL of Lymphocyte
Separation Medium (MP Biomedicals, CA), and spun for 40min
at 400G at room temperature. PBMCs were harvested from
the lymphocyte layer and washed twice with 1X PBS prior to
counting and generation of MST lines.

Rapid Generation of Mycobacteria-Specific
T Cells From Healthy Donors and Patients
On Day 1, PBMCs (10–15 × 106) were pelleted in a 50ml
conical tube. Overlapping 15-mer peptide pools encompassing
antigens from M. tuberculosis (pepmixes) were pooled, with
2 µl of each TB pepmix (five 15-mer pepmix libraries, each
reconstituted at a concentration of 0.5 nmol/µL) added to 200
µl CTL medium (45% RPMI, 45% Click’s medium, 10% fetal
bovine serum with 2 mmol L-glutamine), with a final peptide
concentration of 25 nmol/ml. TB pepmixes included peptides
from AG85B, PPE68 (Rv3873), ESXA (ESAT-6), ESXB (CFP-
10), and ADK. Protein consensus sequences were obtained from
NCBI RefSeq (Supplemental Table 2) for pepmix generation
(JPT, Berlin, Germany). PBMC pellets were resuspended in 200
µl of the CTL medium/pepmix and incubated at 37◦C for 30–
60min (Figure 1). After incubation, PBMCs were resuspended
in CTL medium/10% FBS with IL-7 (10 ng/ml) and IL-4 (400
U/ml) at a final concentration of 1× 106 cells/ml (R&D Systems,
MN). Pepmix-pulsed PBMCs were plated in 24-well plates at 2
ml/well. On Days 3–5, culture medium was monitored for color
and cell confluence. For confluent cultures, half-medium change
(with IL-7 and IL-4) was performed. On Day 7, culture medium
was monitored again and cells were split 1:1 if confluent with a
half-medium change. On Days 10–12, cells were harvested and
evaluated for antigen specificity and functionality.

MST Generation From Healthy Donors With
M. Avium Sensitin or TB Lysate
M. tuberculosis lysate (Strain CDC1551, BEI Resources,
Manassas, VA) was reconstituted in 10mM ammonium
bicarbonate at 10 mg/ml. M. avium Sensitin (Statens Serum
Institut, Denmark, provided courtesy of Dr. Ford von Reyn,

Dartmouth University) protein was reconstituted at 1 ug/ml
in 1.5ml of saline. On Day 1, PBMCs (10–15 × 106) were
co-incubated with lysates at the following conditions: M. avium
Sensitin (50 ng) or M. tuberculosis lysate (100 µg). PBMCs +
lysates were resuspended in CTL medium/10% FBS with IL-7
(10 ng/ml) and IL-4 (400 U/ml) at a final concentration of 1 ×

106 cells/ml and plated in 24-well plates at 2 ml/well. On Days
3–7, culture medium was monitored as before and changed as
appropriate. On Days 10–12, cells were harvested and evaluated
for TB-specificity and functionality.

IFN-γ ELISPOT Assay and Epitope Mapping
Antigen specificity of T cells was measured with IFN-γ ELISPOT
(Millipore, Burlington, MA). T cells were plated at 1 × 105/well
with no peptide or actin (negative controls), Staphylococcus
enterotoxin B (SEB) (positive control), or TB pepmix and lysate
as stimulants. Specificity was defined as a minimum of 20 spot
forming cells (SFC)/1× 105 cells/well with statistical significance
of the result over the negative controls by two-tailed Student’s
T-Test (p < 0.05). For epitope mapping, 15 mer peptides were
synthesized (GenScript, Piscataway Township, NJ, USA) which
spanned the entire AG85B and ESXB proteins, with overlaps of
five amino acids between each peptide. ELISPOT plates were sent
for IFN-γ SFC counting and confluence determination (Zellnet
Consulting, Fort Lee, NJ, USA).

