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Abstract: Cathepsins encompass a family of lysosomal proteases that mediate protein degradation
and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also
found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling,
extracellular matrix assembly/disassembly, and protein processing and trafficking through the
plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in
the body, cathepsins play regulatory roles in a wide range of physiological processes including
coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin
expression and/or activity has been associated with many human diseases, including cancer, diabetes,
obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative
disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation
of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing
and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of
heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation
of cell death that may either favor viral clearance or assist viral propagation. In this review, we report
the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral
infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical
applications in viral infectious diseases.

Keywords: cathepsins; viruses; infection; physiopathology; therapy

1. Classification, Synthesis, Cellular Localization, and Physiopathological Roles
of Cathepsin

Cathepsins include a family of lysosomal protases, so-called from the Greek term
kathepsein (to digest) to indicate proteases that are active in a slightly acidic environ-
ment [1–3]. Since the discovery of the first cathepsin in late 1920, to date, more than
20 types of cathepsins have been identified in all living organisms. In humans, cathepsins
comprise 15 proteolytic enzymes that are structurally classified on the basis of their catalytic
active site residue, namely serine (cathepsin A and G), aspartate (cathepsin D and E), or
cysteine (cathepsin B, C, F, H, K, L, O, S, V, X, W, Z). Most of the cathepsins act as endopep-
tidases, although cathepsins A, B and X may also work as carboxypeptidases and cathepsin
H operates as an aminopeptidase [4].

Almost all types of cathepsins are synthesized through a common pathway that
starts in the ribosome, with the synthesis of a precursor molecule containing a signal
peptide, a precursor peptide, and a catalytic domain. The precursor molecule translocates
to the endoplasmic reticulum, where it undergoes the hydrolysis of the signal peptide and
progresses to glycosylation. The protein is then transported to the Golgi apparatus where it
is further glycosylated and phosphorylated to form a mannose-6-phosphate (M6P) protein,
which is specifically recognized by M6P lysosomal receptors, ensuring its transport to the
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endosomal/lysosomal system [5]. However, some evidence demonstrates the existence of
alternative routes for the intracellular transport of the newly synthesized procathepsins that
involve lysosomal integral membrane protein (LIMP-2) and sortilin [6]. In the lysosome,
the hydrolysis of the precursor protein at a low pH leads to the removal of the prodomain
yielding active and mature cathepsin.

The maturation process of procathepsins may occur through either auto processing
and self-activation or by other protease catalysis, or through both modes [7–14]. While
cathepsins B, H, K, L, and S undergo autoactivation, cathepsins C and X require cathepsins L
and S for their activation [7]. On the other hand, cathepsin D maturation proceeds through
partial autoactivation and activation by cathepsin B and L [14]. The autocatalytic activation
is mediated by glycosaminoglycans (GAGs) [15–17], linear negatively charged polysaccha-
rides present in the lysosomes as well as on the cell surface and extracellular matrix (ECM)
where they regulate important processes in development, homeostasis, and disease [18–21].
Procathepsin—GAG interaction triggers a conformational change in the precursor molecule
that facilitates processing by another procathepsin molecule [10,16,17,22].

In the endolysosomal compartment, cathepsins carry out the proteolytic processes
needed to degrade the cargo transported to the endolysosomes, thus contributing to the
protein turnover and the normal metabolism of the cell. In this compartment, cathepsins
play a pivotal role in autophagy, regulating the biogenesis and the cellular population of
lysosomes and autophagosomes as well as the autophagic flux [8,23–26]. The involvement
of cathepsins in the autophagic pathway is relevant in light of the fundamental role of
such a process in neuronal development and degeneration [27–30]. In addition, cathepsins
have been shown to regulate growth and development-related processes through their hy-
drolytic effect on various hormones and growth factors [3,8,22,28–31]. In the endosomes of
immune cells, they participate in both the innate and adaptative immune responses [32–36].
Deregulation of the expression or activity of cathepsins in the endolysosomes leads to
impaired degradation of organelle cargos, resulting in the accumulation of substrates
that may be responsible for various pathological conditions [3,8,37–44]. These conditions
include lysosomal storage diseases (LSD) such as neuronal ceroid lipofuscinosis [37]; galac-
tosidases [38]; mucopolysaccharidoses [39] and Gaucher disease [40]; Alzheimer’s [41,42];
Parkinson’s and Huntington’s diseases [43]; type I diabetes [44]; auto-immune diseases [3];
and others [8].

