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The tumor microenvironment (TME) is mainly composed of tumor cells, tumor-infiltrating
immune cells, and stromal components. It plays an essential role in the prognosis and
therapeutic response of patients. Nonetheless, the TME landscape of urothelial cancer
(UC) has not been fully elucidated. In this study, we systematically analyzed several UC
cohorts, and three types of TME patterns (stromal-activation subtype, immune-enriched
subtype and immune-suppressive subtype) were defined. The tumor microenvironment
signature (TMSig) was constructed by modified Lasso penalized regression. Patients were
stratified into high- and low-TMSig score groups. The low-score group had a better
prognosis (p < 0.0001), higher M1 macrophage infiltration (p < 0.01), better response to
immunotherapy (p < 0.05), and more similar molecular characteristics to the luminal
(differentiated) subtype. The accuracy of the TMSig for predicting the immunotherapy
response was also verified in three independent cohorts. We highlighted that the TMSig is
an effective predictor of patient prognosis and immunotherapy response. Quantitative
evaluation of a single sample is valuable for us to combine histopathological and molecular
characteristics to comprehensively evaluate the status of the patient. Targeted
macrophage treatment has great potential for the individualized precision therapy of
UC patients.
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INTRODUCTION

Urothelial carcinoma of the bladder comprises two disease entities with different molecular
characteristics and clinical outcomes (Knowles and Hurst, 2015). It is one of the most common
malignant tumors of the genitourinary system, and it was estimated that there will be 83,730 new
cases and 17,200 deaths worldwide in 2021 (Siegel et al., 2021). Non-muscle invasive bladder cancer
(NMIBC) accounts for approximately 70% of newly diagnosed bladder cancers and comprises
different entities, including carcinoma in situ (CIS), noninvasive nipple tumors, and papillary tumors
invading the lamina propria. The overall survival (OS) rate of patients with NMIBC has been
approximately 90% for 5 years. However, approximately 15 to 20% of NMIBC progresses to muscle
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invasive bladder cancer (MIBC), and CIS and advanced
papillomas are more likely to progress to MIBC than low-
grade papillomas. MIBC refers to tumor invasion of the
detrusor, the prognosis of it is poor. It easily metastasizes and
the determination of treatment is complex and difficult (Knowles
and Hurst, 2015; Dinney et al., 2004; Kamat et al., 2016; Siegel
et al., 2018; Magers et al., 2019; Patel et al., 2020).

Over the past few decades, cancer treatment has undergone
revolutionary changes, from traditional chemotherapy and
radiation-targeting of tumors to antibody-based
immunotherapy. This antibody-based therapy can more
accurately regulate the immune response to tumors. The
clinical treatment for metastatic urothelial carcinoma has also
changed dramatically due to recent immunotherapy
developments (Li et al., 2019a; Powles et al., 2020).
Immunotherapy with immune checkpoint blockades, such as
those targeting PD-1/PD-L1 and CTLA-4, has shown amazing
clinical benefit in a small number of patients who achieve a
persistent response. However, the clinical efficacy in most
patients is small or nonexistent, far from meeting clinical
needs (Topalian et al., 2012).

Traditional cognition holds that tumor progression is
caused only by alterations in the genetic or epigenetic
characteristics of tumor cells. However, with the gradual
deepening of research, it has become clear that the TME
also plays a key role in the growth and survival of tumor
cells (Zhang et al., 2020a). Tumor cells can not only adapt and
survive in such environments but also evade the detection and
elimination by the host immune surveillance system by
disguising themselves as normal cells. It can also induce
various biological behavior changes by directly and
indirectly interacting with other TME components,
inducing processes such as cell proliferation, immune
tolerance, and angiogenesis (Zhang et al., 2020a; Zhang
et al., 2020b). Determining the status of TME at the time of
diagnosis can help determine their response to
immunotherapy (Rosenberg et al., 2016) and provide
information on the benefit of chemotherapy (Jiang et al.,
2018). The changes in the infiltration levels of CD8+ T cells,
CD4+ T cells and tumor-associated macrophages in the TME
are related to the prognosis of a variety of malignant tumors,
including urothelial carcinoma, melanoma, lung cancer, breast
cancer and gastric cancer (Turley et al., 2015; Nishino et al.,
2017; Mariathasan et al., 2018; Zeng et al., 2019). Increasing
evidence has confirmed the clinicopathological significance of
TME infiltration for predicting patient prognosis and
therapeutic responses. However, the comprehensive
landscape of the TME in UC has not been fully elucidated
up to now.

In this study, we comprehensively evaluated the TME pattern
by integrating multi-omics data from multiple cohorts. The TME
phenotype was associated with the genomic, clinical, and
pathological features of UC and a scoring scheme was
established to quantify the immune status of a single sample.
The TMSig was constructed by modified Lasso penalized
regression and could serve as a robust predictor of patient
prognosis and immunotherapy response.