Immunophenotyping of MSTs
Phenotyping of MST cell cultures was performed by flow
cytometry with antibodies against CD3, CD8, CD4, CD25,
CD14, CD16, CD19, CD27, CD28, CD45RA, CD45RO, CD56,
CD57, CD62L, CD127, CCR7, IFN-γ, TNF, CD223 (LAG3),
CD95, Perforin, PD-1, TCRγδ, CTLA4, and TIM3 (Milenyi
Biotec, Bergisch Gadbach, Germany; Biolegend, San Diego,
CA, USA; BD Bioscience, San Jose, CA, USA; Invitrogen,
Carlsbad, CA, USA; and Ebioscience, San Diego, CA, USA)
(Supplemental Table 3). On Day 1, MSTs from healthy and
BCG-vaccinated donors were rested overnight with low dose IL-
2 (50 U/mL). On Day 2, T cells were washed and plated at 1
× 106 cells/well with corresponding pepmix, αCD28/CD49 co-
stimulator, and Brefeldin A and incubated for 6 h. Conditions
were as follows: no pepmix, actin pepmix, SEB, or a mix of
mycobacterial peptides (equal concentrations of PPE68, ESXA,
ESXB, AG85B, and ADK pepmixes) at 2.5 ug/well. After 6 h
incubation in the above conditions, cells were washed, stained for
surface markers, washed, and fixed with 4% paraformaldehyde.
Cells were then permeabilized with saponin (Perm Wash Buffer,
BD Biosciences, San Diego, CA), stained with intracellular
antibodies, and washed. T cells transduced with a chimeric
antigen receptor specific for GD2 were utilized as a control
for presence of co-inhibitory receptors (courtesy of Dr. Crystal
Mackall, Stanford University) (33). Samples were acquired on a
CytoFlex S Flow Cytometer (Beckman Coulter, Indianapolis, IN,
USA), and analyzed in FlowJo VX (FlowJo LLC, Ashland, OR,
USA). Standardized gating strategies were utilized for surface
staining (Supplemental Figure 1) and intracellular staining
(Supplemental Figure 2).
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Multiplex Cytokine Assay
MST product functionality was measured with the Bioplex Pro
Human 17-plex Cytokine Assay kit (Biorad, Hercules, CA, USA).
On Day 1, MSTs from healthy donors were rested overnight
with low dose IL-2 (50 U/mL). On Day 2, T cells were washed
and plated at 1 × 106 cells/well with 1 µl of corresponding
pepmix. Conditions were as follows: No pepmix (control), actin
only (control), SEB (positive control), AG85B, PPE68, ESXA,
ESXB, or ADK at 1 ug/well. On Day 3, supernatants were
harvested from the wells, spun down to remove debris, and
plated on the multiplex plate. For immunodeficient patients,
supernatants were collected from ELISPOT plates to be run
on 17-plex, due to limited cell numbers. The Biorad 17-plex
multiplex manufacturer’s protocol was followed and read on a
MAGPIX System (Luminex, Austin, TX).

HLA Typing
Selected donor samples were sent for high resolution SSO HLA
typing (Kashi Clinical Laboratories, Portland, OR).

Data Analysis
Data analysis was performed in Graphpad Prism (GraphPad
Software, La Jolla, CA) and SAS 9.3 (SAS Institute, Cary, NC).
The Kruskal-Wallis test with two-tail significance level α of 0.05
was used to test for differences betweenmultiple data groups, and
two-tailed T-tests were used for pairwise data analysis.

RESULTS

Mycobacteria-Specific T Cells Can Be
Expanded From Healthy Donors
Ten healthy donors were evaluated for T cell responses to
mycobacterial antigens. Six donors had prior histories of BCG
vaccination, of whom three had known histories of positivity
on delayed type hypersensitivity testing but negative chest
radiographs. One had a previously negative Quantiferon test.

Following 10-days ex vivo expansion of MSTs, IFN-γ ELISpot
demonstrated reactivity against a median of 3 of 5 antigens
per subject (range 1–5, Supplemental Table 4). Comparison
of BCG-immunized (Figure 2A) and non-immunized donors
(Figure 2B) demonstrated a greater likelihood of response to
PPE68 (p = 0.028) and ADK (p = 0.015) in the BCG-non-
immunized donors (Supplemental Table 5). Cultures underwent
a mean 4.4-fold expansion, with recovery of 7–11 × 107 cells
(Figure 3A).

Ex vivo Expanded MSTs Are Predominantly
CD4+ T Cells
Flow cytometry of bulk MSTs following culture showed that the
majority of cells were CD4+ T cells (median 63.7% CD3+/CD4+,
range 47.5–77.7%, Figure 3B), with a small minority of CD8+ T
cells (median 6% CD3+/CD8+, range 1.1–23%). The majority of
CD4+ T cells were effectors (median 66.1%, range 60.8–68.9%)
with a smaller central memory population (median 1.6%, range

1.4–4.4%) (Figure 3C). There was no outgrowth of B cells or
NK cells.