Although cathepsins are mainly located in the lysosomes, where they show the highest
activity due to the low pH of these organelles, they are also active outside of the endolysoso-
mal compartment (cytosol and extracellular space). It should also be noted that cathepsins
can occur, bind, and are catalytic active on the cell surface. Indeed, they can be released
in the cytosol through the lysosomal membrane permeabilization induced by a variety of
stimuli, such as lysosomotropic agents, oxidative stress, and some cell death effectors [8,45].
In addition to lysosomal membrane permeabilization, other mechanisms may lead to
extralysosomal translocation of cathepsins. These mechanisms, which include abnormal-
ities in their biosynthetic machinery, generating cathepsins lacking the signal peptide or
truncated cathepsins with modified signal sequences, may direct cathepsin variants to the
cytosol as well as to the mitochondria or nucleus. In the cytosol, cathepsins regulate apopto-
sis by both activating apoptotic proteases and degrading antiapoptotic proteins [2,8,46,47],
and mediate inflammatory responses by activating inflammasome [32–35]. Loss of function
or inactivation of cathepsins in the cytosol have been associated with pathological condi-
tions such as neurodegenerative diseases, atherosclerosis [48,49], type 2 diabetes [50,51]
kidney diseases [52,53], and ischemia [54–56]. In the nucleus, cathepsins are involved in
processing transcription factors that regulate the cell cycle, cell proliferation, and differenti-
ation, and therefore, dysregulation of nuclear cathepsins may contribute to the transformed
phenotype of cancer cells [57]. Finally, cathepsins are secreted through lysosomal exocy-
tosis or alternative trafficking routes in the extracellular milieu, where they participate
in plasma membrane repair, bone remodeling, wound healing, and peptide prohormone
processing [8,22]. Extracellular cathepsins are involved in the regulation of extracellular
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matrix (ECM) remodeling, which plays a fundamental role in the control of cell adhesion,
proliferation, polarity, migration, and activation of cell signaling [58,59]. Therefore, cathep-
sins have been implicated in many diseases such as cancer, tissue fibrosis, osteoarthritis,
and other pathological conditions associated with altered ECM homeostasis [8,22]. Figure 1
reports the different localization of cathepsins at distinct cellular compartments and their
relative physiological and pathological roles.
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specific cellular compartment.

2. Aid of Cathepsins to Viruses in the Host Cell Infection

Regardless of their cellular localization, cathepsins have been shown to play an im-
portant role in the host cell infection by various types of viruses [60]. Indeed, cathepsins
can support the virus’s entry into the target cells, enable virus replication in the infected
cells, and promote virus release and spread. Here, the involvement of cathepsins in the
physiopathology of viral infections is reported.