MATERIALS AND METHODS

We used five urothelial cancer cohorts were used in this study,
including the IMvigor210 cohort (Balar et al., 2017), the TCGA-
BLCA cohort (Robertson et al., 2017), the GSE32548 cohort
(Lindgren et al., 2012), the GSE48075 cohort (Choi et al.,
2014), and the UTUC cohort (Su et al., 2021). The TMSig
constructed in the current study was assessed for prognostic
ability in all five independent cohorts and the combined cohort.
We also obtained pretreatment tumor expression profiles from
three cohorts receiving immunotherapy to examine the response
to immunotherapy in high- and low-scoring populations.
Expression profile data for human cancer cell lines (CCL) data
was from the Broad Institute Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019). In addition, molecular and drug
sensitivity data from two pharmacogenomic datasets (CTRP and
PRISM) (Basu et al., 2013; Yu et al., 2016) of hundreds of CCLs
were used to estimate drug response in clinical samples.

Additional detailed methodological descriptions, including the
data preprocessing process, assessment of immune cell
infiltration levels, identification of TME regulatory patterns,
biofunctional analysis, TMSig construction process and
evaluation of clinical applicability, clinical cohort drug
sensitivity assessment, and statistical analysis were described in
detail in Supplementary Materials and Methods.

RESULTS

The Landscape of TME Immune Cell
Infiltration of Urothelial Cancer and the
Identification of TME Patterns
An overview of our research is shown in Figure 1A. First, we
systematically constructed a landscape of the TME immune cell
network that comprehensively demonstrated the interactions
between immune cells (Supplementary Figure S1A). Then,
CIBERSORT algorithms were performed to quantify the
infiltration levels of immune cells in UC tissues
(Supplementary Table S1). According to the immune cell
infiltration data and clinical information of 348 patients
(Supplementary Table S2), we performed unsupervised
clustering to classify the UC patients into three distinct
subtypes (Figure 1B), including 62 patients in TME-ClusterA,
137 patients in TME-ClusterB, and 149 patients in TME-
ClusterC (Supplementary Figure S1B). And there were
significant differences in prognosis outcomes among these
clusters. The TME-ClusterB exhibited a prominent survival
advantage, while the prognosis of patients in TME-ClusterA
was the worst (log-rank test, p � 0.01, Figure 1C). And the
distribution of immune cell infiltration in the IMvigor210 cohort
was shown in Figure 1D. In addition, we also performed
CIBERSORT analysis in The Cancer Genome Atlas (TCGA)
cohort and used the same parameters for consistent clustering.
We found that the TCGA cohort could also be divided into three
categories, and also had a significant difference in prognosis
among three categories (log-rank test, p � 0.00052,
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Figure 1E), which further indicates the rationality of stratifying
urothelial cancer patients according to TME characteristics.
Interestingly, we found that in the TCGA cohort, there was a
partial overlap in the survival curves between ClusterB and
ClusterC, which is most likely due to a batch effect between
these two cohorts. And the main conclusion that ClusterB has the
best prognosis and ClusterA has the worst prognosis obtained by
clustering is not affected.

Immune-associated cells could reflect the characteristics of
individual immunemicroenvironment to a certain extent, and the

immune checkpoint is also considered to be an important factor
in predicting the response to immunotherapy. The Kaplan-Meier
analysis we performed also showed that patients with different
levels of immune cell infiltration and immune checkpoint
expression had significant difference in clinical prognosis
(Supplementary Figure S2). In order to explore the
characteristics of patients in different patterns, we carried out
a detailed comparison of them. The expression levels of CD8+

effector T cells and immune checkpoints in patients of TME-
ClusterB were higher than those in patients in the other clusters

FIGURE 1 | Landscape of the TME in urothelial cancer and characteristics of TME subtypes. (A) The overview of study design. (B) Consensus matrixes of all
patients with urothelial cancer for each k (k � 2–5), displaying the clustering stability using 1,000 iterations of hierarchical clustering. (C) Kaplan-Meier curves for overall
survival (OS) of urothelial cancer patients from the IMvigor210 cohort with the TME patterns. (D) Immune infiltration cells expressed in TMEclusters. The range of p values
are labeled above each boxplot with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (E) Kaplan Meier curves for overall survival (OS) of urothelial
cancer patients from the TCGA cohort with the TME patterns.
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(p < 0.05) (Figures 2A,B). These results strongly imply that
patients in TME-ClusterB may be more likely to benefit from
immunotherapy, which is consistent with the favorable prognosis
in TME-ClusterB patients. The high level of immune-associated
cell infiltration level also indicated that this cluster may be
associated with multiple immune-related responses or activities
and could be identified as immune-enriched subtype. TME-
ClusterA was associated with the activation of epithelial-
mesenchymal transition (EMT), the transforming growth
factor-β (TGF-β), and Wnt signaling pathways (Figures 2C–I).
The expression of specific immune checkpoints was also lower in
this cluster (Figure 2J). The patients in this cluster had the worst
prognosis, and the infiltration levels of T regulatory cells and M0
andM2macrophages in this cluster were significantly higher than
those in other clusters. Based on these characteristics, this cluster
could be identified as the stromal-activation subtype.
Interestingly, we also observed abundant immune cell
infiltration in TME-ClusterC, such as memory B cells, plasma
cells, CD4+ memory resting T cells, monocytes, resting dendritic
cells, activated dendritic cells, activated mast cells, and
eosinophils, but the relative abundance of immune cells did
not significantly change the prognosis of these patients, and
their powerful antitumor effect was suppressed. So, we defined
this group as the immune-suppressive subtype.

