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Purpose: This study aimed to evaluate the feasibility of differentiating the atrial fibrillation

(AF) subtype and preliminary explore the prognostic value of AF recurrence after ablation

using radiomics models based on epicardial adipose tissue around the left atrium

(LA-EAT) of cardiac CT images.

Method: The cardiac CT images of 314 patients were collected wherein 251 and 63

cases were randomly enrolled in the training and validation cohorts, respectively. Mutual

information and the random forest algorithmwere used to screen for the radiomic features

and construct the radiomics signature. Radiomics models reflecting the features of

LA-EAT were built to differentiate the AF subtype, and the multivariable logistic regression

model was adopted to integrate the radiomics signature and volume information. The

same methodology and algorithm were applied to the radiomic features to explore the

ability for predicting AF recurrence.

Results: The predictive model constructed by integrating the radiomic features and

volume information using a radiomics nomogram showed the best ability in differentiating

AF subtype in the training [AUC, 0.915; 95% confidence interval (CI), 0.880–0.951]

and validation (AUC, 0.853; 95% CI, 0.755–0.951) cohorts. The radiomic features have

shown convincible predictive ability of AF recurrence in both training (AUC, 0.808; 95%

CI, 0.750–0.866) and validation (AUC, 0.793; 95% CI, 0.654–0.931) cohorts.

Conclusions: The LA-EAT radiomic signatures are a promising tool in the differentiation

of AF subtype and prediction of AF recurrence, which may have clinical implications in

the early diagnosis of AF subtype and disease management.

Keywords: atrial fibrillation, computed tomography angiography, epicardial adipose tissue, radiomics approach,

recurrence
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INTRODUCTION

Atrial fibrillation is the most common arrhythmia (1). Common
complications of AF include: heart failure, coronary heart disease,
stroke, etc., resulting in a fatality rate of about 20% and a disability
rate of nearly 60% (2–5).

AF can be characterized as paroxysmal and persistent
according to the duration of their episodes. The characterization
of patients with AF has clinical relevance in the treatment
strategy and therapy outcomes. Clinical studies have confirmed
the effectiveness and safety of catheter ablation in the
treatment of AF. However, persistent AF (PeAF) remains
burdened with higher recurrence rates after catheter ablation
than paroxysmal AF (PAF) (6, 7). Therefore, accurate AF
subtype characterization is essential for patient evaluation and
prognosis prediction.

Meanwhile, epicardial adipose tissue (EAT) is a special
visceral adipose tissue located between the myocardium
around the heart and the visceral pericardium. It reflects
visceral obesity and is a crucial source of inflammatory
mediators (8–10). EAT surrounding the left atrium (LA-
EAT) may cause local inflammation and fibrosis (8, 10, 11).
Mazurek et al. found that LA-EAT has higher inflammatory
activity compared to subcutaneous or visceral thoracic
tissues (12).

EAT can be assessed by using non-invasive imaging
techniques especially on cardiac computed tomography (CT)
with high spatial resolution. It is reported that the EAT
volume around the whole heart was found to be correlated
with the AF occurrence, severity, and recurrence (13–15).
Furthermore, increased fat thickness directly adjacent to the LA
is notably related to the AF burden (16). Ciuffo et al. found
that the CT attenuation of the LA-EAT was an independent
predictor of AF recurrence after the first ablation (17). The
morphological and quantitative analysis of both EAT and LA-
EAT showed potential in differentiating AF characteristics and
predicting recurrence.

Radiomics has recently received increased attention in
medical imaging analysis. Radiomics can quantitatively describe
tissue heterogeneity, which was objective but not visually

recognizable, by extracting quantitative features from medical
images with high throughput (18–20). In the cardiovascular

imaging field, radiomics has been proved useful in several topics,

such as differentiating the myocardium of hypertensive heart
disease from hypertrophic cardiomyopathy (21), identifying
coronary plaques with napkin-ring sign, etc. (22). These studies
showed that radiomics may have the potential to provide
an accurate prediction for the AF subtype characteristics and
recurrence, given its broad application prospects.

Therefore, this study aims to analyze radiomic features
extracted from the LA-EAT on cardiac CT images and establish
a machine learning-based radiomics model to differentiate
the characteristics and further predict AF recurrence
after ablation, which is expected to provide guidance to
identify high-risk individuals (PeAF and AF recurrence
after ablation), to actively intervene in treatment to improve
patient prognosis.

MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Institutional
Review Board. The written informed consent was waived.
The population of this study consisted of 332 hospitalized
AF patients who underwent cardiac computed tomography
angiography (CCTA) of LA and pulmonary veins (PV) from
January 1st 2017 to December 31th 2017 were enrolled. All our
patients received ablation as a treatment procedure. According
to the exclusion criteria, 314 patients with non-valvular AF
(207 and 107 patients with PAF and PeAF, respectively) were
finally enrolled in this study (Supplementary Data 1). The flow
diagram of this study is illustrated in Figure 1. The cohort
was then randomly divided into the training and validation
cohorts of 251 and 63 patients, respectively, at an 8:2 ratio
(Figure 2).

Ablation Procedure
The patient was treated with cryo-balloon ablation of AF
and local anesthesia with 2% lidocaine. Subsequently, the
left and right femoral veins were punctured, and electrodes
were placed in the coronary sinus, right ventricular apex, and
superior vena cava. Complete atrial septal puncture under
the guidance of X-rays to assess the shape, thickness, and
presence of branches and co-intervention of PVs. The guide
wire is inserted into the LA, and then place the cryo-
balloon delivery catheter to deliver the cryo-balloon, and
cryo-balloon ablation is performed on the four PVs. The
ablation endpoint was defined as the electrical isolation of
bilateral PV.

Follow-Up
All patients received 8 weeks of antiarrhythmic medication
after AF catheter ablation. AF recurrence was defined
as AF, atrial flutter, or atrial tachycardia that were
recorded on the electrocardiograph or 24 h dynamic
electrocardiograph for more than 30 s after the blank period
of ablation (within the first 3 months after surgery) (23)
within 1 year.

Image Acquisition and EAT Morphological
Measurement
All CCTA scanning was accomplished using a third-generation
dual-source CT scanner (Somatom Force, Siemens Heathineers,
Forchheim, Germany). The detailed scanning protocol and image
acquisitions are shown in Supplementary Data 2.

The EAT and LA-EAT were measured using the commercial
post-processing workstation (SyngoVia, VB20, Siemens
Healthineers, Forchheim, Germany). We adopted software
(Cardiac risk analysis, SyngoVia, Research Frontier, Siemens
Healthineers) to segment EAT automatically, and checked by two
radiologists, who were blinded to the patients’ clinical history. To
delineate LA-EAT, we loaded the EAT mask into the Radiomics
software (SyngoVia, Research Frontier, Siemens Healthineers)
(24). Initially, the LA-EAT mask was manually tracked on the
axial image, the upper boundary is the pulmonary artery, the
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FIGURE 1 | The patient enrollment flow diagram.

FIGURE 2 | Flowchart of the current study.

lower boundary is the coronary sinus, and manually trimmed
using EAT as a reference. Then, LA-EAT was automatically
identified using the threshold of −200 to −50 HU. Meanwhile,
the EAT and LA-EAT volumes in cubic centimeters were
measured (Figure 3).

Radiomic Feature Extraction
All extractions of radiomic features were put into effect by
the radiomics software based on the PyRadiomics library (25)
according to the Imaging Biomarker Standardization Initiative
requirement (26). Six classes of radiomic features with five
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FIGURE 3 | (A) EAT. (B) LA-EAT. EAT, epicardial adipose tissue; LA-EAT, epicardial adipose tissue surrounding the left atrium.

transformations were calculated for each volume of interest
(VOI). Detailed descriptions of extracted features are shown in
Supplementary Data 3.

Feature Selection and Model Construction
Feature reproducibility was first evaluated for screening out
stability features. Fifty cases were randomly selected for repeated
segmentation, and Spearman’s correlation coefficients were
calculated for all extracted features. Features with Spearman’s
correlation coefficient < 0.80 were considered as having poor
stability and reproducibility and were excluded for further
analysis. In addition, feature dependency was evaluated by
implementing mutual information calculation between all stable
features and targeted labels. Features with mutual information
> 0.05 were finally screened out for model establishment.
Subsequently, the random forest algorithm, which was suited
for a large number of heterogeneous predictors and correlated
observations and selected by various radiomics studies (27), was
implemented as a machine learning-based classifier in this study.
Parameter estimation using a grid search with ten-fold cross-
validation was applied to the training data for parameter tunings.
The Gini importance of each variable can be gained by summing
the Gini impurity reduction of each variable of all trees in the
random forest model. The radiomics models (Rmodel) reflecting
the LA-EAT features were built to differentiate the AF subtypes.

