
FAIRSCAPE: a Framework for FAIR and Reproducible
Biomedical Analytics

Maxwell Adam Levinson1
& Justin Niestroy1 & Sadnan Al Manir1 & Karen Fairchild2,3

& Douglas E. Lake3,4,5
&

J. Randall Moorman3,4
& Timothy Clark1,3,6

Accepted: 1 June 2021
The Author(s) 2021

Abstract
Results of computational analyses require transparent disclosure of their supporting resources, while the analyses themselves
often can be very large scale and involve multiple processing steps separated in time. Evidence for the correctness of any analysis
should include not only a textual description, but also a formal record of the computations which produced the result, including
accessible data and software with runtime parameters, environment, and personnel involved. This article describes FAIRSCAPE,
a reusable computational framework, enabling simplified access tomodern scalable cloud-based components. FAIRSCAPE fully
implements the FAIR data principles and extends them to provide fully FAIR Evidence, including machine-interpretable
provenance of datasets, software and computations, as metadata for all computed results. The FAIRSCAPE microservices
framework creates a complete Evidence Graph for every computational result, including persistent identifiers with metadata,
resolvable to the software, computations, and datasets used in the computation; and stores a URI to the root of the graph in the
result’s metadata. An ontology for Evidence Graphs, EVI (https://w3id.org/EVI), supports inferential reasoning over the
evidence. FAIRSCAPE can run nested or disjoint workflows and preserves provenance across them. It can run Apache Spark
jobs, scripts, workflows, or user-supplied containers. All objects are assigned persistent IDs, including software. All results are
annotated with FAIRmetadata using the evidence graph model for access, validation, reproducibility, and re-use of archived data
and software.

Keywords FAIR data . FAIR software . Digital Commons . Evidence graph . Provenance . Reproducibility . Agumentation

Introduction

Motivation

Computation is an integral part of the preparation and content
of modern biomedical scientific publications, and the findings
they report. Computations can range in scale from simple
statistical routines run in Excel spreadsheets to massive or-
chestrations of very large primary datasets, computational
workflows, software, cloud environments, and services.
They typically produce data and generate images or tables as
output. Scientific claims of the authors are supported by evi-
dence that includes reference to the theoretical constructs em-
bodied in existing domain literature, and to the experimental
or observational data and its analysis represented in images or
tables.

Today, increasingly strict requirements are demanded to
leave a digital footprint of each preparation and analysis step
in derivation of a finding to support reproducibility and reuse
of both data and tools. The widely recommended and often

Maxwell Adam Levinson, Justin Niestroy and Sadnan Al Manir
contributed equally to this work.

* Timothy Clark
twclark@virginia.edu

1 Department of Public Health Sciences (Biomedical Informatics),
University of Virginia School ofMedicine, Charlottesville, VA,USA

2 Department of Pediatrics, University of Virginia School ofMedicine,
Charlottesville, VA, USA

3 Center for Advanced Medical Analytics, University of Virginia
School of Medicine, Charlottesville, VA, USA

4 Department of Medicine, University of Virginia School of Medicine,
Charlottesville, VA, USA

5 Department of Statistics, University of Virginia College and
Graduate School of Arts and Sciences, Charlottesville, VA, USA

6 University of Virginia School of Data Science, Charlottesville, VA,
USA

https://doi.org/10.1007/s12021-021-09529-4

/ Published online: 15 July 2021

Neuroinformatics (2022) 20:187–202

ORIGINAL ARTICLE

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-021-09529-4&domain=pdf
https://orcid.org/0000-0003-0384-8499
https://orcid.org/0000-0002-1103-3882
https://orcid.org/0000-0003-4647-3877
https://orcid.org/0000-0002-1081-8741
https://orcid.org/0000-0001-6259-4850
https://orcid.org/0000-0002-5772-1648
http://orcid.org/0000-0003-4060-7360
https://w3id.org/EVI
mailto:twclark@virginia.edu

required practice by publishers and funders today is to archive
and cite one’s own experimental data (Cousijn et al., 2018;
Data Citation Synthesis Group, 2014; Fenner et al., 2019;
Groth et al., 2020); and to make it FAIR (Wilkinson et al.,
2016). These approaches were developed over more than a
decade by a significant community of researchers, archivists,
funders, and publishers, prior to the current recommendations
(Altman et al., 2001; Altman & King, 2007; Borgman, 2012;
Bourne et al., 2012; Brase, 2009; CODATA/ITSCI Task
Force on Data Citation, 2013; King, 2007; Starr et al., 2015;
Uhlir, 2012). There is increasing support among publishers
and the data science community to recommend, in addition,
archiving and citing the specific software versions used in
analysis (Katz et al., 2021a; Smith et al., 2016), with persistent
identification and standardized core metadata, to establish
FAIRness for research software (Katz et al., 2021b;
Lamprecht et al., 2020); and to require identification via per-
sistent identifiers, of critical research reagents (A.
Bandrowski, 2014; A. E. Bandrowski & Martone, 2016;
Prager et al., 2018).

How do we facilitate and unify these developments? Can
we make the recorded digital footprints as broadly useful as
possible in the research ecosystem, while their generation oc-
curs as side-effects of processes inherently useful to the re-
searcher – for example, in large scale data analytics and data
commons environments?

The solution we developed is a reusable framework for
building provenance-aware data commons environments,
which we call FAIRSCAPE. It provides several features di-
rectly useful to the computational scientist, by simplifying and
accelerating important data management and computational
tasks; while providing, as metadata, an integrated evidence
graph of the resources used in performing the work, allowing
them to be retrieved, validated, reused, modified, and
extended.

Evidence graphs are formal models inspired by a large
body of work in abstract argumentation (Bench-Capon &
Dunne, 2007; Brewka et al., 2014; Carrera & Iglesias, 2015;
Cayrol & Lagasquie-Schiex, 2009; Dung, 1995; Dung &
Thang, 2018; Gottifredi et al., 2018; Rahwan, 2009), and
analysis of evidence chains in biomedical publications
(Clark et al., 2014; Greenberg, 2009, 2011), which shows that
the evidence for correctness of any finding, can be represented
as a directed acyclic support graph, an Evidence Graph.When
combined with a graph of challenges to statements, or their
evidence, this becomes a bipolar argument graph - or argu-
mentation system (Cayrol & Lagasquie-Schiex, 2009, 2010,
2013).

The nodes in these graphs can readily provide metadata
about the objects related to the computation, including the
computation parameters and history. Each set of metadata
may be indexed by one or more persistent identifiers, as spec-
ified in the FAIR principles; and may include a URI by which

the objects themselves may be retrieved, given the appropriate
permissions. In this model, core metadata retrieved on resolu-
tion of a persistent identifier (PID) (Juty et al., 2020; Starr
et al., 2015) will include an evidence graph for the object
referenced by the PID. A link to the object’s evidence graph
can be embedded in its metadata.

The central goals of FAIRSCAPE can be summarized as
(1) to develop reusable cloud-based “data commons” frame-
works adapted for very large-scale data analysis, providing
significant value to researchers; and (2) to make the computa-
tions, data, and software in these environments fully transpar-
ent and FAIR (findable, accessible, interoperable, reusable).
FAIRSCAPE supports a “data ecosystem” model (Grossman,
2019) in which computational results and their provenance are
transparent, verifiable, citable, and FAIR across the research
lifecycle. We combined elements of prior work by ourselves
and others on provenance, abstract argumentation frame-
works, data commons models, and citable research objects,
to create the FAIRSCAPE framework. This work very signif-
icantly extends and refactors the identifier and Metadata
Services we and our colleagues developed in the NIH Data
Commons Pilot Project Consortium (Clark et al., 2018;
Fenner et al., 2018; NIH Data Commons Pilot: Object
Registration Service (ORS), 2018).

FAIRSCAPE has a unique position in comparison to other
provenance-related, reproducibility-enabling, and “data com-
mons” projects.We combine elements of all three approaches,
while providing transparency, FAIRness, validation, and re-
use of resources; and emphasize reusability of the
FAIRSCAPE platform itself. Our goal is to enable researchers
to implement effective and useful provenance-aware compu-
tational data commons in their own research environments, at
any scale, while supporting full transparency of results across
projects, via Evidence Graphs represented using a formal
ontology.

Related Work

Works focusing on provenance per se such as (Alterovitz
et al., 2018; Ellison et al., 2020) and the various workflow
provenance systems such as (Khan et al . , 2019;
Papadimitriou et al., 2021; Yakutovich et al., 2021) are pri-
marily concerned with very detailed documentation of each
computation on one or more datasets. TheW3C PROVmodel
(Gil et al., 2013; Lebo et al., 2013; Moreau et al., 2013) was
developed initially to support interoperability across the trans-
formation logs of workflow systems. Our prior work on
Micropublications (Clark et al., 2014) extending and
repurposing several core classes and predicates from W3C
PROV, were preliminary work forming a basis for the EVI
ontology (Al Manir et al., 2021a, 2021b).

The EVI ontology used in FAIRSCAPE to represent evi-
dence graphs, is concerned with creating reasonable

188 Neuroinform (2022) 20:187–202

transparency of evidence supporting scientific claims, includ-
ing computational results; it reuses the three major PROV
classes Entity, Activity, and Agent as a basis to develop a
detailed ontology and rule system for reasoning across the
evidence for (and against) results. When a computational re-
sult is reused in any new computation, that information is
added to the graph, whether or not the operations were con-
trolled by a workflow manager. Challenges to results,
datasets, or methods, may also be added to the graph. While
our current use of EVI is on computational evidence, it is
designed to be extensible to objects across the full experimen-
tal and publication lifecycle.