Firstly, cathepsins have been shown to strongly affect the infection efficiency of many
viruses by modulating their binding to host cell receptors and entry. Indeed, recognition and
interaction with cellular receptors is a critical initial step of the viral cell cycle, regulating
viral tissue tropism and pathogenesis [61]. The interaction with target cell receptors, which
not only serves for attachment but also triggers viral entry and trafficking, is mediated
by specific viral proteins expressed on the surface of both enveloped and non-enveloped
viruses [62]. In many cases, viral attachment proteins require proteolytic activation by
host cell proteases. Cathepsins B and L have been implicated in the proteolytic cleavage
of the viral glycoprotein (GP) of the Ebola virus (EBOV) that facilitates virus interaction
with the cellular receptor(s) and its entry into target cells [63–65]. Interestingly, faster
viral fusion kinetics and enhanced infectivity of the Ebola strain named Makona, which
carries an A-to-V substitution at position 82 (A82V) in the GP, have been correlated with
a more efficient GP processing by cathepsin L [66]. Both cathepsins B and L seem to be
also involved in the entry initial step of infection by human papillomavirus type 16 virus
(HPV16) [67–69]. Furthermore, cathepsins B, L, and S mediating the disassembly of viral
particles after endocytosis are required for reovirus entry [70–72]. Enzymatic activity of
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Cathepsin B and L is also utilized by severe acute respiratory syndrome (SARS) coronavirus
(CoV) to infect cells expressing angiotensin-converting enzyme 2 (ACE2) receptor [73,74].
Indeed, CoVs, encompassing a large variety of viruses infecting many species of birds
and mammals, including humans, employ a diverse array of entry strategies to infect
target cells [75]. In particular, CoV entry may occur either via fusion directly at the cell
surface or through an endocytic pathway. The spike surface envelope glycoprotein (S),
which bears receptor binding and membrane fusion capabilities, is required for viral entry.
The S protein is homotrimeric, with each subunit containing the S1 and S2 domains, the
former mediating the host receptor binding and the latter required for fusing host and viral
membranes [76]. Activation of S protein by proteolytic cleavage is required for viral entry
into target cells: cell surface protease activity allows direct membrane fusion, whereas
endosomal and lysosomal proteases are involved during endocytosis [77]. In addition to
SARS-CoV, the involvement of cathepsins B and L has been demonstrated for Middle East
respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2, which may exploit both
routes of entry depending on the host cells [74,78–84]. Besides cathepsins B and L, a role for
cathepsins K, S, and V in SARS-CoV-2 entry into target cells has also been suggested [85].
Indeed, like other CoVs, to gain entry into target cells, SARS-CoV-2 depends on cleavage
and activation of the S protein by host cell proteases that include furin, transmembrane
protease serine 2 (TMPRSS2), and cathepsins [80–85]. Although the interplay between
these host proteases during SARS-CoV-2 infection remains to be fully elucidated, amino
acid sequences of the S protein that are susceptible to cleavage by cathepsins and that
are highly conserved among all known SARS-CoV-2 variants have been identified [84,85].
In all regions of the spike protein, including the S1/S2 region critical for activation and
viral entry, there are amino acid sequences susceptible to cleavage by cathepsins B, K, L,
S, and V [85]. Cathepsins not only promote viral infection upon viral entry into target
cells, but also activate viral fusion proteins at a late stage of replication. Indeed, cathepsin
W activity is required for influenza A virus (IAV) entry at the stage of viral fusion in late
endosomes [86]. Furthermore, cathepsins L and B play an important role in promoting
the spread of highly pathogenic paramyxoviruses, such as Nipah and Hendra viruses,
by converting the viral fusion protein to a mature and fusogenic form in the endosomal
compartment [87,88].

Interestingly, cathepsins play a key role in promoting virus release and spread by
upregulating and processing the host enzyme Heparanase (HPSE), an endoglycosidase
that degrades the glycosaminoglycan heparan sulfate (HS) [89–94]. Human HPSE mRNA
encodes for a 61.2-kDa protein containing 543 amino acids. Cathepsin L cleaves the
proenzyme generating the active form consisting of 8 and 50 kDa subunits that associate
noncovalently [95]. Active HPSE is responsible for the degradation of HS chains covalently
attached to the extracellular matrix and plasma membrane core proteins forming HS pro-
teoglycans (HSPGs), which are involved in a wide range of physiological functions [96–98].
Notably, HSPGs assist viruses in infecting target cells at various steps of their life cycle:
they utilize HSPGs for attachment at the cell surface, entry, intracellular trafficking, egress,
and spread [94,99–101]. Recent evidence demonstrates that host-encoded HPSE is upreg-
ulated and required for the release of viral progeny after herpes simplex virus 1 (HSV-1)
and 2 (HSV-2) infection [88,90,102,103]. The removal of HS chains by HPSE facilitates
the release of the newly made viral particles from the cells and their spread. During the
productive phase of HSV-2 infection, the upregulation of HPSE correlated with increased
levels of cathepsin L, and the inhibition of either HPSE or the cathepsin resulted to be
detrimental to the infection [103]. Similar findings were reported for porcine reproductive
and respiratory syndrome virus (PRRSV) whose infection causes upregulation of cathepsin
L and heparanase, leading to a decrease of cell surface HS chains and, in turn, promoting
viral release [104]. In addition, upregulation of cathepsin L and HPSE is involved in the
pathogenesis of Dengue virus (DENV) infection [105,106]. Roles in the virus release and
spread for cathepsins and HPSE have also been demonstrated in HPV16 [107], respiratory
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syncytial virus (RSV) [108], and hepatitis C virus (HCV) [109], as well as some CoVs and
SARS-CoV2 infections [94,110–112].