Upon restimulation with mycobacterial pepmix, CD4+ T cells
from most donors showed polyfunctionality with production
of TNF and IFN-γ (Figure 4). Multiplex cytokine analysis also
showed production of IL-8, IL-10, IL-13, GM-CSF, MCP1, and
MIP-1b. Most of these cytokines were present at baseline, with
only IFN-γ, TNF, and GM-CSF showing increases in response
to peptide restimulation in all tested healthy donors (n = 4),
vs. IL-13 (2 of 4) or MIP-1b (3 of 4) (Supplemental Figure 3).
Minor CD8+ T-cell fractions expressed perforin at baseline
(Supplemental Figure 4), but had minimal antigen-specific
cytokine release. Expanded MSTs showed low expression of PD1,
low to moderate surface expression of inhibitory co-receptor
LAG3, but lower TIM3 expression than the positive control GD2-
CAR T cells, which are known to highly express co-inhibitory
receptors (Supplemental Figure 5).

Mycobacterial Responses Are Largely
Absent in Patients With
Primary Immunodeficiency
Seven subjects with primary immunodeficiency disorders and
invasive infections with M. avium complex or M. abscessus were
tested for responses against mycobacterial antigens. Underlying
diagnoses were IL12RB1 deficiency, NFKB1 haploinsufficiency,
IFNGR1 deficiency, GATA2 haploinsufficiency, Kabuki
syndrome, NEMO deficiency, and undefined combined
immunodeficiency (CID). Two patients with anti-IFN-γ
autoantibodies and invasive infections with M. avium and M.
abscessus were also evaluated. Following a 10-day expansion,
evaluation of specificity via IFN-γ ELISPOT demonstrated
specificity to mycobacterial antigens in two of the seven patients
with PID (Figure 5A, Supplemental Table 6). The subject with
NFKB1 haploinsufficiency had robust IFN-γ production to
AG85B on ELISPOT and a lesser response to PPE68, and a
subject with NEMO had low-level response to AG85B. Further
evaluation of T cells from the NFKB1 patient showed no
evidence of T cell exhaustion based on expression of inhibitory
co-receptors (Supplemental Figure 5). Studies of the T cells
of three PID subjects via multiplex cytokine analysis showed
no cytokine production in response to mycobacterial pepmix
in two patients, and isolated production of IL-8 in a subject
with IL12RB1 deficiency (Supplemental Figure 3). Both of the
subjects with anti-IFN-γ autoantibodies had detectable T cell
responses to mycobacterial antigens (AG85B and ADK in one
subject, and ESXA and ESXB in the other). Cell expansion
during the culture period was minimal or absent in all patients
(Figure 5B) with the exception of the subject with NFKB1
haploinsufficiency (3.2-fold expansion).

MSTs Expanded Against M. tuberculosis

Lysate or M. avium Sensitin Recognize
Immunodominant Antigens
Following 10 days of culture after stimulation with lysate
from M. tuberculosis or M. avium sensitin, MSTs from all five
tested donors showed specificity for the mycobacterial antigen
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FIGURE 2 | MSTs expanded from healthy donors recognize multiple mycobacterial antigens. IFN-γ ELISpot of ex vivo expanded MSTs at day 10 showed specificity to

multiple mycobacterial antigens in both BCG immunized donors (A) and non-BCG vaccinated donors (B). Significant differences between groups was noted in the

responses against PPE68 (*p = 0.028) and ADK (**p = 0.015). SFC, Spot forming colonies.

pepmixes or against lysate or sensitin (Figure 6). Analysis ofMST
responses via IFN-γ ELISPOT following expansion against the
pepmixes, lysate, or sensitin showed significant differences in the
response to PPE68 (p = 0.032), but not to the other antigens
(Supplemental Table 7). Pairwise analysis showed a statistically
significant difference in the response to PPE68 ofMSTs generated
using pepmix vs. sensitin (p = 0.016), but no difference between
MSTs generated using pepmix vs. lysate (p = 0.173) or lysate
vs. sensitin (p = 0.116). Comparative surface flow cytometry of
MSTs generated using pepmix, sensitin, or lysate, all showed a
predominance of CD4+ effector memory cells, with no notable
differences between subpopulations, and a minimal percentage
of γ/δ T-cells (Supplemental Figure 6).

Epitopes in Mycobacterial AG85B and
ESXB Are Variably Conserved
Across Species
Mapping of epitope recognition within AG85B and ESXB
utilizing IFN-γ ELISPOT demonstrated several epitopes within
each antigen that were recognized by multiple donors. Within
AG85B, five donors recognized peptides #7 and 14, encompassing
amino acid positions 61–75 and 131–145 (Figure 7). Peptide 15
(AA 141–155) elicited a response in two donors, and Peptide
19 (AA 181–195) elicited a response in three donors. Within

ESXB, peptides 8–10 at the C-terminus (AA 71–100) were
recognized by three donors. Analysis of shared donor HLA
alleles using predictive algorithms [NetMHC (http://www.cbs.
dtu.dk/services/NetMHCII/), IEDB MHC Predictor (www.iedb.
org)] (34, 35) suggested Class II MHC restrictions of the AG85B
peptides through HLA DRB4 01:01, DPB1 04:01/02, DRB1 07:01,
and DRB3 02:02, and Class II restrictions of ESXB peptides
through HLA DQB1 03:01/02 and DRB4 01:01 (Table 1).
Analysis of interspecies conservation of these epitopes showed a
high degree of conservation of the AG85B epitopes (67–100%,
Supplemental Figure 7), and low to moderate conservation of
the ESXB epitopes (40–93%, Supplemental Figure 8).