Univariate analysis was applied to assess the relevance
of clinical characteristics and measured volume signatures.
Variables with p < 0.05 were included in the following
modeling. Multivariate stepwise logistic regression with a
minimum Akaike information model selection criterion (28)
was then implemented and screen-independent factors among
the clinical model (Cmodel) and the model based on volume

values (Vmodel). Additionally, a nomogram was established by
integrating the radiomic features and the volume information
(Commodel) to further evaluating the diagnosis value of EAT
features extracted from CT images.

The same methodology and algorithm were applied to the
radiomic features to explore the prognostic value for disease
recurrence in patients within 1 year.

Model Performance Assessment
This study evaluated model performance from three aspects:
diagnostic accuracy, the goodness of fit, and clinical gain.
The receiver operating characteristic curve (ROC), heatmap,
specificity, and sensitivity were applied in training and validation
cohorts for appraising the model diagnostic accuracy. The
comparisons between AUC in models were performed by the
Delong’s test. The goodness of fit of models was appraised by
the calibration curve and Brier score. The clinical net benefits
of the different threshold probabilities were calculated by the
decision curve analysis (DCA) in the validation cohort, thereby
determining the clinical applicability of the prediction models of
this study.

Statistical Analysis
Normality was checked by the Kolmogorov-Smirnov test. The
normally distributed variables are described as mean ± standard
deviation, and the non-normally distributed variables are
described as median (25th−75th percentiles). Use the χ

2 test or
Fisher’s exact test to compare categorical variables. The Student’s
t-test and the Wilcoxon rank-sum test were used for comparing
continuous variables. The statistical analysis was performed on
SPSS version 25.0, R software (Version 3.6.1; Boston, MA, USA)
and Python with scikit-learning package (version 0.23, https://
scikit-learn.org/stable/index.html). More detailed information
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can be found in Supplementary Data 4. A p-value < 0.05 (two-
sided) was considered statistically significant.

RESULTS

Clinical Characteristics
The clinical characteristics and morphological parameters of the
patients in the training and validation cohorts are illustrated in
Table 1. No statistically significant discrepancy exists between
these two cohorts except gender, whichmay be due to the fact that
the cohort was randomly divided into the training and validation
cohorts. The univariate analysis of the clinical characteristics and
morphological parameters of the paroxysmal and persistent AF
is summarized in Table 2. Moreover, the univariate analysis of
clinical characteristics and morphological parameters of the AF
recurrence is summarized in Table 3.

Feature Selection and Radiomics Signature
Construction for Distinguishing AF Types
Extracted from the VOI with nine filtering types and eight
wavelet transformations were 1,674 radiomic features including
18 and 75 first-order and texture features, respectively.
Ninety low reproducible and unstable features that had
a correlation coefficient < 0.8 (0.7–0.8) were excluded.
Afterward, 302 features were further screened out by the
dependency test with mutual information > 0.05. Finally,
14 features were ranked among the remaining features
for all training cohorts (Supplementary Figure 1) including
four and ten first-order and textual features, respectively
(Supplementary Table 1). The heatmap of selected features can
be found in Supplementary Figure 2. The Rmodel based on

these extracted 14 radiomic features was then built to differentiate
the AF subtype.

Development, Performance, and Validation
of AF Types Prediction Models
Two clinical features (including gender and BMI) and three-
volume values (including LA volume, EAT volume, and LA-EAT
volume) among all the clinical characteristics and volume values
were selected by univariate analysis (Table 2), the Cmodel was
then built based on two independent predictors (gender and
BMI) of the AF subtype, and the Vmodel was built based on
three independent predictors (LA, EAT, and LA-EAT volumes)
of the AF subtype. Then, LA and LA-EAT volumes were selected
into the radiomics signature of the Commodel by multivariate
stepwise logistic regression method (Table 4). The nomogram
integrating the radiomic features and the volume information is
shown in Figure 4.