Identification of TME-Cluster Related
Differentially Expressed Genes (DEGs) and
Functional Analysis
To clarify the unique biological role of each cluster in the TME,
we performed a differential expression analysis with the limma
package. Each cluster was compared with the other clusters in
the cohort, and a total of 7,996 DEGs were identified
(Supplementary Figure S3A and Supplementary Table
S3). Based on these DEGs, the GSVA package was used to
analyze the specific enrichment pathways of each cluster
(Supplementary Table S4). We found that TME-ClusterA
was significantly enriched in HALLMARK EPITHELIAL
MESENCHYMAL TRANSITION, HALLMARK
COAGULATION, and HALLMARK ANGIOGENESIS,
which may be related to the poor prognosis outcome
(Supplementary Figure S3B). We conducted a functional
enrichment analysis by the clusterProfiler R package
(Supplementary Table S5) and found enrichment mainly in
neutrophil activation, neutrophil-mediated immunity, T cell
activation, regulation of innate immune response, and other
immune-related Gene Ontology (GO) terms (Figure 2K). This
once again proved the close relationship between the DEGs
and immune-related functions.

FIGURE 2 |Molecular characterization of TME-Clusters and identification of Gene-Cluster. (A) CD8+T cell effector, (B) Immune checkpoint signature, (C–E) EMT-
related signature, (F). Pan_F_TBRs signature, (G) TGFb Family Member signature, (H) TGFb Family Member Receptor signature, (I)WNT target signature. (J) Immune
checkpoints expression in TME-Clusters. (K) GO enrichment analysis of the TME-related genes. (L) Kaplan–Meier curves for Gene-Clusters. (M) Immune checkpoints
expression in Gene-Clusters. (N) Immune infiltration cells expressed in Gene-Clusters. The range of p values are labeled above each boxplot with asterisks (*p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 3 | Exploring the clinical practice value of TMSig. (A) Kaplan-Meier curves for overall survival (OS) of patients from the train cohort. (B) Kaplan-Meier curves
for OS of patients from the test cohort. (C)Kaplan-Meier curves for OS of patients from the IMvigor210 cohort. (D) Independent prognostic analysis of TMSig. (E)Kaplan-
Meier curves for OS of patients from the GSE32548 cohort. (F) Kaplan-Meier curves for OS of patients from the GSE48075 cohort. (G) Kaplan-Meier curves for OS of
patients from the UTUC cohort. (H)Dynamic nomogram for clinical practice. (I)Calibration curve analysis. (J) The decision curves analysis. (K) The c-index of TMSig
compared with other signatures.
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To further explore the association between the DEGs and
phenotypes, we conducted another unsupervised clustering
analysis (Supplementary Figure S3C) and found that the
cohort could also be divided into three cohorts with significant
prognosis differences (log-rank p � 0.045) (Figure 2L). We
referred to these as Gene-Clusters A, B, and C. Patients in
Gene-ClusterB had the best prognostic outcomes, while
patients in Gene-ClusterA had the worst. Using a chi-square
analysis to compare the gene clusters and TME patterns, we
found good consistency between these two grouping
methods (χ2 contingency tests, p < 2.2e-16). The
distribution of patients by TME patterns and TME gene
clusters are shown and specific information can be found in
Supplementary Table S6. There were also significant
differences in the level of immune checkpoint expression
(Figure 2M) and immune cell infiltration (Figure 2N)
among these gene clusters, indicating that these gene
clusters could also represent the TME characteristics of
the patients.

