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ABSTRACT

Cancer evolves through the accumulation of so-
matic mutations over time. Although several meth-
ods have been developed to characterize mutational
processes in cancers, these have not been specif-
ically designed to identify mutational patterns that
predict patient prognosis. Here we present CLICnet,
a method that utilizes mutational data to cluster pa-
tients by survival rate. CLICnet employs Restricted
Boltzmann Machines, a type of generative neural
network, which allows for the capture of complex
mutational patterns associated with patient survival
in different cancer types. For some cancer types,
clustering produced by CLICnet also predicts ben-
efit from anti-PD1 immune checkpoint blockade ther-
apy, whereas for other cancer types, the mutational
processes associated with survival are different from
those associated with the improved anti-PD1 survival
benefit. Thus, CLICnet has the ability to systemati-
cally identify and catalogue combinations of muta-
tions that predict cancer survival, unveiling intricate
associations between mutations, survival, and im-
munotherapy benefit.

INTRODUCTION

Cancer progression is a stochastic evolutionary process in
which cells acquire somatic mutations that allow them to
evade growth suppression, resist cell death signals, and en-
hance replication and immune suppression (1,2). Most can-
cers are caused by multiple somatic mutations that together
lead to the cancer phenotype (1,3). The somatic mutations
that cause cancer are often called driver mutations, or sim-
ply, drivers. The drivers can cause impairments in a variety
of functional pathways, including DNA replication, DNA
repair, cell cycle control, and programmed cell death (4,5).
In addition, cancers are extremely heterogeneous, such that

the driver mutations and affected genes vary greatly be-
tween patients, even within the same cancer type (6,7). Al-
though some somatic mutations are indeed drivers that di-
rectly contribute to the cancer phenotype, the substantial
majority are passengers, that is, mutations that are simply
coincidentally present in tumors and have no discernible ef-
fect on the cancer phenotype (8,9,10), some of these muta-
tions could result from DNA repair impairments in cancer.
Thus, it is in general difficult to pinpoint mutations that are
critical for tumor initiation and progression, and to identify
clinically relevant combinations of mutations that could fa-
cilitate stratifying patients by survival rate and/or treatment
response (11,12).

The rapid accumulation of cancer genomic data in re-
cent years has enabled the creation of a comprehensive
collection of somatic mutations in cancer and evaluation
of their impact on tumor progression (13,14,15). In con-
trast to germline mutations, that is, predisposition variants
detected in germline cells, somatic mutations that are the
most common cause of cancer occur in diploid cells and
are tissue-specific. To systematically characterize the muta-
tional processes that promote cancer, mathematical meth-
ods have previously been used to decipher mutational sig-
natures from somatic mutation catalogues (16). These ap-
proaches largely involve modelling specific mutation types
in trinucleotides using Nonnegative Matrix Factorization
(NMF) (16,17,18,19). Although these mutation signatures
successfully characterize key mutational processes for nu-
merous cancers (17,18,19), they are not optimized for the
prediction of patient survival or treatment efficacy. The re-
cent development of immune checkpoint blockade ther-
apies, and particularly, anti-PD1 (programmed death-1)
treatment has demonstrated durable responses in multiple
cancer types, especially, melanoma, lung cancer and mis-
match repair deficient gastrointestinal and endometrial can-
cers (20,21,22). However, not all patients respond to this
treatment, which can incur severe side effects and costs
(23,24), thus adding urgency to the need for the use of mu-
tational data to predict treatment efficacy. Indeed, the first
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FDA-approved marker for anti-PD1 efficacy is based on
high microsatellite instability (MSI-H) (25,26), which re-
sults from mismatch repair deficiency and is therefore linked
to increased mutagenesis (27,28). More recently, high tumor
mutational burden (TMB-H), has also been approved by
the FDA as a marker for anti-PD1 efficacy based on sim-
ilar research (29,30,31,32). However, the MSI-H marker is
limited to gastrointestinal and endometrial cancers, where
mismatch repair deficiency is observed almost exclusively
(33). In addition, the predictive signal of TMB-H status can
be confounded by disease subtype (34,35). When consid-
ered individually, some cancer types do not show associa-
tion between TMB-H and survival with anti-PD1 immune
checkpoint blockade treatment (31,34,35) although such as-
sociation is strongly evident in non small cell lung cancers
(30,34).

Several techniques have been developed to study the asso-
ciations between cancer mutations and survival (36,37,38),
and many studies have reported mutations in distinct genes
that are associated with survival in particular cancer types.
For example, mutations of TP53, KRAS and PIK3CA are
associated with survival in colorectal cancers (39,40,41),
mutations of BRCA1 and BRCA2 in breast and ovarian
cancers (42,43,44), and mutations of BRCA2 in prostate
cancers (45,46). ALK rearrangements are exploited for
treatment and prognosis of non-small cell lung cancer (47),
B2M mutations for multiple myeloma and leukemia prog-
noses (48), c-KIT mutations for gastrointestinal stromal tu-
mors (49), BRAF V600E mutations are predictive of papil-
lary thyroid cancer recurrence (50), and MYCN alterations
are serves as a marker of spontaneous regression in neurob-
lastoma (51). In addition, some RNA based signatures are
employed in the clinic, including the 21-gene signature to
predict breast cancer recurrence (52), and a 17-gene signa-
ture to predict prostate cancer risk and recurrence (53,54).
However, mutation-based studies usually focus on a sin-
gle gene or cancer type, and do not include comprehen-
sive analyses of potential gene interactions that could pre-
dict survival. Several methods have been developed to iden-
tify complex combinations of mutations that correspond
to interaction networks (55,56,57) and/or can be used for
cancer subtype clustering (9,58,59), but to our knowledge,
these precise methods have not been directly harnessed to-
wards survival prediction, despite the observations that sub-
type clustering often defines survival differences (60,61). We
are unaware of efforts to systematically identify and cata-
logue combinations of mutations that would predict sur-
vival across different cancer types. There is therefore a press-
ing need for an approach that could uncover combinations
of mutations that enable clustering cancer patients based on
survival rates derived from mutational patterns, and could
be used to systematically identify mutational patterns that
predict survival in different cancer types.