Systems providing data commons environments, such as
the various NCI and NHLBI cloud platforms (Birger et al.,
2017; Brody et al., 2017; Lau et al., 2017; Malhotra et al.,
2017;Wilson et al., 2017) while providing many highly useful
specialized capabilities for their domain users, including re-
use of data and software, have not focused extensively on
providing re-use of their own frameworks, and are centralized.
As noted later in this article, FAIRSCAPE can be – and is
meant to be - installed on public, private, or hybrid cloud
platforms, “bare metal” clusters, and even on high-end lap-
tops, for use at varying scopes – personal, institution-wide,
lab-wide, multi-center, etc.

Reproducibility platforms such as Whole Tale and
CodeOcean, (Brinckman et al., 2019; Chard et al., 2019;
Merkys et al., 2017) attempt to take on a one-stop-shop role
for researchers wishing to demonstrate or at least assert, repro-
ducibility of their computational research. Of these,
CodeOcean (https://codeocean.com) is a special case – it is
run by a company and appears to be principally described in
press releases, and not in any peer reviewed articles.

FAIRSCAPE’s primary goals are to enable construction of
multi-scale computational data lakes, or commons; and to
make results transparent for reuse across the digital research
ecosystem, via FAIRness of data, software, and computational
records. FAIRSCAPE supports reproducibility via
transparency.

In very many cases - such as the very large analytic
workflows in our first use case - we believe that no reviewer
will attempt to replicate such large-scale computations, which
ran for months on substantial resources. The primary use case
will be validation via inspection, and en passant validation via
software reuse.

FAIRSCAPE is not meant to be a one-stop shop. It is a
transferable, reusable framework. It is not only intended to
enable localized participation in a global, fully FAIR data
and software ecosystem – it is itself FAIR software. The
FAIRSCAPE software, including installation and deployment
instructions, is available in the CERN Zenodo archive
(Levinson et al., 2021); and in the FAIRSCAPE Github re-
pository (https://github.com/fairscape/fairscape).

Enabling Transparency through EVI’s Formal Model

To enable the necessary results transparency across separate
computations, we abstracted core elements of our
micropublications model (Clark et al., 2014) to create EVI
(http://w3id.org/EVI), an ontology of evidence relationships
that extends W3C PROV to support specific evidence types
found in biomedical publications; and enable reasoning across
deep evidence graphs, and propagation of evidence challenges
deep in the graph, such as: retractions, reagent contamination,
errors detected in algorithms, disputed validity of methods,
challenges to validity of animal models, and others. EVI is
based on the fundamental idea that scientific findings or
claims are not facts, but assertions backed by some level of
evidence, i.e., they are defeasible components of
argumentation. Therefore, EVI focuses on the structure of
evidence chains that support or challenge a result, and on
providing access to the resources identified in those chains.
Evidence in a scientific article is in essence, a record of the
provenance of the finding, result, or claim asserted as likely to
be true; along with the theoretical background material
supporting the result’s interpretation.

If the data and software used in analysis are all registered
and receive persistent identifiers (PIDs) with appropriate
metadata, a provenance-aware computational data lake, i.e.,
a data lake with provenance-tracking computational services,
can be built that attaches evidence graphs to the output of each
process. At some point, a citable object - a dataset, image,
figure, or table will be produced as part of the research. If this,
too, is archived with its evidence graph as part of the metadata
and the final supporting object is either directly cited in the
text, or in a figure caption, then the complete evidence graph
may be retrieved as a validation of the object’s derivation and
as a set of URIs resolvable to reusable versions of the toolsets
and data. Evidence graphs are themselves entities that can be
consumed and extended at each transformation or
computation.

The remainder of this article describes the approach,
microservices architecture, and interaction model of the
FAIRSCAPE framework in detail.

Materials and Methods

FAIRSCAPE Architectural Layers

FAIRSCAPE is built on a multi-layer set of components using
a containerized microservice architecture (MSA) (Balalaie
et al., 2016; Larrucea et al., 2018; Lewis & Fowler, 2014;
Wan et al., 2018) running under Kubernetes (Burns et al.,
2016). We run our local instance in an OpenStack (Adkins,
2016) private cloud environment, and maintain it using a
DevOps deployment process (Balalaie et al., 2016; Leite

189Neuroinform (2022) 20:187–202

https://codeocean.com
https://github.com/fairscape/fairscape
http://w3id.org/EVI

et al., 2020). FAIRSCAPE may also be installed on laptops
running minikube in Ubuntu Linux, MacOS, or Windows
environments; and on Google Cloud managed Kubernetes.
An architectural sketch of this model is shown in Fig. 1.

Ingress to microservices in the various layers is through a
reverse proxy using an API gateway pattern. The top layer pro-
vides an interface to the end users with raw data and the associ-
ated metadata. The mid layer is a collection of tightly coupled
services that allow end users with proper authorization to submit
and view their data, metadata, and various types of computations
performed on them. The bottom layer is built with special pur-
pose storage and analytics platforms for storing and analyzing
data, metadata and provenance information. All objects are
assigned PIDs using local ARK (Kunze & Rodgers, 2008) as-
signment for speed, with global resolution for generality.

UI Layer

The User Interface layer in FAIRSCAPE offers end
users various ways to utilize the functionalities in the
framework. A Python client simplifies calls to the
microservices. Data, metadata, software, scripts,
workflows, containers, etc. are all submitted and regis-
tered by the end users from the UI Layer, which may
be configured to include an interactive executable note-
book environment such as Binder or Deepnote.

API Gateway

Access to the FAIRSCAPE environment is through an API
gateway, mediated by a reverse proxy. Our gateway is medi-
ated by Traefik (https://traefik.io) which dispatches calls to the
various microservices endpoints.

Traefik is a reverse proxy that we configure as a
Kubernetes Ingress Controller, to dynamically configure
and expose multiple microservices using a single API.

The endpoints of the services are exposed through the
OpenAPI specification (formerly Swagger Specification)
(Darrel Miller et al., 2020) which defines the standard and
the language-agnostic interface for publishing RESTful APIs
and allows service discovery. Accessing the services requires
user authentication, which we implement using the Globus
Auth authentication broker (Tuecke et al., 2016). Users of
GlobusAuth may be authenticated via a number of permitted
authentication services, and are issued a token which serves as
an identity credential. In our current installationwe require use
of the CommonShare authenticator, with site-specific two-fac-
tor authentication necessary to obtain an identity token. This
token is then used by the microservices to determine a user’s
permission to access various functionality.

Authentication and Authorization Layer

Authentication and authorization (authN/authZ) in
FAIRSCAPE are handled by Keycloak (Christie et al.,

Fig. 1 FAIRSCAPE architectural
layers and components

190 Neuroinform (2022) 20:187–202

https://traefik.io

2020), a widely-used open source identity and access manage-
ment tool.

When Traefik receives a request, it handles an authentica-
tion check to Keycloak, which then determines whether or not
the requestor has a valid token for an identity that can perform
the requested action.

We distribute FAIRSCAPEwith a preconfigured Keycloak
for basic username / password authentication & authorization
of service requests. This can be easily modified to support
alternative identity providers, including LDAP, OpenID
Connect, and OAuth2.0 for institutional single sign-on.
Services continue to interact the sameway, even if you change
the configured identity provider.

Within our local Keycloak configuration, we chose to define
Globus Auth as the identity provider. Globus Auth then serves
as a dispatching broker amongst multiple other possible final
identity providers. We selected the login service at the
University of Virginia as our final provider, providing two-
factor authentication and institutional single sign-on. Keycloak
is very flexible in allowing selection of various authentication
schemes, such as LDAP, SAML, OAuth2.0, etc. Selection of
authentication schemes is an administrator decision.

Microservices Layer

The microservices layer is composed of seven services: (1)
Transfer, (2) Metadata, (3) Object, (4) Evidence Graph, (5)
Compute, (6) Search, and (7) Visualization. These are de-
scribed in more detail in Section 2. Each microservice does
its own request authorization, subsequent to Keycloak, en-
abling fine-grained access control.

Storage and Analytic Engine Layer

In FAIRSCAPE, an S3 compatible object store is required for
storing objects, a document store for storing metadata, and a
graph store for storing graph data. Persistence for these data-
bases is configured through Kubernetes volumes, which map
specific paths on containers to disk storage. The current re-
lease of FAIRSCAPE uses the S3 compatible MinIO as the
object store, MongoDB as the document store, and Stardog as
the graph store. Computations invoked by the Compute
Service are managed by Kubernetes, Apache SPARK, and
the Nipype neuroinformatics workflow engine.

FAIRSCAPE Microservice Components

Transfer Service

This service transfers and registers digital research objects -
datasets, software, etc., − and their associated metadata, to the
Commons. These objects are sent to the transfer service as
binary data streams, which are then stored in MinIO object

storage. These objects may include structured or unstructured
data, application software, workflow, scripts. The associated
metadata contains essential descriptive information such as
context, type, name, textual description, author, location,
checksum, etc. about these objects. Metadata are expressed
as JSON-LD and sent to the Metadata Service for further
processing.