The performance of all four models for differentiating the AF
subtype was analyzed by ROC curve (Figures 5A,B; Table 5).
In the training cohort, the Commodel demonstrated the best
discrimination between PAF and PeAF with an area under the
curve (AUC) of 0.915 [95% confidence interval (CI), 0.880 and
0.951], which was significantly higher than that of the Cmodel
(AUC, 0.716; 95% CI, 0.649 and 0.783; p< 0.001), Rmodel (AUC,
0.874; 95% CI, 0.830 and 0.918; p= 0.01), and the Vmodel (AUC,
0.879; 95% CI, 0.835 and 0.924; p = 0.004). In the validation
cohort, the Commodel also yielded a higher AUC (0.853; 95% CI,
0.755 and 0.951), proving a better predictive effectiveness than
the Cmodel (AUC, 0.565; 95% CI, 0.417 and 0.713; p< 0.001),but
no statistical significance was found between the Commodel and

TABLE 1 | Clinical characteristics and morphological parameters in the training and validation cohorts.

Characteristic Training cohort

(251 patients)

Validation cohort

(63 patients)

p

Age (years) 62.00 (55.00, 67.00) 64.00 (57.00, 68.00) 0.13

BMI(Kg/m2 ) 25.01 ± 3.00 24.64 ± 3.48 0.41

TC (mmol/L) 4.43 ± 0.99 4.37 ± 1.16 0.67

LDL-C(mmol/L) 2.63 ± 0.84 2.60 ± 0.91 0.87

HDL-C(mmol/L) 1.22 ± 0.25 1.19 ± 0.26 0.44

TG (mmol/L) 1.58 ± 0.87 1.44 ± 0.76 0.24

Gender Male 148 (59.0%) 46 (73.0%) 0.04

Female 103 (41.0%) 17 (27.0%)

Diabetes Absent 216 (86.1%) 57 (90.5%) 0.35

Presence 35 (13.9%) 6 (9.5%)

Hyperlipidemia Absent 147 (58.6%) 34 (54.0%) 0.51

Presence 104 (41.4%) 29 (46.0%)

Hypertension Absent 115 (45.8%) 36 (57.1%) 0.11

Presence 136 (54.2%) 27 (42.9%)

LAV (mL) 114.86 ± 36.45 121.05 ± 36.95 0.24

EATV (mL) 113.02 ± 48.11 119.92 ± 60.03 0.34

LA-EATV (mL) 24.50 ± 12.63 27.21 ± 15.35 0.15

A p-value < 0.05 was considered as statistically significant. BMI, body mass index; EATV, EAT volume; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; LAV, LA volume; LA-EATV, LA-EAT volume; TC, total cholesterol; TG, triglyceride.
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TABLE 2 | Univariate analysis of clinical characteristics and morphological parameters in the PAF and PeAF training cohorts.

Characteristic PAF

(173 patients)

PeAF

(78 patients)

P

Age (years) 63.00 (56.00, 68.00) 60.00 (54.00, 66.00) 0.06

BMI (Kg/m2) 24.51 ± 2.96 26.11 ± 2.81 <0.05

TC (mmol/L) 4.39 ± 0.99 4.53 ± 0.97 0.28

LDL-C (mmol/L) 2.57 ± 0.85 2.74 ± 0.81 0.15

HDL-C (mmol/L) 1.24 ± 0.25 1.17 ± 0.24 0.58

TG (mmol/L) 1.51 ± 0.84 1.74 ± 0.92 0.05

Gender Male 87 (50.3%) 61 (78.2%) <0.05

Female 86 (49.7%) 17 (21.8%)

Diabetes Absent 145 (83.8%) 71 (91.0%) 0.13

Presence 28 (16.2%) 7 (9.0%)

Hyperlipidemia Absent 105 (60.7%) 42 (53.8%) 0.31

Presence 68 (39.3%) 36 (46.2%)

Hypertension Absent 75 (43.4%) 40 (51.3%) 0.24

Presence 98 (56.6%) 38 (48.7%)

LAV (mL) 100.07 ± 25.92 147.67 ± 35.08 <0.05

EATV (mL) 102.76 ± 43.69 135.76 ± 49.92 <0.05

LA-EATV (mL) 21.17 ± 10.35 31.88 ± 14.08 <0.05

A p-value < 0.05 indicates a statistical difference. PAF, paroxysmal atrial fibrillation; PeAF, persistent atrial fibrillation; BMI, body mass index; TC, total cholesterol; HDL-C, high-density

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; LAV, LA volume; EATV, EAT volume; LA-EATV, LA-EAT volume.