Here, we present CLICnet (http://clicnet.
pythonanywhere.com/), a computational method for
Clinical Clustering of Cancer patients using neural
NETworks, which includes a collection of independent
predictors trained for different cancer types. To our knowl-
edge, CLICnet is the first method to systematically identify
and catalogue patterns of somatic mutations that are
significantly predictive of survival in different cancer types,

based on subsets of genes from the MSK-IMPACT panel.
CLICnet relies on Restricted Boltzmann Machine (RBM)
(62,63) neural networks to cluster cancer patients into
high and low risk clusters, based on mutations in cancer
type-specific sets of genes. We analyzed 10,141 tumors
samples that represent 15 cancer types, from the Cancer
Genome Atlas (TCGA) (64,65) and Memorial Sloan
Kettering Cancer Center (MSKCC) cohorts (66). CLICnet
was trained and validated on the TCGA and MSKCC
mutation and survival data, respectively, for each cancer
type, to cluster patients into two clusters with significantly
different survival rates, based on mutation patterns. We
catalogued the top 5 combinations of mutations for each
cancer that are predictive of patient survival. In some
cancer types, the CLICnet clusters were also predictive of
the anti-PD1 immune checkpoint blockade therapy benefit.
Thus, CLICnet allows the identification of combinations
of mutations that predict survival, provides a catalogue
of such combinations across different cancer types, and
pinpoints mutation combinations that predict survival
under anti-PD1 treatment in three cancer types.

MATERIALS AND METHODS

Training and validation sample collection and preprocessing

The TCGA (65) mutation data was downloaded from
the Xena browser (67,68) and the corresponding clin-
ical data was obtained (69); the two data sets were
merged using the patient barcode. Survival was set to
the maximum value between the ‘last contact days to’ and
‘death days to’ columns. The MSKCC mutation and clini-
cal data (66) were downloaded from the cBioPortal (70,71)
(https://www.cbioportal.org) and merged using the patient
ID. Survival was set to the ‘OS MONTHS’ column. A large
proportion of the samples in the MSK-IMPACT cohort was
derived from distal metastases in different tissues (55%),
which can bias the analysis, especially because the TCGA
training data considered did not include samples from such
sites. therefore, only the primary site tumor samples in the
MSK-IMPACT cohort were included, by filtering for sam-
ples for which the ‘SAMPLE TYPE’ column was set to ‘Pri-
mary’.

The analyzed cancer types, which are included in both
datasets are detailed in Figure 1 and Supplementary Ta-
ble S4. Given the differences in the assignment of cancer
types and the different cancer types that are included in each
dataset, the samples were aggregated into a total of 15 types
of cancer. We filtered the samples to retain those with one
of the 15 cancer types included in both datasets. Colorec-
tal adenocarcinomas (COAD, READ) were aggregated be-
cause they have similar mutations and clinical characteris-
tics. Non-small cell lung cancers (LUSC, LUAD), and re-
nal cell carcinomas (KIRC,KIRP) were aggregated by the
tissue of origin to increase the sample size, as it has been
done in previous studies (72,73,74,75,76). We verified that
the identified CLICnet gene sets were also associated with
the outcome independently in each of these cancer types
(Supplementary Figure S6). In addition, to evaluate the pre-
dictive ability of CLICnet gene sets that were selected in
non-small cell lung cancer and renal cell carcinoma spe-
cific subtypes, we individually trained CLICnet on LUAD,

http://clicnet.pythonanywhere.com/
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Figure 1. The CLICnet dataset, and the training and validation pipeline. (A) Illustration of the training of CLICnet. The GA is used to select genes that
are given as input to the RBM. The RBM produces two clusters of patients, given the mutations provided by the GA, and the survival difference between
patients in the two clusters is evaluated (via log-rank P-value), and given back to the GA as the fitness function. (B) The datasets used for training and
validation of CLICnet. The numbers in the table refer to the number of samples in each dataset.

LUSC and KIRC (KIRP was excluded because the MSK
data contains only 15 KIPR samples). We could not iden-
tify any gene set specifically for LUSC, likely, due either to
the smaller sample size or the subtype discrepancy between
the TCGA and MSK cohorts. We found five LUAD gene
sets after five training iterations, all of which were signif-
icantly predictive on the MSK data (Supplementary Fig-

ure S7, Supplementary Table S5). In addition, we found
five KIRC gene sets that were significantly predictive on
the MSK data after seven iterations (Supplementary Fig-
ure S7, Supplementary Table S5). The LUAD specific gene
sets show a slightly better predictive ability compared with
the aggregated non-small cell lung cancer gene sets with
fewer training iterations, and the KIRC specific gene sets
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show a comparable predictive ability to the aggregated re-
nal cell carcinoma gene sets with a comparable number of
iterations.

Mutation values per gene were set to 1 if a non-
synonymous mutation was present and to 0 otherwise. Gene
level mutations were used rather than nucleotide level mu-
tations to restrict the overall number of features, avoiding
having many more features than samples, which would hin-
der application of machine learning methods. Two addi-
tional datasets were obtained for melanoma patients treated
with anti-PD1 (77,78), for which the mutational and clini-
cal data were obtained from the cBioPortal (70,71) (https:
//www.cbioportal.org).

RBM structure, training and assessment

RBMs are neural networks that are typically utilized for un-
supervised learning tasks which involve automatically dis-
covering and learning regularities and patterns in the in-
put data such that the model learns to generate new exam-
ples (62,63). The choice of RBMs as the machine learning
technique for this study was motivated by the following: (i)
First, RBMs are specifically designed for applications to bi-
nary and sparse datasets (79). Given the sparse and binary
nature of the mutation data, which is a severe bottleneck
for the application of most machine learning techniques
(80,81), we reasoned that the method of choice should mit-
igate these issues, by being well fitted to process and utilize
this type of datasets. (ii) Second, RBMs are simple, shal-
low and unsupervised, thus allowing interrogation of the
features and weights learned (and therefore, potential inter-
pretability applications), and can learn a distribution over
the data without explicitly optimizing a supervised classi-
fication task, which might lead to overfitting. (iii) Third,
RBMs are generative models. Therefore, they can extract
highly informative features from the input data to learn
the hidden states, which then can be used for clustering.
Because we were interested in clustering patients by muta-
tions in sets of genes, which make a sparse and binary input
data, and aimed for a simple method with potentially inter-
pretable features, RBMs were considered to be the optimal
choice for this study. Each CLICnet RBM is trained for a
specific cancer type, on a specific set of genes. The RBMs
used in this work were constructed with ng visible units and
one hidden unit, where ng is the number of genes in the gene
set. The number of epochs for training each RBM was set
to 1000, with a 0.1 learning rate.