DISCUSSION

Mycobacterial infections are common in immunocompromised
hosts, and treatment can be exceedingly challenging. Even
among immunocompetent individuals, multi-drug resistant
tuberculosis is an emerging problem, with resistance to first
line antimycobacterial agents reported in 4% of new cases
and 21% of previously treated cases worldwide (1). In infants
with SCID or similarly profound forms of PID, clearance of
mycobacterial infections is often impossible without restoration
of T cell immunity (2). The use of repeated whole blood
transfusions from a BCG-immunized sibling was reported as
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FIGURE 3 | Expanded MSTs are mostly CD4+ effectors. (A) Mycobacterial-specific T cells expanded during culture with a mean fold-expansion of 4.4. BCG- = BCG

non-immunized; BCG+
= BCG immunized. (B) Surface phenotyping of MSTs following expansion showed a predominance of CD4+ T cells with large effector

memory population and smaller central memory population. Lines, median value. (C) Example plots from MSTs expanded from Donor 9 show a large CD4+ effector

memory (TEM) population and smaller effector (Teff ) and central memory (Tcm) population, with minimal naïve T cells (Tn).

FIGURE 4 | MSTs expanded from healthy donors are polyfunctional. Intracellular flow cytometry demonstrated production of IFN-γ and TNF in response to

mycobacterial pepmix restimulation exclusively in CD4+ T cells from MSTs expanded from healthy donors, with no responses seen in CD8+ T cells.

adjunctive therapy for an infant with SCID with improvement
in BCGosis (36). Accordingly, adoptive immunotherapy
targeting mycobacteria could be a useful adjunctive therapy
alongside antibiotics.

Our analysis of the functionality of MSTs derived from
healthy donors demonstrated that responses to the selected
mycobacterial antigens were CD4+ restricted and polyfunctional.
All donors (BCG vaccinated or otherwise) recognized at least
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FIGURE 5 | MSTs are deficient in most patients with PID. (A) IFN-γ ELISpot of T cells expanded from patients with primary immunodeficiency disorders (PID) showed

decreased to absent responses to mycobacterial antigens, with exception of a patient with NFKB1 haploinsufficiency. Two patients with IFN-γ autoantibodies had

detectable responses. SEB, staphylococcal enterotoxin B; CID, combined immunodeficiency. (B) Ex vivo culture of T cells from patients with PID yielded no expansion

in all but two patients.

FIGURE 6 | MST responses are comparable using peptide stimulation vs. lysate or sensitin. IFN-γ ELISpot from MSTs expanded using TB lysate (A) or M avium

sensitin (B) showed specificity to multiple mycobacterial pepmixes, which were comparable in magnitude to the response to restimulation with lysate or sensitin.

Differences in responses were only significant for PPE68 (*p = 0.032). SFC, spot forming colonies; SEB, staphylococcal enterotoxin B.
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FIGURE 7 | MSTs recognize multiple epitopes within AG85B and ESXB. Epitope mapping of AG85B (A) and ESXB (B) via IFN-γ ELISpot showed eight peptides from

AG85B and three from ESXB recognized by MSTs from multiple healthy donors. SFC, spot forming colonies; SEB, staphylococcal enterotoxin B.

one antigen. Analysis of responses between BCG-vaccinated
and unvaccinated showed a difference in response magnitude
on ELISPOT for PPE68, but not for the other four antigens.
ESXA and ESXB were recognized by both donor groups, in spite
of the fact that these genes are deleted in BCG. None of the
donors had prior histories of tuberculosis infection. This may
suggest that the reactivity to EXSA and ESXB (as well as the
other antigens in the non-vaccinated donors) represents prior
responses to other encountered mycobacterial species. If true,
this would support the existence of cross-reactive epitopes shared
amongst these species. Multiplex cytokine analysis showed
consistent IFN-γ, TNF, and GM-CSF production in response
to antigen restimulation, as well as IL-13 and MIP1a in a
subset of donors. GM-CSF production has been described in the
setting of experimental mycobacterial infection, though its role
in human infection is less clear (37). IL-13 is a Th2 cytokine
associated with fibrosis and mucus production, and was only
noted in BCG-unvaccinated donors. It is possible that BCG
vaccinationmay be the cause of the absence of IL-13 in vaccinated
donors, and may reinforce a Th1 skewed cytokine response
to these antigens in vaccinated individuals. Many studies have
highlighted the importance of Th1 CD4+ T cell responses in
activating macrophages to control mycobacterial disease (38).
In experimental models, Th2 cytokines have been associated
with progression of mycobacterial infections, though in human
tuberculosis, it is unclear if elevated Th2 cytokine profiles are a
cause or consequence of mycobacterial infections.