Construction of the TMSig
For the TME-related DEGs, we first matched expression data
with clinical information, then reduced the dimension by using
the univariate Cox regression model and used the more stringent
p < 0.01 as the screening criterion to select 318 prognosis-related
genes for further analysis (Supplementary Table S7). Next, we
divided the IMvigor210 cohort into a training set and testing set
at a ratio of 7:3. In the training set (n � 244), we performed
modified Lasso regression analysis to construct the TMSig. In
the process of cyclic calculation, we found that the maximum
AUC value of the TMSig at 2 years was 0.906 (Supplementary
Figure S4A). We defined the gene signature present at this
time as the best candidate model. The prognosis of the low-
score group was significantly better than that of the high-
score group in the training set (log-rank p < 0.0001)
(Figure 3A). Similar to the results obtained with the
training set, the low-score group had a better prognosis in
the internal testing set (log-rank p < 0.0001) (Figure 3B) and
in the entire IMvigor210 cohort (log-rank p < 0.0001)
(Figure 3C). The ROC curves proved the robust predictive
ability of the TMSig, and the AUC at 1 year was 0.88 and
0.906 at 2 years in the training set. The AUC at 1 year was
0.747, and that at 2 years was 0.805 in the testing cohort. In
the whole cohort, the AUC was 0.840 at 1 year and 0.876 at
2 years (Supplementary Figures S4B–D). Then we
performed the univariate Cox regression algorithm to
analyze TMSig together with other clinical characteristics
of the patients in the training set. And further included them
in the multivariate Cox regression algorithm after screening
out the features with p < 0.05. And the same analysis was
performed not only in the train cohort, but also in the test
cohort and the entire IMvigor210 cohort. The p-value of
TMSig < 0.05 in each time of analysis, proving that it can be
served as an independent prognostic factor for patients
(Figure 3D). And the TMSig also showed better
prognostic predictive power in three independent cohorts
(Figures 3E–G).

The TMSig score had a significantly different distribution in
BOR, immune phenotype, IC level and other subgroups
(Kruskal−Wallis, p < 0.05) and had a difference in TC level,
but it was not significant (Supplementary Figures S4E–H). To
further verify the reliability of the TMSig for predicting the
prognostic outcomes, we performed a stratified analysis based
on the clinical information of the IMvigor210 cohort. Through
the Kaplan-Meier analysis, we found the TMSig has a great
performance in several clinical subgroups (Immune phenotype:
immune desert type, immune excluded type, immune inflamed
type, IC level: IC0, IC1, IC2, Sex: Male, Female, BOR: SD/PD, CR/
PR, TC level: TC0, TC1, TC2, Tobacco history: NEVER,
PREVIOUS OR CURRENT, Supplementary Figures S4I–W).
We also conducted an external verification of the prognostic
value of the TMSig in the independent TCGA-BLCA cohort
and found that it was of great significance for predicting both
the overall survival (OS) and disease-specific survival (DSS)
rates of these patients (Supplementary Figures S5A,B). In
addition, stratified analysis of the TCGA cohort showed that
the TMSig had significant prognostic significance in patients
with higher disease stages (Supplementary Figures S5C,D),
which inspired us to conclude that the TMSig may play a
unique role in predicting the prognosis of patients with
advanced neoplasia.

To improve the clinical application of TMSig, we constructed
dynamic nomogram (TMSigDynNomapp: https://the-
nomogram.shinyapps.io/TMSigDynNomapp/, Figure 3H),
while calibration plots showed that comprehensive
signature has accurate predictive power at different time
points (Figure 3I). Decision curve analysis also showed
that comprehensive signature can provide better clinical
benefit to patients compared to applying gender, IC level,
and other indicators for prediction (Figure 3J). Compared
with other previously reported bladder cancer-related
signatures, TMSig also has more robust predictive power
(Figure 3K).

The TMSig Could Effectively Predict Patient
Response to Immunotherapy and
Correlates With Immune Cell Infiltration,
Tumor Mutation Load (TMB), and Tumor
Neoantigen Burden (TNB)
We used ROC curves to evaluate the ability of the TMSig score
to predict the efficacy of immunotherapy among patients in the
IMvigor210 cohort and compared the score with known
effective predictors such as TMB (Samstein et al., 2019),
TNB (Wolf et al., 2019), and M1 macrophages (Zeng et al.,
2020). It was found that the accuracy of the TMSig in
effectively predicting the response to immunotherapy was
not inferior to that of other biomarkers. (TMSig score
AUC: 0.826, TMB AUC: 0.728, TNB AUC: 0.767, M1
macrophage AUC: 0.702) (Supplementary Figure S5E). To
fully demonstrate the robustness of the TMSig for predicting
immunotherapy response, we included two independent data
sets for external validation. The AUC predicted by the TMSig
score in the data from Miao et al. was 0.75 (Supplementary
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Figure S5F), and the AUC predicted by the TMSig score in the
GSE35640 dataset was 0.687 (Supplementary Figure S5G). All
these results indicate the great potential of the TMSig for
discriminating patients who may benefit from
immunotherapy.