When a trained RBM is applied to mutation data from
a new sample, the hidden unit activation can be either zero
or one, defining the cluster assignment of the samples. To
assess how each RBM clustering predicts patient survival
rates, Cox’s proportional hazard model was applied to the
assigned clusters and the corresponding patient survival
data. Patients were additionally stratified by sex, age and
stage, to ensure that these were not confounders of the
analysis. The subsets of patients with treatment informa-
tion were additionally stratified by treatment, to ensure that
these were not confounders of the analysis. The P-value
was extracted, with a lower P-value indicating a stronger
association between the defined clusters and overall
survival.

Although RBMs are inherently stochastic in both train-
ing and application, the trained RBMs created for CLIC-
net include a deterministic procedure to define the cluster-
ing (or hidden states), and thus make the subsequent appli-
cations deterministic and reproducible. This was achieved
by directly using the hidden probabilities to define the hid-
den state (where the median is set as cutoff), rather than
randomly sampling a new distribution over these probabil-
ities, to ensure that CLICnet always returns the same re-
sults for the same input once trained. In addition, for train-
ing of CLICnet, we set a constant random seed, to ensure
that retraining CLICnet with the same input yields the same
trained RBM. As a result, for any set of genes, there is one
specific clustering of patients that is inferred by the CLIC-
net RBM.

Selecting sets of genes for CLICnet

The RBMs were incorporated with the GA feature selection
to identify gene sets that yield RBM-inferred clusters with
significantly different survival rates. The genes that were ini-
tially considered for training were those that are included in
the MSK-IMPACT panel (82) and that, across the patients
within each cancer, are mutated in the top 0.7 percentile fre-
quency among all MSK-IMPACT panel genes.

From the set of genes that is used as initial input to CLIC-
net, three iterations of GA are applied to select the subset
of genes that, when given as input to the RBM, optimizes
the difference in survival rates between the two RBM clus-
ters. Hence, the GA step depends on the RBM clustering to
evaluate the fitness function, which is the survival difference
between the two RBM-inferred clusters. The RBM step re-
ceives different solutions (sets of genes) from the GA, and
evaluates each solution through the survival difference be-
tween the two inferred clusters (Figure 1).

The following steps of the GA were defined for each can-
cer type: (a) Initialization of a population of size 50, where
15% of the considered genes for the given cancer type was
randomly selected for each instance in the initial popula-
tion. (b) Evaluation of each instance in the population,
where mutations in each gene set in the population were
used to train an RBM, define two clusters of patients, and
yield a Cox P-value which shows how well the clusters cor-
respond to survival. This P-value was used to evaluate each
of the gene sets. (c) The top half (25) instances in the pop-
ulation, that is, those with the lowest Cox P-values, were
selected for reproduction, with randomly selected pairing.
(d) Crossover was applied to the randomly selected pairs,
until a population size of 50 was reached. Three iterations
of steps (b)–(d) were repeated, and the best solution was re-
tained, corresponding to the sets of genes that yielded the
lowest P-values with the RBM clustering. These parameters
(the population size and percentage of considered genes)
were optimized for the TCGA training set via a grid search,
with a 3-fold cross validation.

For each cancer type, the genetic algorithm was applied
until five different sets of genes were found, such that each of
them yielded an RBM clustering with a Cox’s proportional
hazard P-value ≤0.05 in the training (TCGA) and valida-
tion set (MSKCC). We used 100 iterations of this process as
the upper bound, to reduce the risk of overfitting, where for

https://www.cbioportal.org
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all 15 cancer types, at least five sets were found in fewer than
100 iterations (the precise number of iterations required for
each cancer type is shown in Figure 2). The number 5 was se-
lected because it is the largest number of gene sets that were
found for every cancer type under 100 iterations. Therefore,
the top 5 gene sets in each cancer type are reported. The en-
tire training of CLICnet was completed in less than 6 hours
on a high performance computing cluster.

Predicting survival with anti-PD1 using the TMB-H status

The survival of MSKCC patients treated with anti-PD1 was
predicted using the TMB-H status. To that end, we used dif-
ferent cut-offs of the TMB (ranging from 5 to 24), in order
to define the TMB-H status and predict the survival of anti-
PD1 treated patients. The prediction was performed sepa-
rately for all anti-PD1 treated MSKCC samples, for primary
samples (which were used for CLICnet), and for metastatic
samples estimating the Cox proportional hazard ratio and
P-values.

Mutational signatures analysis

To evaluate the mutational processes underlying the differ-
ent CLICnet clusters, the mutational signatures reported by
Alexandrov et al. were quantified for each TCGA sample
(83). These signatures were compared between each of the
high and low risk clusters defined by CLICnet, in every can-
cer type, through a two-sided rank sum P-value, and signif-
icant (P-value < 0.05) associations were identified. When-
ever a significant association between a cancer type and a
mutational signature was detected, at least three CLICnet
clusters from the given cancer type were associated with that
signature.

Statistical analyses

Survival analyses: Kaplan-Meier survival curves were plot-
ted, where the two CLICnet clusters define the curves. Cox
proportional hazard analyses were applied to estimate how
the CLICnet clusters predict the survival time, through a
hazard ratio (HR) and P-value.

Boxplots and comparisons: For all boxplots, center lines
indicate medians, box edges represent the interquartile
range, whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually.
Points are defined as outliers if they are greater than q3 + w
× (q3–q1) or <q1–w × (q3 − q1), where w is the maxi-
mum whisker length, and q1 and q3 are the 25th and 75th
percentiles of the sample data, respectively. All differential
expression and distribution comparisons P-values are ob-
tained via one-sided Rank-sum test.