TABLE 3 | Univariate analysis of clinical characteristics and morphological parameters in AF non-recurrence and recurrence training cohorts.

Characteristic Non-recurrence

(183 patients)

Recurrence

(68 patients)

P

Age (years) 62.00 (56.00, 67.00) 62.00 (52.25, 67.00) 0.10

BMI (Kg/m2) 24.98 ± 2.96 25.08 ± 3.12 0.83

TC (mmol/L) 4.41 ± 0.97 4.49 ± 1.04 0.55

LDL-C (mmol/L) 2.61 ± 0.83 2.68 ± 0.86 0.53

HDL-C (mmol/L) 1.23 ± 0.25 1.18 ± 0.26 0.19

TG (mmol/L) 1.56 ± 0.82 1.63 ± 1.00 0.56

Gender Male 110 (60.1%) 38 (55.9%) 0.55

Female 73 (39.9%) 30 (44.1%)

Diabetes Absent 158 (86.3%) 58 (85.3%) 0.83

Presence 25 (13.7%) 10 (14.7%)

Hyperlipidemia Absent 108 (59.0%) 39 (57.4%) 0.81

Presence 75 (41.0%) 29 (42.6%)

Hypertension Absent 80 (43.7%) 35 (51.5%) 0.27

Presence 103 (56.3%) 33 (48.5%)

LAV (mL) 114.34 ± 36.12 116.27 ± 37.54 0.71

EATV (mL) 113.68 ± 48.88 111.22 ± 46.31 0.72

LA-EATV (mL) 24.44 ± 12.45 24.64 ± 13.18 0.91

A p-value < 0.05 indicates a statistical difference. PAF, paroxysmal atrial fibrillation; PeAF, persistent atrial fibrillation; BMI, body mass index; TC, total cholesterol; HDL-C, high-density

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; LAV, LA volume; EATV, EAT volume; LA-EATV, LA-EAT volume.

Vmodel (AUC, 0.789; 95% CI, 0.675 and 0.903; p = 0.14) and
between the Commodel and Rmodel (AUC, 0.775; 95% CI, 0.659
and 0.892; p= 0.11).

The calibration curve of the prediction model manifested
goodness of fit between observed and predicted AF subtypes in

the training cohort. The Brier scores of the Rmodel, Cmodel,
Vmodel, and Commodel were 0.150, 0.190, 0.124, and 0.105,
respectively. Generally, a lower Brier score implies better model
calibration and discrimination. Hence, the Commodel had better
goodness of fit than the other three models (Figure 6A).
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TABLE 4 | Risk factors for AF subtype.

Variable Odds ratio P-value

Cmodel

Gender 0.30 (0.16, 0.56) <0.001

BMI (Kg/m2) 1.19 (1.08, 1.32) <0.001

Vmodel

LAV (mL) 1.05 (1.04, 1.07) <0.001

EATV (mL) 0.99 (0.97, 1.00) 0.16

LA-EATV (mL) 1.09 (1.02, 1.17) 0.02

A p-value< 0.05 indicates a statistical difference. BMI, body mass index; LAV, LA volume;

EATV, EAT volume; LA-EATV, LA-EAT volume.

The DCA for all models was presented in Figure 6B. The
Commodel had the highest overall net benefit ratio than the
Rmodel, Cmodel, and Vmodel.

Recurrence Prediction Model
Of the 314 enrolled patients, 79 patients had a recurrence of AF,
while 235 patients had no recurrence of AF. Apply univariate
analysis to assess the relevance of the clinical characteristics
and measured volume signatures. No factors were associated
with AF recurrence (Table 3). Twenty-six features were finally
screened out in the radiomics model (Supplementary Figure 1)
includes 2 and 24 first-order and textual features, respectively
(Supplementary Table 2). The heatmap of selected features can
be found in Supplementary Figure 2.