A relevant aspect of cathepsin involvement in viral infections is their roles in antigen
processing and presentation (host adaptative immune response) and activation of toll-
like receptors (innate immune response) [113–118]. Indeed, cathepsins are known to
degrade endocytosed and endogenous antigens to antigen peptides that bind to the major
histocompatibility (MHC) class II molecules [113–116,119]. On the other hand, viruses
exploit multiple mechanisms to evade immune recognition, including the manipulation
of host antigen processing and presentation mechanisms [120]. This strategy to escape
immune response enables the viruses to efficiently replicate in the infected cells. One
example is provided by the ectromelia virus, which suppresses the expression of cathepsins
B, L, and S in conventional dendritic cells to avoid host immune response and productively
replicate [121]. Furthermore, cathepsins B, C, S, and Z were found to be downregulated
in dendritic cells infected by human immunodeficiency virus type 1 (HIV-1), resulting in
enhanced virus replication and transfer to contacting T lymphocytes, but decreased HIV-1
antigen processing and presentation to these T cells [122]. Increased levels of cathepsin B
associated with impaired MHC class II antigen-processing pathways were found in IAV
infection in vitro and in vivo [123]. Indeed, in IAV infection, cathepsin B has also been
involved in progeny virion production [124]. By contrast, decreased expression levels of
cathepsin S associated with an impairment of MHC class II maturation were observed
in dendritic cells exposed to HCV or in hepatocytes expressing HCV proteins [125]. In
SARS-CoV-infected monocytes, downregulation of the expression of cathepsins A, S, and H
involved in antigen presentation and processing was found, suggesting a limited activation
of a favorable adaptive immune response against this virus [126].

In addition, some viruses have developed strategies to evade the host innate immune
response that involve the activation of various pattern recognition receptors (PRRs), in-
cluding toll-like receptors (TLRs), among others, and the subsequent signaling resulting
in the production of proinflammatory cytokines and/or the activation of programmed
cell death [114,117,118,120,127–129]. For example, IAV is recognized by various PRRs,
depending on the cellular compartment, the different types of cells, and the different stages
of infection [130], and may also trigger PRR activation mechanisms to subvert the innate
immune response [131,132]. Indeed, TRL activation leading to autophagy and apoptosis is
subverted by IAV to enhance virion stability [133–135] and to facilitate its replication [136].
Activation of RIG-I-like receptors by RSV infection is associated with the overexpression of
cathepsins B, C, E, G, H, K, L, S, W, and Z in infected mouse airways [118]. In HBV infection,
impairment of autophagy correlated to an accumulation of immature lysosomes in infected
cells has been demonstrated. The analyses of clinical specimens from chronic HBV-infected
patients showed enhanced levels of cathepsin D in the liver tissues [137]. Cathepsin B acts
as an upstream activator of the intrinsic apoptotic pathway that is exploited by noroviruses
to expand the window time of their replication [138]. Both cathepsins B and S have been
shown to contribute to apoptosis via caspase activation in DENV infection [139]. Further-
more, cathepsin B has been shown to exacerbate coxsackievirus B3-induced myocarditis in
mice through activating inflammasome and promoting pyroptosis, a type of programmed
cell death [140]. Interestingly, highly pathogenic human CoVs, including SARS-CoV, MERS-
CoV, and SARS-CoV-2, besides suppressing interferon-mediated antiviral response, trigger
massive cell death and cytopathy that release a large number of virion particles, thus
facilitating viral dissemination [141]. In particular, transcriptomic analysis of peripheral
blood mononuclear cells from COVID-19 patients demonstrated a remarkable increase
of cathepsins B and L associated with the apoptotic pathway [142]. However, cathepsin
activity may also contribute to the antiviral immune response by reducing viral replication.
This is the case for cathepsin C, which has been shown to limit acute cytomegalovirus
(CMV) infection in mice [143]. Table 1 summarizes the diverse roles of distinct cathepsins
in the human infectious diseases caused by viruses.
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Table 1. Cathepsins Involved in Human Viral Infections and Their Mechanism of Action.