Pathway enrichment analysis: Enrichment P-values were
calculated using the hypergeometric enrichment test, using
GO annotation pathway definitions.

RESULTS

Using CLICnet to identify combinations of mutations that
cluster patients by survival rates

The fundamental idea behind CLICnet is the utilization of
mutations to identify groups of genes that partition patients

into high and low risk clusters with significantly different
overall survival rates, using Restricted Boltzmann Machines
(RBMs). Briefly, RBMs are stochastic, generative neural
networks that are widely used for unsupervised learning
tasks which involve automatically discovering and learning
regularities and patterns in the input data (84). The RBMs
are specifically designed to work with binary and sparse
datasets (79), and are therefore a good fit for mutational
data, given that mutational data tend to be sparse and, in
this work, is represented with binary values. RBMs consist
of a visible layer, which receives the input data (in our case,
mutations in a set of genes), and a hidden layer, which con-
sists of the evaluated hidden states for the input data (in
this case, there is a single binary hidden state, which defines
the clusters of patients). After the RBM is trained on a set
of patients’ mutations, it can be applied to cluster new pa-
tients based on their mutations, and use the inferred clus-
ters to predict patient survival. Because RBMs are unsu-
pervised, the clustering itself is based solely on the input
mutational data without any previous knowledge of patient
survival.

When developing CLICnet, we sought to train RBMs
that cluster patients based on combinations of somatic mu-
tations, such that the resulting clusters predict the patients’
survival rates. Because the RBMs are unsupervised, we inte-
grated this approach with a genetic algorithm (GA) feature
selection step that actively selects sets of genes such that the
patient clusters inferred with the RBM using these genes
predict the probability of survival. The mutations in genes
selected by the GA are used as input for the RBM, which
partitions the patients into two clusters. The fitness func-
tion of the GA is the log-rank P-value, estimating the dif-
ference in survival rates between the two clusters. Therefore,
the GA evaluates different solutions (i.e. combinations of
mutations) by the difference in survival rates between the
two clusters that are inferred by the RBM for each combi-
nation of mutations (Figure 1A). The best solution (i.e. the
gene set with the lowest log-rank P-value) after three iter-
ations of the GA is selected. By incorporating an unsuper-
vised approach with only three GA iterations, we aimed to
limit the fitting of the model to the survival objective and
maintain a stochastic element in the training of CLICnet,
to reduce the risk of overfitting.

In the input of CLICnet, each gene is assigned a zero or
one value per patient sample, with zero denoting no non-
synonymous mutations and one denoting at least one non-
synonymous mutation (see Methods). The output of CLIC-
net is the cluster assignment (zero or one) for each patient.
The training process was done using the TCGA (64,65) mu-
tation data (henceforth the training set, Figure 1B), where
gene sets are selected and used to train RBMs for each can-
cer type, such that the clustering predicts survival in TCGA
samples. These are then applied to the MSK-IMPACT (66)
data for validation (henceforth the validation set, Figure
1B), where the RBMs and the underlying gene sets that sig-
nificantly predict survival in this additional set of tumors
are kept.

We applied this procedure to 15 cancer types, aiming to
identify sets of genes that yield CLICnet-inferred clusters
with significantly different survival rates. For each cancer
type, we selected five sets of genes (see Methods) that group
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Figure 2. Evaluation of the performance and stability of CLICnet. (A) Bar plots show the number of iterations needed to obtain five gene sets that were
significant on the TCGA training data, and subsequently significant on the MSKCC validation data, for each cancer type. The numbers within the bars
show the percentage of validated gene sets, among those that were significant on the training data. Statistical significance (permutation P-value) is indicated
with asterisks (* P < 0.01, ** P < 0.001). (B) Boxplots show the number of genes in the CLICnet gene set for each cancer type. (c) Boxplot with overlaid
dot-plots showing the CLICnet log-rank P-values, when applied to randomly sampled 2/3 of the MSKCC validation set.

patients into high versus low risk clusters, with significantly
different survival rates in the training (TCGA) and valida-
tion (MSK-IMPACR) sets (log-rank P-value < 0.05).

Using CLICnet to predict cancer patient survival from com-
binations of mutations

For each cancer type, we catalogued the combinations of
mutations that best predict patient survival. Hence, five gene
sets were selected by CLICnet, leading to five different par-
titionings of the patients into clusters of high and low sur-
vival rates (see Materials and Methods for details). Given
the mutation data for these genes, CLICnet can classify a
new patient as either high or low risk, estimating the sur-
vival probability. To catalogue the combinations of muta-
tions that were the best predictors of survival across differ-
ent cancer types, we extracted the mutation sets that were
highly and significantly predictive of survival in both TCGA
and MSKCC. To assess the robustness of CLICnet in pre-
dicting survival across different cancer types, we recorded
the number of iterations needed to obtain five gene sets
that were significantly predictive of survival in the TCGA

training data and also showed a significant performance
on the MSKCC validation data, across the different cancer
types. We found that for six of the cancer types (pancreatic,
melanoma, renal, glioma, bladder, and head and neck can-
cer), 10 or fewer iterations were sufficient. For all but three
cancer types, the majority of the gene sets that were signifi-
cantly predictive of survival in the TCGA training data were
also significantly predictive of survival in the MSKCC val-
idation data. In four cancer types (pancreatic, melanoma,
glioma and bladder cancer), 100% of the gene sets were sig-
nificant for, Figure 2A).

For all cancer types, the percentage of CLICnet gene sets
that were predictive on the MSKCC validation data was sig-
nificantly higher than expected for a random gene set (us-
ing 1000 random gene sets, permutation P-value < 0.01,
Figure 2A). In addition, the number of genes in selected
CLICnet sets differed substantially across the cancer types.
The cancer types associated with a high mutation load, such
as melanoma, lung, gastrointestinal and endometrial can-
cers, tend to have more genes in the selected CLICnet sets
than cancers with low mutation loads (Figure 2b). More-
over, by subsampling the MSKCC validation set to sub-
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sets of size 2/3 of the original validation size, 50 times for
each cancer type, we showed that CLICnet clustering con-
sistently produced significant survival predictions on these
randomly sampled subsets of the validation data, for ev-
ery cancer type (Figure 2C). For some cancer types, such
as gliomas and pancreatic tumors, we consistently observed
a higher than 3 hazard ratio (HR > 3) between the two clus-
ters in the MSKCC validation cohort (Supplementary Table
S1). Although some combinations of mutations identified
by CLICnet generalized to more than one cancer type, such
as head and neck, stomach, thyroid and prostate adenocar-
cinomas, others were predictive almost exclusively within
the tumor type on which they were trained (such as those
of gliomas and renal cancers, Figure 3A).