Hashing is used to verify correct transmission of the object
– users are required to specify a hash which is then
recomputed by the Object Service after the object is stored.
Hash computation is currently based on the SHA-256 secure
cryptographic hash algorithm (Dang, 2015). Upon successful
execution, the service returns a PID of the object in the form of
an ARK, which resolves to the metadata. The metadata in-
cludes, as is normal in PID architecture (Starr et al., 2015), a
link to the actual data location.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Transfer/

0.1

Metadata Service

The Metadata Service handles metadata registration and reso-
lution including identifier minting in association with the ob-
ject metadata. The Metadata Service takes user POSTed
JSON-LD metadata and uploads the metadata to MongoDB
and Stardog, and returns a PID. To retrieve metadata for an
existing PID a user makes a GET call to the service. A PUT
call to the service will update an existing PID with new meta-
data. While other services may read from MongoDB and
Stardog directly, the Metadata Service handles all writes to
MongoDB and Stardog.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Metadata-

Service/0.1

Object Service

The Object Service provides a direct interface between the
Transfer Service and MinIO as well as maintaining consisten-
cy between MinIO and the metadata store. The Object Service
handles uploads of new objects as well as uploading new
versions of existing files. In both cases the Object Service
accepts a file and desired file location as inputs and (if the
location is available) uploads the file to desired location in
MinIO and returns a PID representing the location of the
uploaded file. A DELETE call to the service will delete the
requested file from MinIO as well as delete the PID with the
link to the data, however the PID representing the object meta-
data remains.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Object-

Service/0.1

191Neuroinform (2022) 20:187–202

https://app.swaggerhub.com/apis/FAIRSCAPE/Transfer/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Transfer/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Metadata-Service/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Metadata-Service/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Object-Service/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Object-Service/0.1

Evidence Graph Service

The Evidence Graph Service creates a JSON-LD Evidence
Graph of all provenance related metadata to a PID of interest.
The Evidence Graph documents all objects such as datasets,
software, workflows, and the computations which are directly
involved in creating the requested entity. The service accepts a
PID as its input, runs a PATH query built on top of the SPARQL
query engine in Stardog with the PID of interest as its source to
retrieve all supporting nodes. To retrieve an Evidence Graph for
a PID a user may make a GET call to the service.

The Evidence Graph Service plays an important role in
reproducing computations. All resources required to run a
computation are exposed using persistent identifiers by the
evidence graph. A user can reproduce the same computation
by invoking the appropriate services available through the
Python client with the help of these identifiers. This feature
allows a user to verify the accuracy of the results and detect
any discrepancies.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Evidence-

Graph/0.1

Compute Service

This service executes user uploaded scripts, workflows, or con-
tainers, on uploaded data. It currently offers two compute en-
gines (Spark, Nipype) in addition to native Kubernetes container
execution, to meet a variety of computational needs. Users may
execute any script they would like to run as long as they provide
a docker container with the required dependencies. To complete
jobs the service spawns specialized pods on Kubernetes de-
signed to perform domain specific computations that can be
scaled to the size of the cluster. This service provides the essen-
tial ability to recreate computations based solely on identifiers.
For data to be computed on it must first be uploaded via the
Transfer Service and be issued an associated PID.

The service accepts a PID for a dataset, a script, software,
or a container, as input and produces a PID representing the
activity to be completed. The request returns a job identifier
fromwhich job progress can be followed. Upon completion of
a job all outputs are automatically uploaded and assigned new
PIDs, with provenance aware metadata. At job termination,
the service performs a ‘cleanup’ operation, where a job is
removed from the queue once it is completed.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Compute/

0.1

Search Service

The Search Service allows users to search for object metadata
containing strings of interest. It accepts a string as input and

performs a search over all literals in the metadata for exact
string matches and returns a list of all PIDs with a literal con-
taining the query string. It is invoked via the GET method of
API endpoint to the service with the search string as argument.

An OpenAPI description of the interface is here:
https://app.swaggerhub.com/apis/FAIRSCAPE/Search/0.1

Visualization Service

This service allows users to visualize Evidence Graphs inter-
actively in the form of nodes and directed edges, offering a
consolidated view of the entities and the activities supporting
correctness of the computed result. Our current visualization
engine is Cytoscape (Shannon, 2003). Each node displays its
relevant metadata information, including its type and PID,
resolved in real-time.

The Visualization Service renders the graph on an HTML
page.

An OpenAPI description of the interface is here:
https:/ /app.swaggerhub.com/apis/FAIRSCAPE/

Visualization/0.1

FAIRSCAPE Service Orchestration

FAIRSCAPE orchestrates a set of containers to provide pat-
terns for object registration, including identifier minting and
resolution; object retrieval; computation; search; evidence
graph visualization, and object deletion. These patterns are
orchestrated following API ingress, authentication, and ser-
vice dispatch, by microservice calls, invoking the relevant
service containers.

Object Registration

Object registration occurs initially via the Transfer Service,
with an explicit user service call, and again automatically
using the same service, each time a computation generates
output. Objects in FAIRSCAPE may be software, containers,
or datasets. Descriptive metadata must be specified for object
registration to occur.

When invoked, the Transfer Service calls the Metadata
Service (MDS) to mint a new persistent identifier, implement-
ed as an Archival Resource Key (ARK), generated locally,
and to store it associated with the descriptivemetadata, includ-
ing the new registered object location. MDS stores object
metadata, including provenance, in both MongoDB and in
the Stardog graph store, allowing subsequent access to the
object metadata by other services.

After minting an identifier and storing the metadata, the
Transfer Service calls the Object Service to persist the new
object, and then updates the metadata with the stored object
location. Hashing is used to verify correct transmission of the
object – users are required to specify a SHA256 hash on

192 Neuroinform (2022) 20:187–202

https://app.swaggerhub.com/apis/FAIRSCAPE/Evidence-Graph/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Evidence-Graph/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Compute/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Compute/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Search/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Visualization/0.1
https://app.swaggerhub.com/apis/FAIRSCAPE/Visualization/0.1

registration, which is then recomputed by the Object Service
and verified after the object is stored. Internally computed
hashes are provided for re-verification when the object is
accessed. Failure of hashes to match generates an error.

Identifier Minting

The Metadata Service mints PIDs in the form of ARKs.
Multiple alternative PIDs may exist for an object and PIDs
are resolved to their associated object level metadata including
the object’s Evidence Graph and location with appropriate
permissions.

In the current deployment, ARKs created locally are regis-
tered to an assigned Name Assigning Authority Number. The
ARK globally unique identifier ecosystem employs a flexible
minimalistic standard and existing infrastructure.

Identifier Resolution

ARK identifier resolution may be handled locally and/or by
external resolver services such as Name-to-Thing (https://n2t.
net). The Name-to-Thing resolver allows for Name Assigning
Authority Numbers (NAAN) to have redirect rules for their
ARKs, which forwards requests to the Name Mapping
Authority Hostport for the corresponding commons. Each
FAIRSCAPE instance should independently obtain a
NAAN, and a DNS name for their local FAIRSCAPE instal-
lation, if they wish their ARKs to be resolved by n2t.net.
DataCite DOI registration and resolution are planned for
future work.

Object Retrieval

Objects are accessed by their PID, after prior resolution of the
object’s PID to its metadata (MDS) and authorization of the
user’s authentication token for data access on that object.
Object access is either directly from the Object Store, or from
wherever else the object may reside. Certain large objects
residing in robust external archives, may not be acquired into
local object storage, but remain in place, up to the point of
computation.

Computation

When executing a workload through the compute service,
data, software, and containers are referenced through their
PIDs, and by no other means. The Compute Service utilizes
the stored metadata to dereference the object locations, and
transfers them to the managed containers. The compute ser-
vice also creates a provenance record of its own execution,
associated with an identifier of type evi:Computation. Upon
the completion of a job, the Compute Service stores the gen-
erated output through the Transfer Service. Running

workloads in the Compute Service enables all data, results,
and methods to be tracked via a connected evidence graph,
with persistent identifiers available for every node.

The Compute Service executes computations using (a) a
container specified by the user, or (b) the Apache Spark ser-
vice, or (c) the Nipype workflow engine. Like datasets and
software (including scripts), computations are represented by
persistent identifiers assigned to them. Objects are passed to
the Compute Service by their PIDs and the computation is
formally linked to the software (or script) by the
usedSoftware property, and the input datasets by the
usedDataset property.

Runtime parameters may be passed with objects and a sin-
gle identifier is minted with the given parameters and connect-
ed to the computation via the ‘parameters’ property. However,
at this moment these parameters are not incorporated in the
evidence graph.

The Compute Service spawns a Kubernetes pod with the
input objects mounted in the /data directory by default.
Upon completion of the job all output files in the /outputs
directory are transferred to the object store and identifiers
for them are minted with the property generatedBy. The
generatedBy property references the identifier for the
computation.

Object Search

Object searches are performed by the Search Service,
called directly on Service Dispatch. Search makes use of
Stardog’s full text retrieval, which in turn is based on
Apache Lucene.

Evidence Graph Visualization

Evidence graphs of any object acquired by the system may be
visualized at any point in this workflow using the
Visualization Service. Nipype provides a chart of the
workflows it executes using the Graphviz package. Our
Evidence Graph Service is interactive, using the Cytoscape
package (Shannon, 2003), and allows Evidence graphs of
multiple workflows in sequence to be displayed whether or
not they have been combined into a single flow.