Cathepsin MW *
(kDa) Cellular Localization Enzymatic Activity Interacting Virus Mechanism of Action

Serine cathepsins

A 54 Endo/lysosome Endopeptidase,
Carboxypeptidase SARS-CoV Antigen processing

downregulation [126]

G 29 Endo/lysosome
Extracellular space Endopeptidase Respiratory

syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Aspartate cathepsins

D 45
Endo/lysosome

Cytosol
Extracellular space

Endopeptidase Hepatitis B Autophagy impairment [137]

E 43 Endo/lysosome Endopeptidase Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Cysteine cathepsins

B 38

Endo/lysosome
Cytosol
Nucleus

Plasma membrane
Extracellular space

Endopeptidase,
Carboxypeptidase

Ebola
Processing of viral glycoprotein

prior to fusion with the cell
membrane [63–65]

Human papilloma
virus type 16

Binding, internalization and
trafficking at the plasma

membrane, in the endolysosome,
or vesicles [67,69]

Reoviruses Disassembly of the viral particles
in the late endosomes [70–72]

SARS-CoV and
SARS-CoV-2

Activation of S protein for entry
by endocytosis [74,75,80,81,85]

Nipah Processing viral fusion
protein [88]

Ectromelia Immune response impairment
and replication induction [121]

Human
immunodeficiency

virus type 1

Decreased antigen processing and
presentation, replication [122]

Influenza A Impaired MHC II antigen
processing [123]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Noroviruses Activation of apoptosis and
replication induction [138]

Dengue Apoptosis activation [139]

>Coxsackievirus
B3

Inflammasome activation,
pyroptosis [140]
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Table 1. Cont.

Cathepsin MW *
(kDa) Cellular Localization Enzymatic Activity Interacting Virus Mechanism of Action

C 52
Endo/lysosome

Cytosol
Endopeptidase

Human
immunodeficiency

virus type 1

Decreased antigen processing and
presentation, replication [122]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Cytomegalovirus Inhibition of viral
replication [143]

H 37 Endo/lysosome
Nucleus

Endopeptidase,
Aminopeptidase

SARS-CoV Antigen processing
downregulation [126]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

K 37
Endo/lysosome

Nucleus
Extracellular space

Endopeptidase

SARS-CoV-2 Protein S processing [85]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

L 38

Endo/lysosome
Cytosol
Nucleus

Plasma membrane
Secretory vesicles

Extracellular space

Endopeptidase

Ebola
Processing of viral glycoprotein

prior to fusion with the cell
membrane [63–66]

Human papilloma
virus type 16

Binding, internalization and
trafficking at the plasma

membrane, in the endolysosome,
or vesicles [67,69]

Reoviruses Disassembly of the viral particles
in the late endosomes [70–72]

SARS-CoV,
MERS-CoV and

SARS-CoV-2

Activation of S protein for entry
by either fusion or endocytosis

[73–75,78–85]; apoptosis
activation facilitating viral

dissemination [141,142]

Hendra Processing of the viral fusion
protein [87]

Herpes Simplex
Virus -1 and -2

Heparanase up-regulation, viral
egress [89,95,102,103]

Dengue Heparanase up-regulation, viral
egress [105,106]

Ectromelia Immune response escape,
replication [121]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]
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Table 1. Cont.

Cathepsin MW *
(kDa) Cellular Localization Enzymatic Activity Interacting Virus Mechanism of Action

S 37

Endo/lysosome
Cytosol
Nucleus

Plasma membrane
Extracellular space

Endopeptidase

Reoviruses Disassembly of the viral particles
in the late endosomes [71]

SARS-CoV-2 Protein S processing [85]

Ectromelia Immune response escape,
replication [121]

Human
immunodeficiency

virus type 1

Decreased antigen processing and
presentation, replication [122]

Hepatitis C Impairment of MHC II
maturation [125]

SARS-CoV Antigen processing
downregulation [126]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Dengue Activation of apoptosis [139]

V 37
Endo/lysosome

Secretory vesicles
Extracellular space

Endopeptidase SARS-CoV-2 Protein S processing [85]

W 42
Endo/lysosome

Extracellular space
Endopeptidase

Influenza A Escape from late endosomes [86]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

Z 34
Endo/lysosome

Cytosol
Endopeptidase

Human
immunodeficiency

virus type 1

Decreased antigen processing and
presentation, replication [122]

Respiratory
syncytial virus

Activation of pattern recognition
receptors and immune response

hijacking [118]

* Molecular weight.