It is well known that patients with different infiltration levels
of immune cells have different prognostic outcomes or treatment
responses. Therefore, we performed a Spearman correlation
analysis to explore the relationship between the TMSig score
and the infiltration level of various immune cells and found

that there was a significant positive correlation between the
TMSig score and M0 macrophages, resting mast cells,
neutrophils, and eosinophils (p < 0.05, cor > 0) and a
significant negative correlation with the infiltration level of
follicular helper T cells, activated NK cells, gamma delta
T cells, memory B cells, CD4+ memory-activated T cells,
and M1 macrophages (p < 0.05, cor < 0) (Figure 4A). The
strongest positive correlation was between the TMSig score
and M0 macrophages (Figure 4B), and the strongest negative
correlation was between the TMSig score and M1 macrophages

FIGURE 4 | The association of TMSig score with immune-associated cells, TMB and TNB. (A) The correlation of TMSig score with immune cell infiltration level. The
depth of the color represents the p-value and the size of the dot represents the absolute value of the correlation coefficient. (B) The correlation of TMSig score with M0
Macrophage. (C) The correlation of TMSig score with M1 Macrophage. (D) Modest but significant correlation of TMSig score with TNB. (E) The correlations of TMSig
score with TMB. (F) Kaplan-Meier curves for patients stratified by both TNB and TMSig score. (G) Kaplan-Meier curves for patients stratified by both TMB and
TMSig score.
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(Figure 4C). There was a moderate but significant negative
correlation between the TMSig score and TNB (Kruskal-
Wallis, p � 0.00049) (Figure 4D), and the correlation
between the TMSig score and TMB also demonstrated the
same trend (Figure 4E). Intriguingly, combining the TMSig
score with TMB or TNB contributed to the survival
assessment (Kaplan-Meier analysis, TMSig score +TNB

binary: p < 0.0001; TMSig score +TMB binary: p <
0.0001) (Figures 4F,G). We should clear that the
correlation between TMSig and M1 macrophages is strong
and deserves focused attention. But its correlation with TMB
or TNB is moderate, which could provide direction for our
study, but the exact relationship needs to be verified by
further studies.

FIGURE 5 |Molecular differences between high- and low-score subgroups and distribution among previous subtypes. (A) The TMSig score in the high score group
was significantly higher than that in the low score group. (B) The expression level of immune checkpoints in the high score and low score groups. (C) Immune infiltration
cells are expressed in the high score and low score groups (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (D) The immune therapy response and TIDE value of
patients with urothelial cancer. (E) The subclass mapping analysis showed a significant difference in response to anti-PD-1 therapy among these two groups. The
distribution of TMSig score of the IMvigor210 cohort in molecular subtypes. (F) Baylor subtype, (G) UNC subtype, (H)MDA subtype, (I) TCGA subtypes. The distribution
of TMSig score of the TCGA cohort in molecular subtypes. (J) Baylor subtype, (K) UNC subtype, (L) MDA subtype, (M) TCGA subtypes.
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Characteristic Differences Between the
High and Low TMSig Score Groups
The high-score group had a higher TMSig score (Wilcoxon, p <
2.2e−16) (Figure 5A), indicating that the two groups have unique
features not only in prognosis but also in immune-related
characteristics. TIGIT, CD274, CTLA4, PDCD1, and LAG3
presented higher expression levels in the low score group (p <
0.05) (Figure 5B), which suggests that people with low TMSig
scores might have a better response to immunotherapies targeting
immune checkpoints. The immune infiltration cell analysis also
showed that these two groups had significantly different marker
immune cells (Figure 5C). Then, we used the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm to evaluate each
patient’s potential response to immunotherapy and observed
that the responsiveness of immunotherapy in the low-score
group was higher than that in the high-score group (p � 0.02)
(Figure 5D). Moreover, subclass mapping was performed with

another group of 47 melanoma patients who responded to
immunotherapy (Roh et al., 2017). We were encouraged by the
observation that a low score indicated potential patient
response to PD-1 treatment. (Bonferroni corrected p �
0.008) (Figure 5E). These results reconfirmed the
application value of the TMSig. To further explore the
significantly enriched pathways of the DEGs between the
two groups, we carried out GSEA using the clusterProfiler
and fgsea R packages. It was found that HALLMARK
ANGIOGENESIS, HALLMARK TGF-ß_ SIGNALING,
HALLMARK APOPTOSIS, HALLMARK HYPOXIA, and
HALLMARK P53 PATHWAY were significantly enriched in
the upregulated genes (Supplementary Table S8), which may
be related to poor prognosis.