Object Deletion

Objects are deleted by calls to the Object Service to clear the
object from storage, which then calls MDS and nulls out the
object location in the metadata record. Metadata is retained
even though the object may cease to be held in the system, in
accordance with the Data Citation Principles (Data Citation
Synthesis Group, 2014).

193Neuroinform (2022) 20:187–202

https://n2t.net
https://n2t.net
http://n2t.net

Results

Two use cases are presented here to demonstrate the applica-
tion of FAIRSCAPE services. The first use case performs
analysis of time series algorithms while the second runs a
neuroimaging workflow. For each use case, the operations
involving data transfer, computation, and evidence graph gen-
eration are described below:

Use Case Demonstration 1: Highly Comparative Time
Series Analysis (HCTSA) of NICU Data

Researchers at the Neonatal Intensive Care Unit
(NICU) at the University of Virginia continuously mon-
itor infants and collect vital signs such as heart rate
(HR) and oxygen saturation. Patterns in vital sign mea-
surements may indicate acute or chronic pathology
among infants. In the past a few standard statistics
and algorithms specially designed for discovering cer-
tain pathologies were applied to similar vital sign data.
In this work we additionally applied many time series
algorithms from other domains with the hope that these
algorithms would be helpful for prediction of unstudied
outcomes. A total of 67 time series algorithms have
been recoded as Python scripts and run on the vital
signs of 5997 infants collected over 10 years during
2009–2019. The data are then merged, sampled and
clustered to find representative time series algorithms
which express unique characteristics about the time

series and make it easier for researchers to quickly build
models for outcomes where the physiology is not
known. FAIRSCAPE can be used to build such models
using its services.

A series of steps are required to execute and reproduce the
HCTSA of NICU data. They include transferring NICU data,
Python scripts, and associated metadata to the storage to be
used later, running the scripts in the FAIRSCAPE compute
environment, and generating the evidence graph. The first
script runs the time series algorithms on the vital sign data
while the second script performs clustering of these algo-
rithms to generate a heatmap image. The evidence graph gen-
erated for all patients contains over 17,000 nodes. However, a
simplified version of the computational analysis based on a
single patient is described here as the steps for executing the
analysis are common for all patients. These steps are briefly
described below:

Transfer Data, Software and Metadata

Before any computation is performed FAIRSCAPE re-
quires each piece of data and software to be uploaded
to the object store with its metadata using the POST
method of the transfer service. The raw data file con-
taining the vital signs and the associated metadata are
uploaded first. The scripts and the associated metadata
are uploaded next.

The upload_file function shown below is used to transfer
the raw data file UVA_7219_HR.csv as the first parameter
and the associated metadata referenced by the variable
dataset_meta as the second parameter:

194 Neuroinform (2022) 20:187–202

As part of the transfer, identifiers are minted by the
Metadata Service for each successfully uploaded object. The
variable raw_time_series_fs_id refers to the minted identifier
returned by the function. Each identifier is resolvable to the
uploaded object which can be accessed only by an authorized
user.

Time Series Data Analysis

Once the transfer is complete, the computation for the data
analysis can be started. The computation takes the raw vital
sign measurements as input, groups the measurements into
10-min intervals and runs each algorithm on them.
FAIRSCAPE makes launching such a computation easy by
executing the POSTmethod of the compute service with iden-
tifiers of the data and script as parameters. The compute ser-
vice creates an identifier with metadata pointing to the provid-
ed inputs and launches a Kubernetes pod to perform the com-
putation. Upon completion of the script, all output files are
assigned identifiers and stored in the object store.

The compute function takes the PIDs of the dataset, soft-
ware/script, and the type of job such Apache Spark, Nipype,
or custom containers as parameters. The PID it returns refers
to the submitted job which can be used to track the progress of
the computation and its outputs.

The compute function shown below is used to launch a
computation on the raw data file raw_ts_fs_id as the first
parameter, the analysis script raw_date_analysis_script_id
as the second parameter using their identifiers, and the type
of job spark as the third parameter: raw_date_analysis_jod_id
= FAIR.compute(raw_ts_fs_id, raw_date_analysis_script_id,
spark')

The PID the compute function returns resolves to the
s u b m i t t e d j o b a n d i s r e f e r e n c e d b y .
raw_date_analysis_jod_id.

Clustering of Algorithms

The next computation step is to perform clustering of algo-
rithms. Many algorithms are from similar domains and the
operations they perform express similar characteristics. The
HCTSA Clustering script clusters these algorithms into groups
which are highly correlated and a representative algorithm
could be chosen from each grouping. The compute service is
then invoked with identifiers of the clustering script and the
processed data as parameters. The compute function below
takes PIDs of the processed time series feature set, clustering
script, and spark job type as input parameters and returns a PID
representing the job to generate the HCTSA heatmap:

An image showing the clustered algorithms is produced at
the end of this step which is shown in Fig. 2.

Generating the Evidence Graph

An evidence graph is generated using the GET method of the
Evidence Graph Service. Figure 3 illustrates all computations
and the associated inputs and outputs for a single patient. The
graph for all patients contains 17,995 nodes of types Image,
Computation, Dataset and Software. Each patient has a
unique Raw Time Series Feature Set, a Raw Data Analysis
computation, and a Processed Time Series file. The Raw Data
Analysis Script, HCTSA Clustering Script, HCTSA Heatmap
Generation, and HCTSA Heatmap are shared among all
patients.

The simplified evidence graph in Fig. 3 contains 7 nodes,
each with its own PID, where a Computation (Raw Data
Analysis) uses a Dataset (Raw Time Series Feature Set) as
the input to a Software (Raw Data Analysis Script),
representing the script to execute all the time series algo-
rithms, and generates the Dataset (Processed Time Series
Feature Set) as the output. The next Computation (HCTSA
Cluster Heatmap Generation) uses the processed Dataset gen-
erated during the previous computation as the input of the
Software (HCTSA Clustering Script), which generates an
Image (HCTSA Cluster Heatmap), representing the clustering
of the algorithms as an output. The evidence_graph function
t akes the P ID of the HCTSA Hea tmap image :
ev idence_graph_ j sond = FAIR.ev idence_graph
(HCTSA_heathmap_id) and generates the evidence graph
for that PID serialized in JSON-LD (shown in Fig. 4).

2. Use Case Demonstration 2: Neuroimaging Analysis
Using Nipype Workflow Engine

Data analysis in neuroimaging often requires multiple het-
erogeneous algorithms which sometimes lack transparent in-
teroperability under a uniform platform. Workflows offer so-
lutions to this problem by bringing the algorithms and soft-
ware under a single umbrella. The open-source neuroimaging
workflow engine Nipype combines heterogenous neuroimag-
ing analysis software packages under a uniform operating
platform which resolves the interoperability issues by
allowing them to talk to each other. Nipype provides access
to a detailed representation of the complete execution of a
workflow consisting of inputs, output and runtime parameters.
The containerization-friendly release, detailed workflow rep-
resentation, and minimal effort required to modify existing
services to produce a deep evidence graph have made
Nipype an attractive target for integration within the
FAIRSCAPE framework.

Among the services in FAIRSCAPE, only the compute
service needed to be modified to run and interrogate Nipype.
The modifications include repurposing the service to run the
workflow from the Nipype-specific container generated by the

195Neuroinform (2022) 20:187–202

Neurodocker tool and to capture all entities from the internal
graph generated after the workflow is executed. Whereas an
evidence graph typically includes the primary inputs and out-
puts, the deep evidence graph produced here additionally

contains intermediate inputs and outputs. It provides a detailed
understanding of each analysis performed using the computa-
tions, software and datasets.

Fig. 2 NICUHCTSA clustering
heatmap. X axis and Y axis are
operations (algorithms using
specific parameter sets), color is
correlation between algorithms.
The large white squares are
clusters of highly correlated
operations which suggest the
dimension of the data may be
greatly diminished by selecting
“representative” algorithms from
these clusters

Fig. 3 Simplified Evidence graph for one patient’s computations. Vital signs = dark blue box bottom right; computations = yellow boxes;
processed data = dark blue box in middle; green box = heatmap of correlations

196 Neuroinform (2022) 20:187–202

A workflow is considered simple if it consists of a sequence
of processing steps and complex if there is nesting of workflow
execution such that the output of one workflow is used as the
input to another workflow. The simple neuroimaging prepro-
cessing workflow demonstrated here (Notter, 2020) involves
steps to correctmotion of functional images, co-register function-
al images to anatomical images, smooth the co-registered func-
tional images, and detect artifacts in functional images. As part of
data transfer, dataset containing images and the script to run the
processing steps with their associated metadata were uploaded
using the file_upload function as shown in the previous use case.
The compute function is then used to launch a computation on
the image dataset which runs the processing script on the
repurposedNipype container. The only exception in the compute
the function is that it uses nipype as the third input parameter
instead of spark when the Compute Service was invoked. The
full evidence graph, generated using the evidence_graph func-
tion as demonstrated above, is too large to document due to space
constraints. Therefore, only the graph of the motion correction of
functional images with FSL’s MCFLIRT is shown in Fig. 5. For
additional details on this workflow, please consult the original
Nipype tutorial (Notter, 2020).

Discussion

FAIRSCAPE enables rapid construction of a shared dig-
ital commons environment and supports FAIRness

within and outside that environment. It supports every
requirement defined in the FAIR Principles at a detailed
level, as defined in (Wilkinson et al., 2016), including a
deep and comprehensive provenance model via
Evidence Graphs, contributing to more transparent sci-
ence and improved reusability of methods.