CLICnet derives non-trivial combinations of mutations
to construct the patient clusters, which are not simply de-
fined by the total number of mutations in a set of genes, but
rather, by mapping presence-absence pattern of mutations
in a set of genes, to clusters of patients. Therefore, CLIC-
net identifies mutations that are not significantly associated
with survival by themselves, but only when co-occurring
with other mutations (Supplementary Figure S1). Nonethe-
less, we found that, for most cancer types, all high risk clus-
ters were associated with either an increased or a decreased
number of mutations across the respective selected gene sets
(Figure 3A, Supplementary Figures S2 and S3). For exam-
ple, in lung, thyroid and pancreatic adenocarcinomas, the
high-risk clusters are characterized by increased numbers of
mutations in the CLICnet sets of genes, implying that these
mutations might be drivers. By contrast, in stomach and en-
dometrial cancers, the high-risk clusters are associated with
reduced numbers of mutations in the respective CLICnet
gene sets, suggesting that in these cancers the increased mu-
tation rates could be linked to impaired DNA repair (and
therefore, would enhance the responses to DNA damage in-
ducing therapeutics), or could enhance neoantigen presen-
tation (and therefore, would increase the immune infiltra-
tion). These combinations of mutations also included muta-
tions in the TP53 gene (Figure 3B, C, Supplementary Figure
S2 and S3) that are associated with high risk; conceivably,
the negative impact of the other mutations on the cancer cell
fitness overrode the effect of the TP53 mutations. One ex-
ception are head and neck carcinomas, where in four CLIC-
net gene sets, the clusters with higher mutation rates were
associated with low risk and improved survival, whereas in
one gene set (gene set 2), it was the cluster with the lower
mutation rate that was associated with low risk. Notably,
TP53 was selected for all of the head and neck tumors gene
sets, and the TP53 mutations were always associated with
the high-risk clusters.

We investigated the genes that were selected by CLICnet
for significant clustering by survival rate. As expected, many
genes known to harbor driver mutations were frequently se-
lected (Figure 4A). These were enriched for functions and
pathways involved in cell cycle and cell death regulation, re-
sponse to radiation, and several developmental processes
(Figure 4B). The most frequently selected genes across all
tumor types were well known pan-cancer drivers (Figure
4C). Overall, TP53 was most frequently selected across can-
cers, with only five tumor types where it was never selected
(Figure 4A). In every gene set selected by CLICnet that

included TP53, TP53 mutations were associated with de-
creased survival rate (Supplementary Figure S2 and S3).
Nevertheless, there were pronounced differences between
the selected genes among the tumor types. Some genes were
frequently selected in a single tumor type but never in other
types, such as NF2 in renal cancer, SMO in stomach can-
cer, IDH1 in glioma, and IRS2 in pancreatic cancer (Figure
4A, Supplementary Tables S2 and S3). Notably, in gliomas,
where higher mutation rates are associated with the high-
risk clusters, IDH1 mutations are exclusively linked with all
low-risk clusters (Supplementary Figure S2 and S3). Exam-
ining the pairwise correlations between the selected gene
sets in different tumor types, we found that lung, stom-
ach and endometrial tumors shared the largest fraction of
selected genes with other types of tumors, whereas renal,
prostate, melanoma and breast tumors share the lowest
fraction (Figure 4D). This is likely to be the case because, in
the former group of tumors, the CLICnet-selected gene sets
included pan-cancer drivers, such as TP53, MTOR, PTEN
and POLE, whereas in the latter cancer types, the CLICnet
gene sets were more cancer type-specific (Figure 4A, Sup-
plementary Tables S2, S3).

Predicting survival of anti-PD1 treated patients with CLIC-
net risk clusters

The CLICnet mutational clusters predict overall survival
in different tumor types, without considering the particular
treatments given to different patients. To evaluate whether
some of these mutational clusters could also predict sur-
vival of patients treated with immune checkpoint blockade,
we applied CLICnet to the primary samples of MSKCC
patients that were treated with anti-PD1 (31), to cluster
these patients into high and low risk groups. The purpose
of this analysis was not to identify the strongest or most
informative predictors of anti-PD1 benefit, which would
require both training and validation datasets of anti-PD1
treated samples that are not available for the majority of
cancer types. Rather, we aimed to examine whether in some
of the cancer types, the mutational processes governing
treatment-general survival were also linked with anti-PD1
benefit. We found that in melanoma, bladder cancer and
gliomas, the high-risk clusters were significantly associated
with poor survival in the subsets of patients treated with
anti-PD1 (Figure 5A–C). When focusing on primary tumor
samples, the TMB-H (high tumor mutation burden) status
was not predictive of survival in the anti-PD1 treated pa-
tients, emphasizing the relevance of CLICnet derived clus-
ters, which capture non-trivial mutational patterns, for pre-
dicting anti-PD1 survival in these types of tumors (Fig-
ure 5A, Supplementary Figure S4). Moreover, we applied
CLICnet to two additional mutation datasets of melanoma
patients treated with anti-PD1 (77,78) and found that three
of the five CLICnet clustering predicted survival in the Liu
et al. (78) dataset (144 patients), one of which is also sig-
nificantly associated with survival in the Riaz et al. (77)
dataset (where the relatively small size of 68 samples might
diminish the effect, Figure 5D, Supplementary Figure S5).
These results mark CLICnet melanoma gene combination
3 as a potentially strong prognostic marker, which predicted
survival after anti-PD1 treatment in 3 independent datasets
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Figure 3. The CLICnet-derived clusters. (A) Heatmap showing the log10 Cox hazard ratio (HR) obtained with the five CLICnet clustering applied to the
MSKCC validation set, for each cancer type (vertical axes), when the trained RBMs are applied to data from each of the 15 cancer types (horizontal axes).
Significant Cox P-values are denoted by a red or blue border, where red corresponds to negative HR (where the majority of the mutations are observed
in the high-risk cluster) and blue corresponds to positive HR (where the majority of the mutations are observed in the low-risk cluster). (B) The survival
curves corresponding to one selected CLICnet clustering in five cancer types (where blue curves denote CLICnet cluster 0, and red denotes cluster 1), for
the training and validation cohorts. (C) The heatmaps showing the mutations in the selected gene sets and cancer types in panel (C), for the two CLICnet
clusters (cluster 0 in blue and cluster 1 in red).