3. Cathepsins as Potential Targets for Antiviral Therapies

Targeting cathepsins has proven to be a valid strategy for the development of effective
antiviral drugs. A comprehensive list of cathepsin inhibitors is present in the MEROPS
database (http://www.ebi.ac.uk/merops/, accessed on 20 July 2022) [144]. Furthermore,
an elegant review by Pišlar and coworkers [74] reports an updated list of cathepsin in-
hibitors tested for Cov inhibition, including SARS-CoV-2, while a review by Liu and
co-workers [145] nicely describes the antiviral properties, pharmacology, and toxicity of
seven cathepsin L selective inhibitors that may represent an effective therapeutic option for
COVID-19. Due to the diverse roles of cathepsins in promoting viral infections, different
cathepsin-mediated pathways can be targeted to effectively fight the propagation and
transmission of viruses. Herein, we report some examples of specific cathepsin inhibitors
and their mechanisms of antiviral action.

In order to block cathepsin-mediated host cell entry and, in particular, the endoso-
mal proteolysis step of entry, the cysteine protease inhibitor K11777, (2S)-N-[(1E,3S)-1-
(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl] amino}-
3-phenylpropanamide) and closely related vinylsulfones were developed, proving par-
ticularly effective for the treatment of filoviruses, such as EBOV and some paramyx-
oviruses [146]. The cysteine protease inhibitor K11777 has also been shown to inhibit CoV

http://www.ebi.ac.uk/merops/
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infection, but only in cell lines lacking activating serine proteases. In target cells expressing
cell surface serine protease, only the use of both K11777 and a serine protease inhibitor
such as camostat showed antiviral activity in an in vivo animal model of SARS-CoV in-
fection [146]. The combined use of camostat or other serine protease inhibitors targeting
TMPRSS2 and cathepsin inhibitor apilimod has been proven to strongly block SARS-CoV-2
infection in different cell types [147–149]. However, apilimod has been shown to dampen
host immune response against SARS-CoV-2, leading to the exacerbation of the already im-
paired T cell immunity in affected patients, thus suggesting caution in its application [150].
Among the small molecules targeting cathepsins B and/or L, MDL 28170 (carbobenzoxy-
valyl-phenylalanial; Z-Val-Phe-CHO) has been shown to impair infection by SARS-CoV-1
and EBOV and is under clinical study for use in COVID-19 [148,151,152], Z LVG CHN2
(N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethylketone) strongly suppresses HSV
replication [153] and inhibits the entry step of MERS and SARS-CoV-2 [148,154], and ONO
5334 (N-[(1S)-3-[(2Z)-2-[(4R)-3,4-dimethyl-1,3-thiazolidin-2-ylidene]hydrazinyl]-1-(oxan-
4-yl)-2,3-dioxopropyl]cycloheptanecarboxamide) is a cathepsin K inhibitor that impairs
the proper processing of SARS-CoV-2 S protein within the endosome, thus inhibiting its
fusogenic properties [148].