Scientific rigor depends on the transparency of methods (in-
cluding software) and materials (including data). The historian
of science Steven Shapin, described the approach developed
with the first scientific journals as “virtual witnessing”
(Shapin, 1984), and this is still valid today. The typical scientific
reader does not actually reproduce the experiment but is invited
to review mentally every detail of how it was done to the extent
that s/he becomes a “virtual witness” to an envisioned live dem-
onstration. That is clearly howmost people read scientific papers
- except perhaps when they are citing them, in which case less
care is often taken. Scientists are not really incentivized to rep-
licate experiments; their discipline rewards novelty.

The ultimate validation of any claim once it has been accept-
ed as reasonable on its face comes with support from multiple
distinct angles, by different investigators; successful re-use of
the materials and methods upon which it is based; and consis-
tency with some body of theory. If the materials and methods
are sufficiently transparent and thoroughly disclosed as to be
reusable, and they cannot be made to work, or give bad results,
that debunks the original experiments - precisely the way in
which the promising-sounding STAP phenomenon was
discredited (“RETRACTED ARTICLE: Stimulus-triggered

Fig. 4 JSON-LD Evidence
Graph for patient computation
as illustrated in Fig. 3

197Neuroinform (2022) 20:187–202

fate conversion of somatic cells into pluripotency”, 2014; Shiu,
2014), before the elaborate formal effort of Riken to replicate
the experiments (Ishii et al., 2014; RIKEN, 2014).

As a first step then, it is not only a matter of reproducing
experiments but also of producing transparent evidence that
the experiments have been done correctly. This permits chal-
lenges to the procedures to develop over time, especially
through re-use of materials (including data) and methods -
which today significantly include software and computing
environments. We definitely view these methods as being
extensible to materials such as reagents, using the RRID ap-
proach; and to other computational disciplines.

Conclusion

FAIRSCAPE is a reusable framework for scientific computa-
tions that provides a simplified interface for research users to an
array of modern, dynamically scalable, cloud-based
componentry. Our goal in developing FAIRSCAPE was to pro-
vide an ease-of-use (and re-use) incentive for researchers, while
rendering all the artifacts marshalled to produce a result, and the
evidence supporting them, Findable, Accessible, Interoperable,
and Reusable. FAIRSCAPE can be used to construct, as we
have done, a provenance-aware computational data lake or
Commons. It supports transparent disclosure of the Evidence
Graphs of computed results, with access to the persistent identi-
fiers of the cited data or software, and to their stored metadata.

End-users do not need to learn a new programming language
to use services provided by FAIRSCAPE. They require no ad-
ditional special expertise, other than basic familiarity with
Python and the skillsets they already possess in statistics, com-
putational biology, machine learning, or other data science tech-
niques. FAIRSCAPE provides an environment that makes large-
scale computational work easier and results FAIRer.

FAIRSCAPE is itself reusable and we have taken pains to pro-
vide well-documented straightforward installation procedures.

All resources on FAIRSCAPE are assigned identifiers
which allow them to be shared. FAIRCAPE allows users to
capture the complete evidence graph of the tasks performed.
These evidence graphs show all steps of computations per-
formed and the software and data that went into each compu-
tation. Evidence graphs, along with FAIRSCAPE’s other ser-
vices, allow users to review and reproduce an experiment with
significantly less overhead than other standard approaches.
Users can see all computations that were performed, review
the source code, and download all the data. This allows an-
other party to reproduce the exact computations performed,
apply the experimenter’s software to their own data, or apply
their own methods to the experimenter’s data.

The optimal use case for a FAIRSCAPE installation is a
local or multi-institution digital commons, in a managed
Kubernetes environment. It can also be installed on high-end
laptops for testing and development purposes as needed. We
are actively looking for collaborators wishing to use, adapt,
and co-develop this software.

FAIRSCAPE is not a tool for individual use, it is software
for creating a high-efficiency collective environment. As a
framework for sharing results and methods in the present, it
also provides reliable deep provenance records acrossmultiple
computations, to support future reuse and to improve guaran-
tees of reliability. This is the kind of effort we hope that cen-
ters and institutions will be increasingly making, to support
reliable and shareable computational research results. We
have seen increasing examples of philanthropic RFAs
directing investment to this area. In our own research, we have
found FAIRSCAPE’s methods invaluable in supporting high-
ly productive computational research.

The major barriers to widespread adoption of digital com-
mons environments, in our view, have been the relative non-

Fig. 5 Evidence Graph visualization for the neuroimaging workflow execution

198 Neuroinform (2022) 20:187–202

reusability (despite claims to the contrary) of existing com-
mons frameworks, and the additional effort required to man-
age a FAIR digital commons. We feel that FAIRSCAPE is a
contribution to resolving the reusability issue, and may also
help to simplify some digital commons management issues.
Time will tell if the philanthropic investments in these areas
noted above are continued. We hope they are.

We plan several enhancements in future research and de-
velopment with this project, such as integration of additional
workflow engines, including engines for genomic analysis.
We intend to provide support for DataCite DOI and
Software Heritage Identifier (SWHID) (Software Heritage
Foundation, 2020) registration; with metadata and data trans-
fer to Dataverse instances, in future. Transfer of data, soft-
ware, and metadata to long-term digital archives such as these,
which are managed at the scale of universities or countries, is
important in providing long-term access guarantees, beyond
the life of an institutional center or institute.

Many projects involving overlapping groups have worked
to address parts of the scale, accessibility, verifiability, repro-
ducibility, and reuse problems targeted by FAIRSCAPE. Such
challenges are in large part outcomes of the transition of bio-
medical and other scientific research from print to digital, and
our increasing ability to generate data and to run computations
on it at enormous scale. We make use of many of these prior
approaches in our FAIRSCAPE framework, providing an in-
tegrated model for FAIRness and reproducibility, with ease of
use incentives. We believe it will be a helpful tool for con-
structing provenance-aware FAIR digital commons, as part of
an interoperating model for reproducible biomedical science.

Information Sharing Statement

& Code for the microservices and the python client described
in this paper are publicly available in the Zenodo reposi-
tory at https://doi.org/10.5281/zenodo.4711204 and on
GitHub at https://github.com/fairscape/fairscape. All
versions are available under MIT license.

& Installation instructions, python Demo Notebooks, and
API documentation are available at https://fairscape.
github.io, also under MIT license.

& The MongoDB noSQL DB Community Version is avail-
able under MongoDB’s license terms at https://www.
mongodb.com/try/download/community.

& The Stardog knowledge graph DB is available under
Stardog’s license terms at https://www.stardog.com.

& The EVI ontology OWL2 vocabulary is available at
https://w3id.org/EVI# under MIT license.

Acknowledgements We thank Chris Baker (University of New
Brunswick), Caleb Crane (Mitsubishi Corporation), Mercè Crosas

(Harvard University), Satra Ghosh (MIT), Carole Goble (University of
Manchester), John Kunze (California Digital Library), Sherry Lake
(University of Virginia), Maryann Martone (University of California
San Diego), and Neal Magee (University of Virginia), for helpful discus-
sions; and Neal Magee for technical assistance with the University of
Virginia computing infrastructure. This work was supported in part by
the U.S. National Institutes of Health, grants NIH OT3 OD025456-01,
NIH 1U01HG009452, NIH R01-HD072071-05, and NIH U01-
HL133708-01; and by a grant from the Coulter Foundation.

Declarations

Conflict of Interests The authors declare that they have no conflicts of
interest.

Additional Information Data used in preparing this article was obtained
from the University of Virginia Center for Advanced Medical Analytics
and from OpenNeuro.org

Rights and Permissions This article is licensed under a Creative
Commons Attribution 4.0 International License, which permits use, shar-
ing, adaptation, distribution and reproduction in anymedium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third-party material in this
article are included in the article ' s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article ' s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/
4.0/.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adkins, S. (2016). OpenStack: Cloud application development.
Indianapol is , IN: Wrox. http: / /RE5QY4SB7X.search.
serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=
TC0001588151&T=marc

Al Manir, S., Niestroy, J., Levinson, M. A., & Clark, T. (2021a).
Evidence graphs: Supporting transparent and FAIR computation,
with defeasible reasoning on Data, methods and results. BioRXiv,
2021/437561, 9. https://doi.org/10.1101/2021.03.29.437561.

Al Manir, S., Niestroy, J., Levinson, M., & Clark, T. (2021b). EVI: The
evidence graph ontology, OWL 2 vocabulary. Zenodo. https://doi.
org/10.5281/zenodo.4630931.

Alterovitz, G., Dean, D., Goble, C., Crusoe, M. R., Soiland-Reyes, S.,
Bell, A., Hayes, A., Suresh, A., Purkayastha, A., King, C. H.,

199Neuroinform (2022) 20:187–202

https://doi.org/10.5281/zenodo.4711204
https://github.com/fairscape/fairscape
https://fairscape.github.io
https://fairscape.github.io
https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://www.stardog.com
https://w3id.org/EVI
http://openneuro.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://re5qy4sb7x.search.serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=TC0001588151&T=marc
http://re5qy4sb7x.search.serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=TC0001588151&T=marc
http://re5qy4sb7x.search.serialssolutions.com/?V=1.0&L=RE5QY4SB7X&S=JCs&C=TC0001588151&T=marc
https://doi.org/10.1101/2021.03.29.437561
https://doi.org/10.5281/zenodo.4630931
https://doi.org/10.5281/zenodo.4630931

Taylor, D., Johanson, E., Thompson, E. E., Donaldson, E.,
Morizono, H., Tsang, H., Vora, J. K., Goecks, J., Yao, J.,
Almeida, J. S., Keeney, J., Addepalli, K. D., Krampis, K., Smith,
K. M., Guo, L., Walderhaug, M., Schito, M., Ezewudo, M.,
Guimera, N., Walsh, P., Kahsay, R., Gottipati, S., Rodwell, T. C.,
Bloom, T., Lai, Y., Simonyan, V., & Mazumder, R. (2018).
Enabling precision medicine via standard communication of HTS
provenance, analysis, and results. PLoS Biol, 16(12), e3000099.
https://doi.org/10.1371/journal.pbio.3000099.