The model performance for predicting AF recurrence was
analyzed by the ROC curve (Figure 7). It was performed with
an AUC of 0.808 (95% CI, 0.750–0.866) and 0.793 (95% CI,
0.654–0.931) in the training and validation cohorts, respectively.
Additionally, the radiomics model achieved an accuracy of
0.661 (95% CI, 0.599–0.720) and 0.635 (95% CI, 0.504–0.753),
sensitivity of 0.882 (95% CI, 0.781–0.948) and 0.818 (95%
CI, 0.482–0.977), and specificity of 0.579 (95% CI, 0.504–
0.652) and 0.596 (95% CI, 0.451–0.730) in the training and
validation cohorts.

DISCUSSION

This study showed that the model established by integrating
the volume information and the radiomics signature of LA-EAT
extracted from CT images showed the convincing differentiation
ability of AF subtype. Furthermore, the performance of the
Rmodel and the Vmodel were better than the Cmodel, indicating
that the incorporation of CT images information into the
predictive model can make up for the poor prediction in
the AF subtype using the model constructed based on the
clinical information alone. In addition, a quantitative radiomics
prediction model based on LA-EAT features for the recurrence
of AF was also preliminary developed and validated, suggesting
potential in the management strategy of AF. On the contrary,
no clinical and volume value model was developed due to the
lack of statistical difference between the recurrent and non-
recurrent groups.

This study showed that textual features accounted for the
majority of the selected features (10 of 14 in the prediction of
AF subtypes model; 24 of 26 in the prediction of AF recurrence
model). Similarly, previous studies suggested that textual features
of adipose tissue affect the histological heterogeneity of the
adipose tissue. In addition, the hounsfield units of inflamed tissue
is higher than that of non-inflammatory tissue (29). Indeed,
inflammatory pathways resulting in structural changes within
the LA were crucial in the AF mechanism. EAT is a source
of inflammatory mediators (8, 30). Moreover, biopsies in AF
patients have found inflammatory cells in the atrial tissue. A local
inflammatory response may cause fibrosis in the surrounding
atrial myocardium, and then lead to the development of AF (31).
Mazurek et al. found that inflammatory activity of EAT value
on fluorodeoxyglucose positron emission tomography images
was strongly correlated with AF, which was absent in the
subcutaneous adipose tissues (12). These may explain the finding
of Kusayama et al. (32), in which the mean LA-EAT density
of PAF patients on CT images was higher than that of normal
people. For the same reason, the ten and four texture and first-
order signatures, respectively, extracted by radiomics methods
in this study were able to reflect the textural changes and voxel
intensities of LA-EAT demonstrating great potential in predicting
characteristics and AF recurrence.

In addition, a preliminary exploration of the prediction of AF
recurrence by radiomics signatures was conducted. The literature
suggests the increase in the inflammatory environment before
ablation is related to the AF recurrence after catheter ablation
(33) indicating that an elevated inflammatory environment may
have occurred before the recurrence. Opolski et al. (34) found
that the orifice area of the right superior PV is an independent
predictor of postoperative new AF. The best predictive cutoff
values are 4.1 cm2 and 3.4mL, respectively. The majority
of textual features in the radiomics signature predicting AF
recurrence describes the heterogeneity in the image. Thus, the AF
recurrence after catheter ablation can be predicted.

No significant difference in other clinical parameters,
including age, the prevalence of hypertension, diabetes mellitus,
and dyslipidemia were found in neither subtype nor recurrence
groups in this study except for the difference of BMI and
sex between the PAF and PeAF groups. This suggested that
clinical characteristics provided limited usefulness in predicting
the subtype and AF recurrence, which may lean more on CT
images. In addition, The AUC value of the Cmodel in the
validation cohort (AUC: 0.565) has a significant drop relative to
the training cohort (AUC: 0.716). This may be due to differences
in gender distribution between training and validation cohorts
caused by random grouping, which may also indicate the poor
generalization of the Cmodel. Despite the difference in gender
distribution between the two cohorts, the commodel showed
statistically better diagnostic performance than the Cmodel in
both cohorts.

This study showed that LA volume being integrated into the
Commodel yielded better performance than the model based
radiomic features alone. Patients with PeAF had a significantly
larger LA volume than the patients with PAF, which was
consistent with previous studies (35). AF can cause undesirable
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FIGURE 4 | The radiomics nomogram of a personalized predictive model.

FIGURE 5 | Comparison of ROCs between the Rmodel, Cmodel, Vmodel, and Commodel for the prediction of AF subtype in the (A) training and (B) validation

cohorts. Rmodel, radiomics signature model; Cmodel, clinical model; Vmodel, the model based on volume values; Commodel, the model combined with both

radiomic features and volume information.
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TABLE 5 | The performance of all the four models for differentiating the AF subtype.