In addition, we found that the high-score samples of the
Baylor subtype and UNC subtype were mainly concentrated in
the basal type (Wilcoxon, Baylor subtype, p � 2.1e-04; UNC

FIGURE 6 | Identification of candidate agents with higher drug sensitivity in high-TMSig score patients. (A) A venn diagram of compounds from the CTRP and the
PRISM datasets. (B) Schematic outlining the strategy for identification of potential therapeutic agents. (C) Comparison of estimated cisplatin’s sensitivity (logAUC)
between high GULP1 expression and low GULP1 expression groups. (D) The results of differential drug response analysis and Spearman’s correlation analysis of
compounds from CTRP datasets. (E) The results of differential drug response analysis and Spearman’s correlation analysis of compounds from PRISM datasets.
(F) Unpaired comparative analysis of target genes for potential drugs. (G) Paired comparative analysis of target genes for potential drugs.
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subtype, p � 2.8e-04) (Figures 5F,G), and the TMSig score in the
basal MDA subtype was also significantly higher than that in the
luminal type and p53-like type (Kruskal−Wallis, p � 3e−06)
(Figure 5H). In the TCGA subtypes, high scores were mainly
distributed in clusters III and IV (Figure 5I), and it is generally
believed that clusters I/II and III/IV in the molecular subtypes
officially obtained by the TCGA are similar to differentiated (or
luminal) and basal tumors, respectively (Mo et al., 2018). We also
verified the distribution of TMSig scores among the four
classification methods in the independent TCGA-BLCA
dataset, and the results were consistent with those of the
IMvigor210 cohort (Figures 5J–M). Therefore, we inferred
that the TMSig is closely related to molecular subtypes of
bladder cancer, and different scores may indicate different
molecular characteristics, which is of great significance for
further understanding the characteristics of these two groups.

Identification of Potential Therapeutic
Agents for High TMSig Score Patients
The CTRP and PRISM datasets contain gene expression profiles
and drug sensitivity profiles for hundreds of CCLs and can be
used to construct predictive models of drug response. After
removing duplicate drugs, these two datasets share 168
compounds, for a total of 1752 compounds (Figure 6A). We
removed drugs with deletion values greater than 20% and cell
lines derived from haematopoietic and lymphoid tissue. Finally,
680 CCLs for 354 compounds in the CTRP dataset and 480 CCLs
for 1285 compounds in the PRISM dataset were used for
subsequent analyses. The specific screening process is shown
in Figure 6B. Before proceeding further, we first demonstrated
that the results of drug response estimation are reliable. Cisplatin
is a common therapeutic agent for bladder cancer patients, and a
recent study showed that high GULP1 expression enhanced the
sensitivity of patients to cisplatin (Teramoto et al., 2021). We
divided the patients into high and low expression groups
according to the expression level of GULP1. The Wilcoxon
rank sum test was used to compare the difference in AUC
estimates of cisplatin between the two groups, and the results
showed that the AUC estimates were significantly higher (p �
0.003) in patients with high GULP1 expression (Figure 6C),
consistent with the clinical presentation of cisplatin. After
verifying the reliability of the calculation method, we adopted
a similar analysis method to Yang et al. (2021). First, differential
drug response analysis was performed between the group with
high TMSig score (upper decile) and the group with low TMSig
score (lower decile) to identify the group with high TMSig score
(log2FC > 0.10) with low estimated AUC values. Then, by
Spearman correlation analysis between AUC value and TMSig
score, compounds with negative correlation coefficients
(Spearman’s r < −0.30 for CTRP or <0.45 for PRISM). These
analyses yielded one CTRP-derived compound (PD318088) and
two Prism-derived compounds (Levocarnitine, YM−976)
(Figures 6D,E). Secondly, the fold-change difference of the
expression level of candidate drug target genes between tumor
tissues and normal tissues (including paired analysis and
unpaired analysis) was calculated. A higher fold change value

indicated a greater potential of candidate agent for UC treatment
(PD318088: MAP2K1, MAP2K2; YM−976: PDE4B, PDE4D)
(Figures 6F,G). Finally, we searched at PubMed (https://www.
ncbi.nlm.nih.gov/PubMed/) to find evidence of candidate
compounds for UC treatment. Overall, PD318088 and
YM−976, with relatively sufficient evidence, are considered to
be the most promising potential treatment drugs for people with
high TMSig score.

DISCUSSION

Mounting evidence has identified the essential role of the TME in
the occurrence and development of UC and the prognosis of
patients. However, there is still a lack of comprehensive
understanding of the tumor microenvironment of UC. So, we
comprehensively analyzed a large cohort of UC patients and
constructed the TMSig to comprehensively analyze the tumor
microenvironment pattern and predict the survival rate of UC
patients and guide more accurate and effective applications of
immunotherapy and chemotherapy strategies.