Altman, M., Andreev, L., Diggory, M., King, G., Sone, A., Verba, S., &
Kiskis, D. L. (2001). A digital library for the dissemination and
replication of quantitative social science research. Soc Sci Comput
R e v , 1 9 (4) , 4 5 8 – 4 7 0 . h t t p s : / / d o i . o r g / 1 0 . 1 1 7 7 /
089443930101900405.

Altman, M., & King, G. (2007). A proposed standard for the scholarly
citation of quantitative Data. DLib Magazine, 13(3/4), march2007-
altman. http://www.dlib.org/dlib/march07/altman/03altman.html

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices ar-
chitecture enables DevOps: Migration to a cloud-native architecture.
IEEE Softw, 33(3), 42–52. https://doi.org/10.1109/MS.2016.64.

Bandrowski, A. (2014). RRID’s are in the wild! Thanks to JCN and
PeerJ. The NIF Blog: Neuroscience Information Framework.
http://blog.neuinfo.org/index.php/essays/rrids-are-in-the-wild-
thanks-to-jcn-and-peerj

Bandrowski, A. E., & Martone, M. E. (2016). RRIDs: A simple step
toward improving reproducibility through rigor and transparency
of experimental methods. Neuron, 90(3), 434–436. https://doi.org/
10.1016/j.neuron.2016.04.030.

Bench-Capon, T. J. M., & Dunne, P. E. (2007). Argumentation in artifi-
cial intelligence. Artif Intell, 171(10–15), 619–641. https://doi.org/
10.1016/j.artint.2007.05.001.

Birger, C., Hanna, M., Salinas, E., Neff, J., Saksena, G., Livitz, D., et al.
(2017). FireCloud, a scalable cloud-based platform for collabora-
tive genome analysis: Strategies for reducing and controlling costs
(preprint). Bioinformatics. https://doi.org/10.1101/209494.

Borgman, C. (2012).Why are the attribution and citation of scientific data
important? In P. Uhlir & D. Cohen (Eds.), Report from developing
Data attribution and citation PRactices and standards: An interna-
tional symposium and workshop. Washington DC: National
Academy of Sciences’ Board on Research Data and Information.
National Academies Press. http://works.bepress.com/cgi/
viewcontent.cgi?article=1286&context=borgman

Bourne, P., Clark, T., Dale, R., de Waard, A., Herman, I., Hovy, E., &
Shotton, D. (2012). Improving future research communication and
e-scholarship: A summary of findings. Informatik Spectrum, 35(1),
56–57. https://doi.org/10.1007/s00287-011-0592-1.

Brase, J. (2009). DataCite - A Global Registration Agency for Research
Data. In Proceedings of the 2009 Fourth International Conference
on Cooperation and Promotion of Information Resources in Science
and Technology (pp. 257–261). Presented at the Cooperation and
Promotion of Information Resources in Science and Technology,
2009. COINFO ‘09. Fourth International Conference on https://
doi.org/10.1109/COINFO.2009.66.

Brewka, G., Polberg, S., & Woltran, S. (2014). Generalizations of Dung
frameworks and their role in formal argumentation. Intelligent
Systems, IEEE, 29(1), 30–38. https://doi.org/10.1109/MIS.2013.
122.

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M. B.,
Kowalik, K., Kulasekaran, S., Ludäscher, B., Mecum, B. D.,
Nabrzyski, J., Stodden, V., Taylor, I. J., Turk, M. J., & Turner, K.
(2019). Computing environments for reproducibility: Capturing the
“Whole Tale.”. Futur Gener Comput Syst, 94, 854–867. https://doi.
org/10.1016/j.future.2017.12.029.

Brody, J. A., Morrison, A. C., Bis, J. C., O’Connell, J. R., Brown, M. R.,
Huffman, J. E., et al. (2017). Analysis commons, a team approach to

discovery in a big-data environment for genetic epidemiology. Nat
Genet, 49, 1560–1563. https://doi.org/10.1038/ng.3968.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016).
Borg, Omega, and Kubernetes. Commun ACM, 59(5), 50–57.
https://doi.org/10.1145/2890784.

Carrera, Á., & Iglesias, C. A. (2015). A systematic review of argumen-
tation techniques for multi-agent systems research. Artif Intell Rev,
44(4), 509–535. https://doi.org/10.1007/s10462-015-9435-9.

Cayrol, C., & Lagasquie-Schiex,M.-C. (2009). Bipolar abstract argumen-
tation systems. In I. Rahwan & G. R. Simari (Eds.), Argumentation
in artificial intelligence. Springer.

Cayrol, C., & Lagasquie-Schiex, M.-C. (2010). Coalitions of arguments:
A tool for handling bipolar argumentation frameworks. Int J Intell
Syst, 25(1), 83–109. https://doi.org/10.1002/int.20389.

Cayrol, C., & Lagasquie-Schiex, M.-C. (2013). Bipolarity in argumenta-
tion graphs: Towards a better understanding. Int J Approx Reason,
54(7), 876–899. https://doi.org/10.1016/j.ijar.2013.03.001.

Chard, K., Willis, C., Gaffney, N., Jones, M. B., Kowalik, K., Ludäscher,
B., et al. (2019). Implementing computational reproducibility in the
whole tale environment. In Proceedings of the 2nd International
Workshop on Practical Reproducible Evaluation of Computer
Systems - P-RECS ‘19 (pp. 17–22). Presented at the the 2nd inter-
national workshop, Phoenix, AZ, USA: ACM press. https://doi.org/
10.1145/3322790.3330594.

Christie, M. A., Bhandar, A., Nakandala, S., Marru, S., Abeysinghe, E.,
Pamidighantam, S., & Pierce, M. E. (2020). Managing authentica-
tion and authorization in distributed science gateway middleware.
Futur Gener Comput Syst, 111, 780–785. https://doi.org/10.1016/j.
future.2019.07.018.

Clark, Tim, Ciccarese, P., & Goble, C. (2014). Micropublications: A
semantic model for claims, evidence, arguments and annotations
in biomedical communications. Journal of Biomedical Semantics,
5(1). http://www.jbiomedsem.com/content/5/1/28

Clark, T., Katz, D. S., Bernal Llinares, M., Castillo, C., Chard, K., Crosas,
M., et al. (2018, September 3). DCPPC DRAFT: KC2 Globally
Unique Identifier Services. National Institutes of Health, Data
Commons P i l o t Pha se Conso r t i um . h t t p s : / / pub l i c .
nihdatacommons.us/DCPPC-DRAFT-8_KC2/

CODATA/ITSCI Task Force on Data Citation. (2013). Out of cite, out of
mind: The current state of practice, policy and Technology for Data
Citation. Data Science Journal, 12, 1–75. https://doi.org/10.2481/
dsj.OSOM13-043.

Cousijn, H., Kenall, A., Ganley, E., Harrison, M., Kernohan, D.,
Lemberger, T., Murphy, F., Polischuk, P., Taylor, S., Martone,
M., & Clark, T. (2018). A data citation roadmap for scientific pub-
lishers. Scientific data, 5, 180259.

Dang, Q. H. (2015). Secure Hash Standard (no. NIST FIPS 180-4) (p.
NIST FIPS 180-4). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.FIPS.180-4.

Miller, D., Whitlock, J., Gardiner, M., Ralphson,M., Ratovsky, R., Sarid,
U.. (2020). OpenAPI specification, version 3.03. OpenAPI. http://
spec.openapis.org/oas/v3.0.3. Accessed 2 February 2021.

Data Citation Synthesis Group. (2014). Joint Declaration of Data
Citation Principles. San Diego CA: Future of research communica-
tion and e-scholarship (FORCE11). https://doi.org/10.25490/a97f-
egyk.

Dung, P. M. (1995). On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-
person games. Artif Intell, 77(2), 321–357. https://doi.org/10.1016/
0004-3702(94)00041-x.

Dung, P. M., & Thang, P. M. (2018). Representing the semantics of
abstract dialectical frameworks based on arguments and attacks.
Argument & Computation, 9(3), 249–267. https://doi.org/10.3233/
AAC-180427.