(MSKCC anti-PD1, Liu et al. and Riaz et al.; P-values: 4e–
2, 3e–2 and 1.7e–2, respectively; hazard ratios: 2.6, 1.6 and
3.2, respectively). By contrast, the high risk clusters inferred
for lung, esophagus, renal and colorectal tumors, were not
significantly associated with poor survival in the anti-PD1
treated patients, and some were even associated with im-
proved survival (in particular, in colorectal, lung and renal
tumors, Figure 5A, Supplementary Figure S5).

We next sought to investigate why in some tumor types,
namely, melanoma, glioma and bladder cancers, there was a

clear, direct link between the CLICnet-inferred mutational
clusters and the survival rates of patients treated with anti-
PD1, whereas in other tumor types, weak and even inverse
associations were found. We reasoned that some of the mu-
tations captured with CLICnet (especially, those affecting
DNA repair) could increase the incidence of mutational
processes and thus could promote the emergence of specific
mutation signatures. To evaluate this, we used the mutation
signatures previously reported by Alexandrov et al., which
derive distinct patterns of substitutions to define nucleotide
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Figure 4. Genes selected by CLICnet and the associated pathways. (A) Heatmap showing the top genes selected by CLICnet for each cancer type, where the
color intensity ranges from 0 to 1 and denotes the frequency that each gene was selected in each cancer type (the complete data is available in Supplementary
Table S2). (B) Heatmap showing the GO pathway enrichment analysis (log transformed enrichment P-value) of the CLICnet selected genes for each cancer
type. (C) Structure of the network connecting cancer types to genes that were selected by CLICnet, with the most frequently selected genes marked in the
middle. (D) Correlation heatmap correlating the frequency that each gene was selected by CLICnet across all pairs of cancer types. Significant correlations
are circled.

biases in subsets of cancers, including some with known
environmental triggers (16,18,83). By using the quantified
measure of each mutational signature in every cancer type,
we aimed to identify mutational signatures that were sig-
nificantly increased or decreased in CLICnet patients with
a low risk and favorable survival. We hypothesized that
such mutational signature could uncover oncogenic pro-
cesses that underlie the complex relationships between the
overall survival rates with and without anti-PD1 treatment
in different cancer types.

To this end, we investigated the association between the
CLICnet-inferred clusters and previously published muta-
tional signatures (16,18,83). We compared the levels of pre-
viously reported mutational signatures (83) in the CLICnet-

defined high and low-risk patients, for the seven tumor types
where anti-PD1 treatment data was available. Surprisingly,
the association between CLICnet risk clusters and different
mutational signatures was found to be cancer type-specific,
so that five of the seven tumor types showed a unique asso-
ciation, that is, the signatures associated with the CLICnet
risk clusters were unique to that particular type of cancer.
The one signature that was associated with the CLICnet risk
clusters in more than one cancer type was signature 1, which
consists of genes that are related to endogenous mutational
processes in most cancer types (Figure 6A). Specifically, we
found that signatures 2 and 13, which have been attributed
to the activity of AID/APOBEC family of cytidine deami-
nases (85), were significantly associated with CLICnet risk
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Figure 5. Association between CLICnet clustering and survival under anti-PD1 treatment. (A) Heatmap showing the log10 transformed Cox HR resulting
from application of each of the five CLICnet RBMs trained for each cancer type, to the original training data (top panel), the validation data (second top
panel), the anti-PD1 treated MSKCC samples (third top panel), and when predicting survival of the anti-PD1 treated MSKCC samples using TMB-H
status (bottom panel). Red colors correspond to negative HR (where the majority of mutations are observed in the high-risk CLICnet cluster) and blue
colors correspond to positive HR (where the majority of mutations are observed in the low-risk CLICnet cluster). The significant P-values (P < 0.05) are
shown with a bold border. (B) The survival curves corresponding to selected CLICnet clustering of bladder cancer and glioma, for the training data (left
panels), validation data (middle panels), and the subset of MSKCC samples treated with anti-PD1 (right panels). The blue curve corresponds to the high-
risk CLICnet cluster and the red curve corresponds to the low-risk cluster (as defined on the TCGA training data). (C) The survival curves corresponding
to three CLICnet clustering of melanoma, for the training data (left panels), validation data (middle panels) and the subset of MSKCC samples treated
with anti-PD1 (right panels). The blue curve corresponds to the high-risk CLICnet cluster and the red curve corresponds to the low-risk CLICnet cluster.
(D) The survival curves corresponding to three CLICnet clustering of melanoma when the trained CLICnet RBMs are applied to two additional melanoma
datasets of patients treated with anti-PD1 (77,78).
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Figure 6. Associations between the measures of mutational signatures and CLICnet clusters. (A) A map showing the significant associations between muta-
tional signature and either high or low risk CLICnet clusters in each of the seven cancer types with anti-PD1 treatment data. (B) The average quantification
of each mutational signature in each cancer type. (C and D) Boxplots showing the quantification of mutational signatures that are significantly increased in
low risk clusters (C) or in high risk clusters (D) of each cancer type, for the five CLICnet selected high (red) and low (blue) risk clusters in each cancer type.
(E) The survival curves corresponding to selected CLICnet clustering of lung, colorectal and renal cancers, for the training data (left panels), validation
data (middle panels) and the subset of MSKCC samples treated with anti-PD1 (right panels). The blue curve corresponds to the high-risk cluster and the
red curve corresponds to the low risk cluster (as defined on the TCGA training data). The mutational signatures were from Alexandrov et al. (16,17,18,19).

clusters in bladder tumors. Signature 3, linked with failure
of DNA double-strand break-repair by homologous recom-
bination (HR (86)), was significantly associated with CLIC-
net risk clusters in renal tumors. Signature 4 that is linked
to smoking and tobacco mutagens (87) is significantly asso-
ciated with CLICnet risk clusters in lung tumors. Signature
6 that is linked with defective DNA mismatch repair and is
found in microsatellite unstable tumors is significantly as-
sociated with CLICnet risk clusters in colorectal tumors,

and signature 7 that is linked with ultraviolet (UV) radia-
tion is significantly associated with CLICnet risk clusters in
melanoma.