In adoptive immunotherapy with partially HLA-matched
virus-specific T cells, the HLA matching algorithm between the
VST donor and recipient appears to be one of the key steps in
improving the efficacy of this therapy, as identification of the

HLA restriction of one or more immunodominant viral epitopes
has correlated with antiviral activity in vivo (39). Mapping
of mycobacterial epitopes and HLA restrictions would likely
also be essential for “off the shelf ” use of partially matched
MSTs. Here, we describe several novel epitopes within AG85B
and ESXB. Within AG85B, the recognized protein regions
(AA 61–75, 131–145, 141–155, 180–195) were highly stable
across species. Prior studies have shown that these regions are
involved in secondary structure formation, which may explain
their relative stability. Amino acids 181–195 overlapped with
a domain in AG85B that was previously predicted to contain
T cell epitopes and elicited ex vivo CD4+ T cell proliferation
(31). Recognized epitopes within the C-terminus of ESXB were
more variable across species. This region of the protein has
been described to be essential for monocyte binding of the
ESXB complex, and accordingly may play an important role
in mycobacterial pathogenesis (40). It has been postulated
that ESXA/ESXB deletion contributes to the attenuation of
BCG. Further testing of additional donors with a wide breadth
of HLA types would be needed to better understand the
breadth of HLA restrictions of these antigens as well as the
stability of epitopes in clinically isolated mycobacterial species.
Comparison of published protein sequences across different
mycobacterial species shows differing degrees of homology
(Supplemental Table 8).

The genomes of mycobacterial species average 2 MB with
>2,000 described genes in many species. Accordingly, there
are likely a vast number of immunogenic proteins beyond
the five antigens tested in this study. However, use of M.
tuberculosis lysate and M. avium Sensitin as non-biased antigen
sources still yielded reactivity to the selected proteins. Though
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the breadth of antigen responses is likely much broader than
the selected proteins, they were not overshadowed due to
antigenic competition during expansion. Previous studies have
similarly described cross reactivity between M. tuberculosis and
non-tuberculous mycobacteria, though the biologic importance
of immunologic responses to these shared antigens remains
unclear (41).

There is also evidence that γ/δ T-cells are activated by
phosphate antigens from mycobacteria, though their role in
the control of mycobacterial infections remains unclear (42).
However, we did not observe expansion of γ/δ T-cells even when
utilizing whole cell lysates from M. tuberculosis, which contains
lipids and carbohydrates in addition to proteins.

Though T cell immunity is clearly important for anti-
mycobacterial defense, myeloid cells are also essential, as
demonstrated by many forms of primary immunodeficiency
such asGATA2 haploinsufficiency, IFNGR1/2 deficiency, Chronic
granulomatous disease, and IRF8 deficiency. Of the tested
patients with PID, responses to mycobacterial antigens were only
found in two patients with NFKB1 haploinsufficiency (two of
five antigens) and NEMO (one of five antigens). Responses were
detectable in both tested patients with anti-IFN-γ autoantibodies,
which was expected with ex vivo expansion of these patient’s
cells in the absence of patient serum. NFKB1 and related
disorders have been well-described to cause impairment of T
cell proliferation, and subtle T cell abnormalities have also been
described in IFNGR1 deficiency (43, 44). T cell lymphopenia has
been also described in GATA2 haploinsufficiency (45).

In this study, we have shown that mycobacterial-specific
T cells can be reliably expanded from healthy donors using
a rapid expansion protocol that is compatible with good
manufacturing practices. Though T cell therapy alone would
likely not be helpful for forms of PID with predominantly
myeloid defects, one could envision usage of MSTs shortly after
myeloid engraftment post-transplant in order to hasten recovery
of T cell control of infection, which would otherwise not be
expected to occur until months later. Though further work will
be necessary to better characterize ideal donors, antigens, and T
cell characteristics, T cell immunotherapy targetingmycobacteria
could be a useful future treatment for patients with invasive
mycobacterial infections.
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