200 Neuroinform (2022) 20:187–202

https://doi.org/10.1371/journal.pbio.3000099
https://doi.org/10.1177/089443930101900405
https://doi.org/10.1177/089443930101900405
http://www.dlib.org/dlib/march07/altman/03altman.html
https://doi.org/10.1109/MS.2016.64
http://blog.neuinfo.org/index.php/essays/rrids-are-in-the-wild-thanks-to-jcn-and-peerj
http://blog.neuinfo.org/index.php/essays/rrids-are-in-the-wild-thanks-to-jcn-and-peerj
https://doi.org/10.1016/j.neuron.2016.04.030
https://doi.org/10.1016/j.neuron.2016.04.030
https://doi.org/10.1016/j.artint.2007.05.001
https://doi.org/10.1016/j.artint.2007.05.001
https://doi.org/10.1101/209494
http://works.bepress.com/cgi/viewcontent.cgi?article=1286&context=borgman
http://works.bepress.com/cgi/viewcontent.cgi?article=1286&context=borgman
https://doi.org/10.1007/s00287-011-0592-1
https://doi.org/10.1109/COINFO.2009.66
https://doi.org/10.1109/COINFO.2009.66
https://doi.org/10.1109/MIS.2013.122
https://doi.org/10.1109/MIS.2013.122
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1038/ng.3968
https://doi.org/10.1145/2890784
https://doi.org/10.1007/s10462-015-9435-9
https://doi.org/10.1002/int.20389
https://doi.org/10.1016/j.ijar.2013.03.001
https://doi.org/10.1145/3322790.3330594
https://doi.org/10.1145/3322790.3330594
https://doi.org/10.1016/j.future.2019.07.018
https://doi.org/10.1016/j.future.2019.07.018
https://public.nihdatacommons.us/DCPPC-DRAFT-8_KC2/
https://public.nihdatacommons.us/DCPPC-DRAFT-8_KC2/
https://doi.org/10.2481/dsj.OSOM13-043
https://doi.org/10.2481/dsj.OSOM13-043
https://doi.org/10.6028/NIST.FIPS.180-4
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3
https://doi.org/10.25490/a97f-egyk
https://doi.org/10.25490/a97f-egyk
https://doi.org/10.1016/0004-3702(94)00041-x
https://doi.org/10.1016/0004-3702(94)00041-x
https://doi.org/10.3233/AAC-180427
https://doi.org/10.3233/AAC-180427

Ellison, A. M., Boose, E. R., Lerner, B. S., Fong, E., & Seltzer, M.
(2020). The End-to-End Provenance Project. Patterns, 1(2),
100016. https://doi.org/10.1016/j.patter.2020.100016.

Fenner, M., Clark, T., Katz, D., Crosas, M., Cruse, P., Kunze, J., &
Wimalaratne, S. (2018, July 23). Core metadata for GUIDs.
National Institutes of Health, Data Commons Pilot Phase
Consortium. https://public.nihdatacommons.us/DCPPC-DRAFT-
7_KC2/.

Fenner, M., Crosas, M., Grethe, J. S., Kennedy, D., Hermjakob, H.,
Rocca-Serra, P., Durand, G., Berjon, R., Karcher, S., Martone, M.,
& Clark, T. (2019). A data citation roadmap for scholarly data re-
positories. Scientific Data, 6(1), 28. https://doi.org/10.1038/s41597-
019-0031-8.

Gil, Y., Miles, S., Belhajjame, K., Deus, H., Garijo, D., Klyne, G., et al.
(2013, April 30). PROVModel Primer: W3CWorking Group Note
30 April 2013. World Wide Web Consortium (W3C). https://www.
w3.org/TR/prov-primer/

Gottifredi, S., Cohen, A., García, A. J., & Simari, G. R. (2018).
Characterizing acceptability semantics of argumentation frame-
works with recursive attack and support relations. Artif Intell, 262,
336–368. https://doi.org/10.1016/j.artint.2018.06.008.

Greenberg, S. A. (2009). How citation distortions create unfounded au-
thority: Analysis of a citation network. Br Med J, 339, b2680.
https://doi.org/10.1136/bmj.b2680.

Greenberg, S. A. (2011). Understanding belief using citation networks. J
Eval Clin Pract, 17(2), 389–393. https://doi.org/10.1111/j.1365-
2753.2011.01646.x.

Grossman, R. L. (2019). Data Lakes, clouds, and Commons: A review of
platforms for analyzing and sharing genomic Data. Trends Genet,
35(3), 223–234. https://doi.org/10.1016/j.tig.2018.12.006.

Groth, P., Cousijn, H., Clark, T., & Goble, C. (2020). FAIR Data reuse –
The Path through Data citation. Data Intelligence, 2(1–2), 78–86.
https://doi.org/10.1162/dint_a_00030.

Ishii, S., Iwama, A., Koseki, H., Shinkai, Y., Taga, T., & Watanabe, J.
(2014). Report on STAP Cell Research Paper Investigation (p. 11).
Saitama, JP: RIKEN. http://www3.riken.jp/stap/e/f1document1.pdf

Juty, N., Wimalaratne, S. M., Soiland-Reyes, S., Kunze, J., Goble, C. A.,
& Clark, T. (2020). Unique, persistent, resolvable: Identifiers as the
foundation of FAIR. Data Intelligence, 2(1–2), 30–39. https://doi.
org/10.5281/zenodo.3267434.

Katz, D., Chue Hong, N., Clark, T., Muench, A., Stall, S., Bouquin, D.,
et al. (2021a). Recognizing the value of software: A software cita-
tion guide [version 2; peer review: 2 approved]. F1000Research,
9(1257). https://doi.org/10.12688/f1000research.26932.2.

Katz, D. S., Gruenpeter, M., Honeyman, T., Hwang, L., Sochat, V., Anzt,
H., & Goble, C. (2021b). A Fresh Look at FAIR for Research
Software, 35.

Khan, F. Z., Soiland-Reyes, S., Sinnott, R. O., Lonie, A., Goble, C., &
Crusoe, M. R. (2019). Sharing interoperable workflow provenance:
A review of best practices and their practical application in
CWLProv. GigaScience, 8(11). https://doi.org/10.1093/
gigascience/giz095.

King, G. (2007). An introduction to the Dataverse network as an infra-
structure for Data sharing. Sociol Methods Res, 36(2), 173–199.
https://doi.org/10.1177/0049124107306660.

Kunze, J., & Rodgers, R. (2008). The ARK Identifier Scheme. University
of California, Office of the President. https://escholarship.org/uc/
item/9p9863nc

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin
Del Pico, E., et al. (2020). Towards FAIR principles for research
software. Data Science, 3(1), 37–59. https://doi.org/10.3233/DS-
190026.

Larrucea, X., Santamaria, I., Colomo-Palacios, R., & Ebert, C. (2018).
Microservices. IEEE Softw, 35(3), 96–100. https://doi.org/10.1109/
MS.2018.2141030.

Lau, J. W., Lehnert, E., Sethi, A., Malhotra, R., Kaushik, G., Onder, Z.,
et al. (2017). The Cancer genomics cloud: Collaborative, reproduc-
ible, and democratized-a new paradigm in large-scale computational
research. Cancer Res, 77(21), e3–e6. https://doi.org/10.1158/0008-
5472.CAN-17-0387.

Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., Corsar,
D., et al. (2013). PROV-O: The PROV Ontology W3C
Recommendation 30 April 2013. http://www.w3.org/TR/prov-o/

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2020). A
survey of DevOps concepts and challenges. ACM Comput Surv,
52(6), 1–35. https://doi.org/10.1145/3359981.

Levinson, M. A., Niestroy, J., Al Manir, S., Fairchild, K. D., Lake, D. E.,
Moorman, J. R., & Clark, T. (2021). Fairscape v0.1.0 Release.
CERN Zenodo. DOI:https://doi.org/10.5281/zenodo.4711204.

Lewis, J., & Fowler, M. (2014). Microservices: A definition of this new
architectural term. MartinFowler.com. https://martinfowler.com/
articles/microservices.html#ProductsNotProjects

Malhotra, R., Seth, I., Lehnert, E., Zhao, J., Kaushik, G., Williams, E. H.,
Sethi, A., & Davis-Dusenbery, B. N. (2017). Using the seven brid-
ges Cancer genomics cloud to access and analyze petabytes of
Cancer Data. Curr Protoc Bioinformatics, 60, 11.16.1–11.16.32.
https://doi.org/10.1002/cpbi.39.

Merkys, A., Mounet, N., Cepellotti, A., Marzari, N., Gražulis, S., & Pizzi,
G. (2017). A posteriori metadata from automated provenance track-
ing: Integration of AiiDA and TCOD. Journal of Cheminformatics,
9(1), 56. https://doi.org/10.1186/s13321-017-0242-y.

Moreau, L., Missier, P., Belhajjame, K., B’Far, R., Cheney, J., Coppens,
S., et al. (2013). PROV-DM: The PROV Data model: W3C recom-
mendation 30 April 2013. World Wide Web Consortium. http://
www.w3.org/TR/prov-dm/

NIH Data Commons Pilot: Object registration service (ORS). (2018).
https://github.com/mlev71/ors_wsgi

Notter, M. (2020). Nipype tutorial. Example 1: Preprocessing workflow.
Github. https://miykael.github.io/nipype_tutorial/notebooks/
example_preprocessing.html. Accessed 5 February 2021.

Papadimitriou, G., Wang, C., Vahi, K., da Silva, R. F., Mandal, A., Liu,
Z., Mayani, R., Rynge, M., Kiran, M., Lynch, V. E., Kettimuthu, R.,
Deelman, E., Vetter, J. S., & Foster, I. (2021). End-to-end online
performance data capture and analysis for scientific workflows.
Futur Gener Comput Syst, 117, 387–400. https://doi.org/10.1016/j.
future.2020.11.024.