These cancer-specific associations are in accord with the
type of intrinsic mutagenesis that is characteristic of each
of these cancer types (Figure 6B). Indeed, we found that in
melanoma, increased UV mutational signature was associ-
ated with the low risk clusters and improved survival (signa-
ture 7, Figure 6C), in agreement with previous reports (88).
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The increased UV signature was also weakly associated with
a better immunotherapy response (89). Thus, the link be-
tween the low risk cluster and improved immunotherapy
survival in melanoma could be mediated through UV mu-
tagenesis. Similarly, increased activation of AID/APOBEC
cytidine deaminases and the increased signatures 2 and 13
coupled with it were linked with tissue inflammation and
immunity as well as viral infection (90), potentially, explain-
ing why these signatures were associated with improved im-
munotherapy survival (91,92). Because the higher levels of
AID/APOBEC signatures 2 and 13 were associated with
the low-risk clusters in bladder tumors, the improved sur-
vival benefit from anti-PD1 in patients that are clustered by
CLICnet as low-risk might be mediated through activation
of AID/APOBEC mutagenesis.

By contrast, the increased smoking-associated mutagene-
sis (signature 4) is significantly associated with the high risk
CLICnet clusters for lung cancers (Figure 6D), in agree-
ment with the well-known association between smoking
and poor lung cancer outcome (93,94). However, within the
subset of lung cancer patients treated with anti-PD1, the pa-
tients matching the high-risk CLICnet clusters showed sim-
ilar or even improved survival compared with those match-
ing the low-risk clusters (Figure 6E, Supplementary Fig-
ure S5), in accordance with previous findings of improved
immunotherapy responses and higher PD-L1 in smoking
lung cancer patients (95,96,97). Additionally, the high-risk
CLICnet clusters in colorectal cancer are significantly as-
sociated with increased mutagenesis of defective mismatch
repair (MMR) genes and the MSI status (signature 6, Fig-
ure 6E). Thus, MSI-H, which is an established marker of
immunotherapy response, could underlie the improved sur-
vival of anti-PD1 treated patients matching the high-risk
CLICnet clusters in colorectal tumors. Finally, a mild in-
crease of mutagenesis related to DNA double-strand break-
repair by homologous recombination (HR) is associated
with the high-risk renal cancer clusters (Figure 6E). Thus,
although this connection has not been previously reported,
this observation made with the CLICnet clusters suggests
that HR mutagenesis could be associated with poor out-
come in renal cancer patients, and possibly, to improved
survival in patients treated with anti-PD1. However, this
association appears weak compared to the other associa-
tions detected (Figure 6E). Overall, these findings demon-
strate that, in tumors where high mutation burden is associ-
ated with low risk and improved survival, such as melanoma
and bladder, the low-risk CLICnet clusters also predict im-
proved survival with anti-PD-1 treatment. In contrast, tu-
mors where increased mutagenesis is linked to poor out-
come, such as lung and colorectal tumors, have a com-
plex relation between CLICnet prognostic clusters and im-
munotherapy benefit, which is likely mediated through the
differential impact of mutagenesis on survival in anti-PD1
treated patients compared to patients undergoing other
treatment regimes.

DISCUSSION

In this work, we present CLICnet, to our knowledge, the
first approach that harnesses mutational patterns to cluster
cancer patients by survival, using subsets of genes from the

MSK-IMPACT panel (82). We limited the search to genes
within this panel to harmonize the discovery set between
the training (TCGA) and validation (MSKCC) datasets,
where the latter only included MSK-IMPACT panel muta-
tions. When additional pan-cancer studies with comprehen-
sive mutations and clinical data become available, it will be
possible to apply CLICnet to perform a broader search for
combinations of mutations that predict clinical outcomes,
which is expected to reveal new mutations with context-
specific clinical relevance. CLICnet captures stochastic mu-
tational processes that are predictive of survival in differ-
ent cancer types, and partitions patients in each cancer type
into high and low risk clusters. By utilizing RBMs for clus-
tering, CLICnet can infer non-trivial combinations of mu-
tations that predict survival, and capture the signal arising
from combinations of mutations that are associated with
improved and poor survival, or mutations that only pre-
dict survival in the context of other mutations. We applied
CLICnet to 15 cancer types with data from the TCGA
(64,65) and MSKCC (66) cohorts and identified gene sets
for each cancer type that were significantly predictive of sur-
vival rates in both datasets.

From the research perspective, this work provides the first
systematic approach to identify and catalogue sets of mu-
tations that are jointly associated with survival in differ-
ent cancer types. From the clinical standpoint, CLICnet
provides a way to cluster patients based on multiple mu-
tations, in order to construct clinically relevant clusters of
patients. Although numerous outcome-associated clinical
and molecular parameters have been identified for many of
the tumor types analyzed here, for some tumor types, such
as pancreatic adenocarcinoma, there are few clinically rel-
evant somatic mutations. Moreover, even for cancer types
with many outcome markers in clinical use, additional pa-
rameters are likely to be helpful, to increase the number of
patients that can benefit from these, especially, in the case
of rare mutations. By identifying combinations of multiple
mutations, CLICnet can utilize rare mutations to predict
survival of many patients simultaneously.