In addition, the effective and selective inhibitory activity against cathepsin B and/or
cathepsin L of a variety of natural products emerged as useful antiviral therapeutics
targeting viral entry pathways [155–159]. The most studied commercially available natural
cathepsin inhibitor is E-64 (L-trans-Epoxysuccinyl-leucylamido (4-guanidino) butane),
isolated from the fungus Aspergillus japonicus, which has the advantages of high potency
and low toxicity [160]. It has been shown to inhibit the disassembly of reovirus virions after
endocytosis [161], prevent upregulation of cathepsins and enhance viral clearance in RSV-
infected lungs [118], and block MERS-CoV and SARS-CoV at the entry stage [162]. Other
natural cathepsin antagonists include the linear lipopeptide gallinamide A [163], isolated
from a Schizothrix sp. cyanobacterium, which selectively inhibits cathepsin L, as well as
tokaramide A and miraziridine A [164,165], isolated from the marine sponge Theonella
aff. mirabilis and aloperine, a component of the seeds and leaves of Sophora alopecuroid,
which are selective inhibitors of cathepsin B [156]. In particular, the marine natural product
gallinamide A potently inhibits SARS-CoV-2 infection in vitro, with EC50 values in the
nanomolar range [166]. The quinolizidine-type alkaloid aloperine was shown to inhibit
HIV-1 entry into cells by blocking the virus from fusion with the host cell membrane [167],
to prevent HCV propagation in primary human hepatocytes and block HCV cell-to-cell viral
transmission [168]. Aloperine derivatives were obtained with enhanced antiviral activity
towards IAV [169] and high anti-EBOV and anti-Marburg virus activity both in vitro and
in vivo [156]. A schematic list of the above described cathepsin inhibitors is reported
in Table 2.

Selective cathepsin inhibitors have been extensively used in basic and translational
research, allowing a better understanding of the pathogenesis of the infectious diseases
caused by viruses and providing valuable information for the development of antiviral
drugs and vaccines. It is notable that several cathepsin inhibitors are already successfully
employed in clinical practice for the treatment of some viral infections [170].
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Table 2. Examples of effective cathepsin inhibitors for the treatment of infection diseases caused by
viruses.

Target Inhibitor Virus(es) Reference(s)

Cysteine cathepsins
K11777 EBOV, Paramyxoviruses, CoVs [146]

Apilimod SARS-CoV-2 [147–149]

Cathepsins B and/or L

MDL 28170 EBOV, SARS-CoV-1, SARS-CoV-2 [148,151,152]

Z LVG CHN2 HSV
MERS and SARS-CoV-2

[153]
[148,154]

Gallinamide A SARS-CoV-2 [166]

Aloperine

EBOV
HIV-1
HCV
IAV

[156]
[167]
[168]
[169]

E-64
Reoviruses

RSV
MERS and SARS-CoV-2

[161]
[118]
[162]

Cathepsin K ONO 5334 SARS-CoV-2 [148]

4. Conclusions

Cathepsins are a group of proteolytic enzymes with a broad spectrum of substrates and
multiple functions at different locations inside and outside of the cells. In addition to their
primary physiological roles in protein turnover and normal cellular metabolism, cathepsins
fulfill many additional functions essential for cellular homeostasis: they participate in
both the innate and adaptative immune responses, such as antigen presentation and TLR
activation, hormone and growth factor processing, autophagy, apoptosis and necroptosis,
and inflammation, as well as the processing of transcription factors involved in cell prolifer-
ation and differentiation. Altered expression and/or functional profiles of cathepsins have
been found in a wide range of pathological states, thus making them potential biomarkers
and/or therapeutic targets for many diseases. Here, we have focused on the involvement
of cathepsins in the pathogenesis of viral infections. The life cycle of a virus in a host cell
includes viral determinants attachment to cell surface factors and/or receptors, entry by
either endocytosis or membrane fusion mechanisms, intracellular trafficking, replication
and transcription of the viral genome, assembly of newly made virion particles, and egress
to infect neighboring cells, thus propagating the infection. In addition, to ensure the repli-
cation and spread of the infection through the host organism, pathogenic viruses have
developed several strategies to hijack host defenses, including the impairment of immune
responses, the manipulation of apoptosis, the modulation of metabolism, modification of
the redox environment, and others. Interestingly, robust evidence has demonstrated the
involvement of cathepsins in both processes by which viruses infect the host organism and
escape the host defenses. In this review, some representative examples of the molecular
mechanisms by which cathepsins support the interactions of viruses with target cells at
different steps of their life cycle have been reported.

Due to the emergence of infectious diseases that cause pandemics and therefore pose a
serious threat to public health and global stability, many research efforts have been focused
on the development of effective antiviral drugs. These include several selective cathepsin
inhibitors, some of which have been repurposed to combat the new emergence of COVID-
19. Thus, here we have also reported some examples and applications of the incredible
variety of cathepsin inhibitors developed to date for the treatment of various infectious
diseases that represent promising wide-spectrum antiviral agents.
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