Prager, E. M., Chambers, K. E., Plotkin, J. L., McArthur, D. L.,
Bandrowski, A. E., Bansal, N., Martone, M. E., Bergstrom, H. C.,
Bespalov, A., & Graf, C. (2018). Improving transparency and sci-
entific rigor in academic publishing. Brain and Behavior, 9, e01141.
https://doi.org/10.1002/brb3.1141.

Rahwan, I. (Ed.). (2009). Argumentation in artificial intelligence.
Springer.

RETRACTED ARTICLE: Stimulus-triggered fate conversion of somatic
cells into pluripotency. (2014). PubPeer: The Online Journal Club.
h t t p s : / / p u b p e e r . c o m / p u b l i c a t i o n s /
B9BF2D3E83DF32CAEFFDAC159A2A94#14

RIKEN. (2014). Interim report on the investigation of the Obokata et al.
articles. RIKEN. https://www.riken.jp/en/news_pubs/research_
news/pr/2014/20140314_1/

Shannon, P. (2003). Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Res, 13(11),
2498–2504. https://doi.org/10.1101/gr.1239303.

Shapin, S. (1984). Pump and circumstance: Robert Boyle’s literary tech-
nology. Soc Stud Sci, 14(4), 481–520 http://sss.sagepub.com/
content/14/4/481.abstractN2.

Shiu, A. (2014). The STAP scandal: A post-pub review success story.
Publons. https://publons.com/blog/the-stap-scandal-a-post-pub-
review-success-story/

Smith, A. M., Katz, D. S., Niemeyer, K. E., & FORCE11 Software
Citation Working Group. (2016). Software citation principles.

201Neuroinform (2022) 20:187–202

https://doi.org/10.1016/j.patter.2020.100016
https://public.nihdatacommons.us/DCPPC-DRAFT-7_KC2/
https://public.nihdatacommons.us/DCPPC-DRAFT-7_KC2/
https://doi.org/10.1038/s41597-019-0031-8
https://doi.org/10.1038/s41597-019-0031-8
https://www.w3.org/TR/prov-primer/
https://www.w3.org/TR/prov-primer/
https://doi.org/10.1016/j.artint.2018.06.008
https://doi.org/10.1136/bmj.b2680
https://doi.org/10.1111/j.1365-2753.2011.01646.x
https://doi.org/10.1111/j.1365-2753.2011.01646.x
https://doi.org/10.1016/j.tig.2018.12.006
https://doi.org/10.1162/dint_a_00030
http://www3.riken.jp/stap/e/f1document1.pdf
https://doi.org/10.5281/zenodo.3267434
https://doi.org/10.5281/zenodo.3267434
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1093/gigascience/giz095
https://doi.org/10.1177/0049124107306660
https://escholarship.org/uc/item/9p9863nc
https://escholarship.org/uc/item/9p9863nc
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.1109/MS.2018.2141030
https://doi.org/10.1109/MS.2018.2141030
https://doi.org/10.1158/0008-5472.CAN-17-0387
https://doi.org/10.1158/0008-5472.CAN-17-0387
http://www.w3.org/TR/prov-o/
https://doi.org/10.1145/3359981
https://doi.org/10.5281/zenodo.4711204
http://martinfowler.com
https://martinfowler.com/articles/microservices.html#ProductsNotProjects
https://martinfowler.com/articles/microservices.html#ProductsNotProjects
https://doi.org/10.1002/cpbi.39
https://doi.org/10.1186/s13321-017-0242-y
http://www.w3.org/TR/prov-dm/
http://www.w3.org/TR/prov-dm/
https://github.com/mlev71/ors_wsgi
https://miykael.github.io/nipype_tutorial/notebooks/example_preprocessing.html
https://miykael.github.io/nipype_tutorial/notebooks/example_preprocessing.html
https://doi.org/10.1016/j.future.2020.11.024
https://doi.org/10.1016/j.future.2020.11.024
https://doi.org/10.1002/brb3.1141
https://pubpeer.com/publications/B9BF2D3E83DF32CAEFFDAC159A2A94#14
https://pubpeer.com/publications/B9BF2D3E83DF32CAEFFDAC159A2A94#14
https://www.riken.jp/en/news_pubs/research_news/pr/2014/20140314_1/
https://www.riken.jp/en/news_pubs/research_news/pr/2014/20140314_1/
https://doi.org/10.1101/gr.1239303
http://sss.sagepub.com/content/14/4/481.abstractN2
http://sss.sagepub.com/content/14/4/481.abstractN2
https://publons.com/blog/the-stap-scandal-a-post-pub-review-success-story/
https://publons.com/blog/the-stap-scandal-a-post-pub-review-success-story/

PeerJ Computer Science, 2, e86. https://doi.org/10.7717/peerj-cs.
86.

Software Heritage Foundation. (2020, May 14). SoftWare Heritage per-
sistent IDentifiers (SWHIDs), version 1.5. Software Heritage
Foundation. https://docs.softwareheritage.org/devel/swh-model/
persistent-identifiers.html#overview. Accessed 5 February 2021.

Starr, J., Castro, E., Crosas, M., Dumontier, M., Downs, R. R., Duerr, R.,
Haak, L. L., Haendel,M., Herman, I., Hodson, S., Hourclé, J., Kratz,
J. E., Lin, J., Nielsen, L. H., Nurnberger, A., Proell, S., Rauber, A.,
Sacchi, S., Smith, A., Taylor, M., & Clark, T. (2015). Achieving
human and machine accessibility of cited data in scholarly publica-
tions. PeerJ Computer Science, 1, 1. https://doi.org/10.7717/peerj-
cs.1.

Tuecke, S., Ananthakrishnan, R., Chard, K., Lidman, M., McCollam, B.,
Rosen, S., & Foster, I. (2016). Globus auth: A research identity and
access management platform. In 2016 IEEE 12th International
Conference on e-Science (e-Science) (pp. 203–212). Presented at
the 2016 IEEE 12th international conference on e-science (e-sci-
ence), Baltimore, MD, USA: IEEE https://doi.org/10.1109/
eScience.2016.7870901.

Uhlir, P. (2012). For Attribution - Developing Data Attribution and
Citation Practices and Standards: Summary of an International
Workshop (2012) (p. 220). The National Academies Press. http://
www.nap.edu/catalog.php?record_id=13564

Wan, X., Guan, X., Wang, T., Bai, G., & Choi, B.-Y. (2018). Application
deployment using microservice and Docker containers: Framework
and optimization. J Netw Comput Appl, 119, 97–109. https://doi.
org/10.1016/j.jnca.2018.07.003.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva

Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark,
T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T.,
Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P.,
Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R.,
Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik,
R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G.,
Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E.,
Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K.,
Zhao, J., & Mons, B. (2016). The FAIR guiding principles for sci-
entific data management and stewardship. Scientific Data, 3,
160018. https://doi.org/10.1038/sdata.2016.18.

Wilson, S., Fitzsimons, M., Ferguson, M., Heath, A., Jensen, M., Miller,
J., Murphy, M.W., Porter, J., Sahni, H., Staudt, L., Tang, Y., Wang,
Z., Yu, C., Zhang, J., Ferretti, V., Grossman, R. L., & GDC Project.
(2017). Developing Cancer informatics applications and tools using
the NCI genomic Data Commons API. Cancer Res, 77(21), e15–
e18. https://doi.org/10.1158/0008-5472.CAN-17-0598.

Yakutovich, A. V., Eimre, K., Schütt, O., Talirz, L., Adorf, C. S.,
Andersen, C. W., Ditler, E., du, D., Passerone, D., Smit, B.,
Marzari, N., Pizzi, G., & Pignedoli, C. A. (2021). AiiDAlab – An
ecosystem for developing, executing, and sharing scientific
workflows. Comput Mater Sci, 188, 110165. https://doi.org/10.
1016/j.commatsci.2020.110165.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

202 Neuroinform (2022) 20:187–202

https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#overview
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html#overview
https://doi.org/10.7717/peerj-cs.1
https://doi.org/10.7717/peerj-cs.1
https://doi.org/10.1109/eScience.2016.7870901
https://doi.org/10.1109/eScience.2016.7870901
http://www.nap.edu/catalog.php?record_id=13564
http://www.nap.edu/catalog.php?record_id=13564
https://doi.org/10.1016/j.jnca.2018.07.003
https://doi.org/10.1016/j.jnca.2018.07.003
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1158/0008-5472.CAN-17-0598
https://doi.org/10.1016/j.commatsci.2020.110165
https://doi.org/10.1016/j.commatsci.2020.110165

	FAIRSCAPE: a Framework for FAIR and Reproducible Biomedical Analytics
	Abstract
	Introduction
	Motivation
	Related Work
	Enabling Transparency through EVI’s Formal Model

	Materials and Methods
	FAIRSCAPE Architectural Layers
	UI Layer
	API Gateway
	Authentication and Authorization Layer
	Microservices Layer
	Storage and Analytic Engine Layer

	FAIRSCAPE Microservice Components
	Transfer Service
	Metadata Service
	Object Service
	Evidence Graph Service
	Compute Service
	Search Service
	Visualization Service

	FAIRSCAPE Service Orchestration
	Object Registration
	Identifier Minting
	Identifier Resolution
	Object Retrieval
	Computation
	Object Search
	Evidence Graph Visualization
	Object Deletion

	Results
	Transfer Data, Software and Metadata
	Time Series Data Analysis
	Clustering of Algorithms
	Generating the Evidence Graph

	Discussion
	Conclusion
	Information Sharing Statement
	References