Compared with previous published articles, our study has
significant innovation and advantages. Our study not only
identified TME patterns in patients with urothelial cancer and
established TMSig as a metric to quantify individual patients, but
also developed a convenient and practical webpage nomogram,
which is more clinically useful than the study by Meng et al.
(2021). Meanwhile, the predictive power of TMSig for
immunotherapy response has been fully validated by the TIDE
algorithm, Submap algorithm, and multiple clinical cohorts
receiving immunotherapy. Moreover, potential sensitive drugs
have been fully explored with the help of the robust approach.
Compared with the study of Meireson et al. (2021), it is a greater
improvement in the depth and breadth. In addition, we
performed the improved lasso algorithm, which is more
advanced in its selection compared to the study of Zhang
et al. (2021). Besides, we used multiple omics data such as
genomics, transcriptomics to make the analysis more in-depth
and complete. Compared with many previous reported signatures
(Sun et al., 2021a; Sun et al., 2021b; He et al., 2021; Yan et al.,
2021), the predictive power of TMsig is more outstanding.
Besides, the TMSig scoring system we constructed can
effectively assess the immune profile of patients with urothelial
cancer and predict patient prognosis, which we have validated
with a sample of 1025 cases. To make the TMSig score better
applicable to clinical practice, we included TMSig and IC level in
the follow-up analysis and constructed a web-based dynamic
nomogram. And the high accuracy and better clinical benefit
results of this nomogram was well demonstrated by calibration
plots and decision curves. In addition, TMSig can identify
potential therapeutic agents for high-risk populations and fully
validate them with robust methods to guide clinical precision
treatment.

In this study, we identified a TME pattern with a stromal-
activation subtype, immune-enriched subtype and immune-
suppressive subtype based on unsupervised consensus
clustering of immune cell infiltration in the TME. These
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subtypes are characterized by different immunophenotypes and
immune states, which are related to different prognostic
outcomes and antitumor immunity levels. Mariathasan et al.
found that TGF-β inhibits antitumor immunity by limiting
T cell infiltration to shape the tumor microenvironment
(Tauriello et al., 2018). Blockade of TGF β signal transduction
makes it easy to target tumors with anti-PD-1/PD-L1 checkpoint
therapy (Panagi et al., 2020). They also found that TGF-
β-blocking antibodies and anti-PD-L1 therapy reduced the
transduction of TGF-β signaling in stromal cells and improved
the infiltration level of T cells into the center of the tumor, thereby
stimulating a strong antitumor immune response and causing
tumor regression (Tauriello et al., 2018). Based on these findings,
we speculate that the stromal-activation subtype may benefit
from a combination of immune checkpoint block drugs and
TGF-β blockers (Lan et al., 2018; Ravi et al., 2018). The immune-
enriched subtype is similar to the known immunoinflammatory
phenotype. This finding supports the potential predictive value of
the benefits of immunotherapy. Zhao et al. demonstrated that the
immunoinflammatory phenotype of triple-negative breast cancer
is characterized by the infiltration of CD8+ T cells into the tumor
parenchyma (Mariathasan et al., 2018). Job et al. reported that the
immune-inflammatory type is characterized by a large level of T
lymphocyte infiltration and the activation and upregulation of
inflammatory and immune checkpoint pathways. This phenotype
is associated with better patient prognosis (Zhao et al., 2020). Our
study also revealed that the patients in this subtype had the best
prognosis outcomes, which is similar to the results of previous
studies.

The TMSig score had the strongest significant negative
correlation with M1 macrophages and the strongest significant
positive correlation with M0 macrophages. Regarding the low-
score group, M1 macrophage infiltration was significant, and the
prognosis was good, while in the high-score group, M0
macrophage infiltration was significant, and the prognosis was
poor. This suggests that the different states of macrophages may
be an important reason for the difference in prognosis among
patients with different scores. Tumor-associated macrophages
(TAMs) are one of the most abundant matrix components in the
tumor microenvironment (Mantovani et al., 2008; Hanahan and
Weinberg, 2011; Li et al., 2019b). Previous studies have mainly
focused on M2 macrophages because they account for the vast
majority of TAMs and have the potential for transformation (Ge
et al., 2019). However, M0 and M1 macrophages have attracted
increasing attention. M2 macrophages differentiated from M0
macrophages were also highly infiltrated in the population with
high infiltration of M0 macrophages, which inhibited
inflammation, T cell proliferation and differentiation and
promoted angiogenesis of the tumor matrix and tumor cell
proliferation (Bingle et al., 2002; Gordon, 2003; Pollard, 2004;
Mantovani et al., 2005; Hume, 2015). These mechanisms cannot
be ignored due to the poor prognosis of this population. In
addition, M1 macrophages have been proven by a previous study
to be an important marker for predicting patient prognosis
outcomes and the immunotherapy response of patients with
mUC (Zeng et al., 2020; Mantovani et al., 2017), and their
anticancer ability, such as activating the inflammatory

response, participating in host innate immunity and inhibiting
tumor cells in the TME, has also been widely recognized (Bingle
et al., 2002; Gordon, 2003; Pollard, 2004; Mantovani et al., 2005;
Hume, 2015). Samples with highM1 infiltration levels often show
immune activation, while those with low M1 infiltration may
show an activation of steroid hormone metabolism, which may
promote the exclusion of CD8+ T cells from the TME (Zeng et al.,
2020; Ma et al., 2019). Therefore, the different states of
macrophages between the high- and low-score groups worth
investigating further and may contribute to the accurate
application of treatments (Li et al., 2019b; Tang et al., 2013).