By using RBMs with a single hidden node, the training of
CLICnet becomes similar to estimating the posterior prob-
abilities of the true labels (clustering of samples), making
the training process and application of CLICnet straightfor-
ward and interpretable. By incorporating three iterations of
a GA within the unsupervised RBM framework, we aimed
to focus on simply inferred combinations that are not truly
optimized for the objective and thus reduce the risk of over-
fitting. Future studies are warranted to develop more com-
plex techniques for this purpose, for example, by employ-
ing deep, supervised neural networks, or incorporating ad-
ditional data types and treatment information. Addition-
ally, given that the ultimate goal of this study is to un-
cover and catalogue the complex relations between groups
of genes that produce similar survival rates, the validation
data is used to filter sets of genes and identify combinations
of mutations that are reproducibly predictive of the over-
all survival across two large cancer cohorts, with the excep-
tion of the anti-PD1 analysis. Future studies based on this
work could incorporate additional testing steps to evaluate
the clinical utility of this technique for patient stratification
without considering treatment regimes.
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We applied survival profiling with CLICnet to the sub-
set of primary MSKCC tumor samples from seven can-
cer types that were treated with anti-PD1 (31), and found
that for three cancer types, namely, melanoma, bladder
cancer and glioma, the high-risk clusters constructed by
CLICnet also predict poor survival with anti-PD-1 treat-
ment. Furthermore, for melanoma, we showed that CLIC-
net predicts survival rates after anti-PD-1 treatment in
additional datasets (78,98), suggesting that these clusters
can be developed as strong markers of survival from pri-
mary site sequencing of melanoma patients under the anti-
PD-1 treatment. Although CLICnet mutation sets predict
treatment-independent overall survival and not direct treat-
ment responses, in melanoma, bladder cancer and glioma,
all five CLICnet gene sets were significantly predictive of
the anti-PD1 benefit. When more mutational and clinical
data becomes available for anti-PD1 treated patients, al-
lowing CLICnet training and validation, we expect that for
the majority of cancer types, it becomes possible to derive
stronger, treatment-specific mutational clusters. We demon-
strated that, although the TBM-H status was highly pre-
dictive of survival of anti-PD1 treated patients when dif-
ferent cancer types were aggregated, the signal originated
primarily from metastatic samples in specific cancer types
and therefore might not be predictive across all individual
cancer types or when applied to non-metastatic samples
(Supplementary Figure S4). Indeed, we found that TMB-
H was not predictive of survival with anti-PD1 for primary
site samples, when considering most cancer types individu-
ally, and is never predictive of anti-PD1 survival in glioma
patients (34,35) (Supplementary Figure S4). Therefore, the
combinations of mutations that are identified by CLIC-
net and predict anti-PD1 survival in glioma could be espe-
cially clinically important. Notwithstanding that these ob-
servations might be partially due to the small sample size
for some cancer types, the CLICnet clusters for melanoma,
bladder cancer and glioma show a clear predictive signal for
anti-PD1 treated patients and indicate that CLICnet muta-
tional clusters potentially could be developed as an alterna-
tive marker for anti-PD1 efficacy, which is specifically pre-
dictive for primary site tumors.

The mutational processes captured with CLICnet reveal
intricate relationships between overall survival rates, and
specifically, with immune checkpoint blockade therapy. In
some tumor types, the mutational patterns that character-
ize the high-risk, poor survival clusters are paradoxically as-
sociated with improved survival after anti-PD-1 treatment,
i.e. the same clusters that predict poor survival when consid-
ering all samples predict improved survival when consider-
ing only anti-PD1 treated samples. This connection could
be due to increased mutagenesis, which likely contributes
to tumor aggressiveness and simultaneously induces im-
mune infiltration and neoantigen presentation. For cancers
in which increased mutagenesis could be linked to a par-
ticular type of DNA damage, whether exogenous or en-
dogenous, increased mutagenesis was also associated with
better survival under anti-PD1 treatment. This observa-
tion is recapitulated in cancer types where increased mu-
tagenesis was originally linked with poor survival, such as
mutational processes associated with smoking in lung can-
cer, emphasizing the complex relations between patients’

prognoses with and without immune checkpoint blockade
therapy.

In this study, we examined both homogenous and het-
erogenous cancer types (those that include several tumor
subtypes aggregated together by the tissue of origin), and
in both cases, CLICnet demonstrated a strong survival pre-
diction on the training and validation sets. However, in het-
erogenous cancer types (such as colorectal, renal and non-
small cell lung cancers), CLICnet clustering did not pre-
dict the anti-PD1 benefit. The heterogenous cancer types
might have varying response rates to different treatments,
confounding the generalization of survival prediction when
examining a specific treatment regime. It is therefore advis-
able to apply CLICnet within tumor subtypes when aim-
ing to derive mutational predictors of treatment response.
In addition, in this work, we focused on somatic mutations
data, as a proof of concept for the approach. Integration of
other data types in follow-up studies is highly desirable and
could reveal complex relationships between different types
of alterations that affect clinical outcomes. In particular, in-
corporating RBMs based on germline mutations could un-
cover links between genetic and environmental mutagene-
sis and cancer survival, and provide means for early diag-
nosis. This would probably require developing an ensem-
ble technique to integrate RBMs based on different data
types, to allow investigation and interoperation of the as-
sociations between different alterations. Because mutated
genes are often not expressed and therefore difficult to tar-
get, reducing their physiological relevance, incorporation of
other data types, such as copy number variations, fusion
events and epigenetic alterations, that are not considered in
this work, is expected to allow for more complete inference
of the factors governing patients’ outcomes, and reveal tar-
getable combinations of events.

In conclusion, this work introduces CLICnet, an RBM-
based method that identifies combinations of mutations
that cluster cancer patients by survival rates. CLICnet does
not depend on arbitrary, user-determined thresholds and is
deterministic once trained (albeit depending on the initial
gene set selection), thus, directly facilitating patient cluster-
ing. As more data becomes available, CLICnet can be easily
adapted for clustering based on combinations of mutations
that specifically predict responses to various cancer treat-
ments from mutational data in selected panels of genes. If
carefully validated with additional data, CLICnet can be
used as a predictor of anti-PD1 immunotherapy efficacy in
particular cancers through analysis of primary site tumor
samples, aiding clinicians in the selection of patients that
are most likely to benefit from this treatment.
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