Model Rmodel Cmodel Vmodel Commodel

Accuracy Training cohort 0.745 (0.686, 0.798) 0.665 (0.603, 0.723) 0.821 (0.768, 0.866) 0.849 (0.798, 0.891)

Validation cohort 0.667 (0.537, 0.781) 0.603 (0.472, 0.724) 0.730 (0.604, 0.834) 0.810 (0.691, 0.898)

Sensitivity Training cohort 0.897 (0.808, 0.955) 0.808 (0.703, 0.888) 0.744 (0.632, 0.836) 0.782 (0.674, 0.868)

Validation cohort 0.828 (0.642, 0.942) 0.655 (0.457, 0.821) 0.690 (0.492, 0.847) 0.793 (0.603, 0.920)

Specificity Training cohort 0.676 (0.601, 0.745) 0.601 (0.524, 0.675) 0.856 (0.794, 0.904) 0.879 (0.820, 0.923)

Validation cohort 0.529 (0.351, 0.702) 0.559 (0.379, 0.728) 0.765 (0.588, 0.893) 0.824 (0.655, 0.932)

Cmodel, clinical model; Commodel, the model combined with both radiomic features and volume information; Rmodel, radiomics signature model; Vmodel, the model based on

volume values.

FIGURE 6 | (A) Calibration curves of the Rmodel, Cmodel, Vmodel, and Commodel. (B) The decision curve analysis for the Rmodel, Cmodel, Vmodel, and

Commodel. The decision curve analysis showed that the Commodel had the highest overall net benefit ratio compared with the Rmodel, Cmodel, and Vmodel.

Rmodel, radiomics signature model; Cmodel, clinical model; Vmodel, the model based on volume values; Commodel, the model combined with both radiomic

features and volume information.

LA remodeling. Increased LA volume leads to a greater degree of
mechanical remodeling (36). On the other hand, the EAT volume
showed no statistical significance in the multivariate analysis
and was not an independent predictive factor for AF subtype
characterization. This may suggest that the LA-EAT volume is a
more reliable factor in deciding the AF subtype compared with
the EAT volume as the former was focused on LA by providing
dedicated LA information.

The majority of EAT studies in patients with AF remain
observational. Limited studies attempted to decide on the AF
subtype and recurrence by clinical or imaging parameters. Oba
et al. (37) adopted an EATV index thatwas related to the AF
subtype to predict the prevalence of AF. Moreover, it has been
found that the PAF and PeAF development can be predicted by
their cutoff values. However, only EAT around the entire heart
was analyzed in the study of Oba et al. Additionally, Ciuffo
et al. (17) found that LA-EAT attenuation was an independent

predictor of AF recurrence. However, only two- and four-
chamber views were used which may induce the missing regions
that were not covered by those two views. On the contrary, a
large number of radiomic features from LA-EAT were extracted
in this study. Meanwhile, the clinical characteristics and volume
values of LA, LA-EAT, and EAT were analyzed as well. This
study also compared the performances of these three properties-
based model in AF subtype prediction and further explored the
predictive value of the radiomic features in AF recurrence.

This study has several limitations. First, the segmentation of
EAT was automatically obtained while LA-EAT was drawn semi-
automatically which can cause inconsistency. Thus, consistency
assessment was applied to examine feature stability to minimize
the impact of segmentation bias. Second, this was a single-center
retrospective study. Several factors would potentially influence
the texture analysis and establishment of predictive models,
ranging from image acquisition to texture analysis. Therefore,
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FIGURE 7 | The ROC of the radiomics signatures model for predicting AF recurrence in the training and validation cohorts.

further studies with more samples and on different scanners with
different scanning protocols need to be performed to verify the
reliability and reproducibility of this predictive model.

CONCLUSIONS

To sum up, this study established a combination model
integrating the radiomics signature and volume features
derived from cardiac CTA that allows the pre-evaluation of
AF characteristics. Furthermore, the radiomic features were
also proven reliable and has the potential in predicting AF
recurrence. Thus, radiomics may be a promising technology in
personalizing therapy and risk management for patients with AF
by characterizing the LA-EAT from the CT imaging.
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