In this study, we found that the high TMSig score group was
mainly distributed in the basal subtype, with poor prognosis and
significantly lower expression levels of immune checkpoints,
which was consistent with previously reported characteristics
of the basal subtype (Mo et al., 2018), and the low-score
group presented similar characteristics to the differentiated (or
luminal) subtype. This indicates that the TMSig score could
effectively represent the tumor differentiation status of the
samples. In addition, the TMSig score verified the robustness
of the prediction of patient immunotherapy response in multiple
independent cohorts and was not limited to the comparison of
the expression levels of relevant genes, which also demonstrates
the superiority of our approach in comparison with signatures
reported in previous studies. EGFR pathways are specifically
activated in basal-like MIBC. In vitro and in vivo experiments
have also proven that basal-like MIBC cell lines are sensitive to
EGFR inhibitors, suggesting that EGFR has great potential as a
basal-likeMIBC treatment target (Rebouissou et al., 2014). Due to
the close correlation between the high-score group and basal-like
MIBC, EGFR is worth further investigations in this group. In
addition, because of the remarkable tumor heterogeneity in
bladder cancer, research on the subtype-specific targets and
treatment therapies of bladder cancer is important and urgent.

High TNB and TMB in tumors are related to enhanced
responses to immunotherapy (Samstein et al., 2019; Zeng
et al., 2020). The new antigens generated by somatic cell
mutations in tumors represent a promising method to
promote tumor immune recognition. The main hypothesis of
immunotherapy is that tumors with elevated TMBwill have more
new antigens and therefore have higher immunogenicity (Wolf
et al., 2019). The TMSig score was closely related to immune
response predictors, suggesting that it may be related to different
immunotherapy responses. Independent prognostic analysis
showed that the TMSig score is an independent prognostic
factor for UC patients and is not affected by other factors. The
correlation coefficient between them was relatively low,
indicating that the TMSig score, TMB, and TNB represent
different aspects of tumor immune features. In addition, the
high- and low-score groups not only had significant differences in
survival and prognosis outcomes but also had significant
differences in responses to immunotherapy. GSEA also
showed that many carcinogenic pathways were significantly
activated in high-score patients. The sensitivity of patients
with high and low scores to different chemotherapeutic drugs
has also been explored, which will provide new clinical treatment
ideas for patients with urothelial carcinoma.
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In the current study, we combined multicohort and
multigroup data to comprehensively evaluate multidimensional
features associated with TME infiltration patterns. We
constructed the TMSig, an effective predictor of prognosis,
immunotherapy response by scoring patients, which provides
new insights into the identification of subtype-specific
populations and markers. The low-score group had a better
prognosis, better response to immunotherapy, stronger
infiltration of M1 macrophages and was more inclined to be
in the luminal (differentiated) molecular subtypes. In addition,
macrophage-targeted therapy should be considered. Giving full
consideration to the antitumor effect of M1 macrophages may
have an essential impact on the prognosis of UC patients.
Although there is significantly difference of the immune
checkpoint distribution between high and low score groups,
they had some overlap. So, its clinical application should be
more cautious in predicting immune checkpoints. Besides, our
findings should be further verified in more prospective cohorts to
define the clinical application value more accurately. The
important role of macrophages in UC patients should be
further explored at the single-cell level. Since not all patients
with higher TMSig scores benefit from immunotherapy, more
meaningful clinical features should be included in the predictive
model to improve its accuracy.

CONCLUSION

Through a comprehensive and systematic analysis of the TME
characteristics of UC patients, we identified the TMSig score as an
independent prognostic factor. The TMSig score can not only
accurately predict the prognosis outcomes of patients with UC
but also robustly predict patient immunotherapy response in
multiple independent cohorts. Interestingly, we found that the
TMSig score may play a unique role in high-grade and advanced-
stage UC. The high- and low-risk TMSig score groups are in good
agreement with the previously recognized molecular subtypes.
This enables us to combine histopathological staging with
molecular subtypes, comprehensively evaluate the samples, and
inspire new ideas for subtype-specific precision therapy. We also
found that the difference in the state of macrophages may be the
essential factor underlying the difference in patient prognoses.
The in-depth study of macrophage-targeted therapy would have
great value in advancing the individualized therapy approach for
patients with urothelial cancer.
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