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We investigate the long-term evolution of degree-degree correlations (assortativity) in

functional brain networks from epilepsy patients. Functional networks are derived from

continuous multi-day, multi-channel electroencephalographic data, which capture a wide

range of physiological and pathophysiological activities. In contrast to previous studies

which all reported functional brain networks to be assortative on average, even in case

of various neurological and neurodegenerative disorders, we observe large fluctuations

in time-resolved degree-degree correlations ranging from assortative to dissortative

mixing. Moreover, in some patients these fluctuations exhibit some periodic temporal

structure which can be attributed, to a large extent, to daily rhythms. Relevant aspects

of the epileptic process, particularly possible pre-seizure alterations, contributemarginally

to the observed long-term fluctuations. Our findings suggest that physiological and

pathophysiological activity may modify functional brain networks in a different and

process-specific way. We evaluate factors that possibly influence the long-term evolution

of degree-degree correlations.

Keywords: epileptic brain networks, EEG, assortativity, clustering coefficient, time-dependence, pre-seizure

states, daily rhythms

1. Introduction

Over the past years, network theory has proven successful in characterizing interactions among
the constituents of diverse complex systems, ranging from technological and biological to
social systems (Albert and Barabási, 2002; Barabási and Oltvai, 2004; Boccaletti et al., 2006;
Arenas et al., 2008; Bullmore and Sporns, 2009; Barabási et al., 2011; Barthélemy, 2011;
Bashan et al., 2012; Holme and Saramäki, 2012; Newman, 2012; Stam and van Straaten, 2012;
Borgatti et al., 2013; Csermely et al., 2013; Pessoa, 2014; Stam, 2014). In epileptology, the
characterization of large-scale brain networks with concepts from network theory provides
increasing evidence of seizure dynamics (generation, spread, and termination) within a network
of brain regions (so called epileptic network), which generate and sustain normal, physiological
brain dynamics during the seizure-free interval (Lehnertz et al., 2009; Richardson, 2010; Kramer
and Cash, 2012; Terry et al., 2012; van Diessen et al., 2013; Lehnertz et al., 2014). Epilepsy–one
of the most common neurological disorders with 50 million affected individuals worldwide
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(Duncan et al., 2006; Guerrini, 2006)—is now regarded as a
network disease (Berg and Scheffer, 2011), i.e., a disease of
functionally and/or structurally aberrant connections on virtually
all spatial scales, from single neurons via groups of neurons to the
systems level (Engel et al., 2013).

Improving our understanding of the emergence of
epileptogenesis and ictogenesis from large-scale epileptic
brain networks calls for approaches that take into account
the interplay between the dynamic properties of network
constituents (i.e., nodes and links) and the network topology.
When investigating epileptic networks, nodes are usually
assumed to represent distinct brain regions and links represent
interactions between them, and these nodes and links constitute
a functional brain network. Assessing the long-term dynamics
of individual brain regions or nodes is mostly based on scalp
or invasively recorded electroencephalograms, and links are
derived from quantifying the statistical interdependence between
signals (also referred to as functional connectivity) captured
from electrodes overlying or within different brain regions
(see Rubinov and Sporns, 2010; Lehnertz et al., 2014 for details).
In the majority of network studies on epilepsy, global properties
of epileptic networks during seizures have been characterized
with measures such as clustering coefficient, average shortest
path length, or synchronizability (see Lehnertz et al., 2014 for
an overview). More recent studies explored the relevance of
local network properties–such as the importance of individual
nodes (Koschützki et al., 2005; Rubinov and Sporns, 2010)—for
the dynamics of seizures (Kramer et al., 2008; Wilke et al.,
2011; Varotto et al., 2012; Burns et al., 2014; Geier et al.,
2015; Zubler et al., 2015). Findings achieved so far for these
seizure networks are quite intriguing, given the similarity of
their topological evolution across different types of epilepsies,
seizures, medication, age, gender, and other clinical features,
which might point to a common biophysical mechanism
underlying ictogenesis. This similarity, however, is contrasted by
strong intra- and interindividual fluctuations of local and global
statistical network properties seen for the temporal evolution of
epileptic brain networks over periods of days (Kuhnert et al.,
2010; Kramer et al., 2011; Geier et al., 2013).

The structural and dynamic properties of networks can be
deeply affected by the assortativity (also known as assortative
mixing), the tendency of nodes with similar properties (e.g.,
number of links) to connect (Newman, 2002, 2003; Foster
et al., 2010). Assortative mixing with respect to the number
of links (i.e., node degrees) has been widely studied (Barrat
et al., 2008). In this context, networks are called assortative
if nodes connect preferentially with nodes of similar degree.
If nodes connect preferentially with nodes of different degree,
networks are called dissortative (or disassortative). Networks
that are neither assortative nor dissortative are called degree-
degree uncorrelated networks. Many technological, biological
(such as structural brain networks, Bassett et al., 2008, 2011;
Hagmann et al., 2008), and certain social networks (Holme
et al., 2004; Fagiolo and Mastrorillo, 2013) are considered
paradigmatic for a dissortative mixing (Newman, 2002, 2003).
Various other social networks (Newman and Park, 2003; Croft
et al., 2005; Bollen et al., 2011; Mac Carron and Kenna,

2013; Ke and Ahn, 2014), the cardiorespiratory interaction
network (Long et al., 2014), protein contact networks (Bagler and
Sinha, 2007), and particularly functional brain networks during
normal physiological (Park et al., 2008; Jalili and Knyazeva, 2011;
Schwarz and McGonigle, 2011; Braun et al., 2012) and during
pathophysiological conditions (Bassett et al., 2008; de Haan et al.,
2009; Wang et al., 2010; Kramer et al., 2011; Barzegaran et al.,
2012; Agosta et al., 2013, 2014; Bialonski and Lehnertz, 2013)
were reported to be assortative. Such networks are likely to
have a comparatively resilient core of mutually interconnected
high-degree nodes (Maslov et al., 2004) which makes them
more robust against node removal (Newman, 2003; Vázquez and
Moreno, 2003) and easier to synchronize (Motter et al., 2005;
di Bernardo et al., 2007).

In Bialonski and Lehnertz (2013), functional brain networks
before, during, and after one-hundred epileptic seizures with
different anatomical onset locations were shown to exhibit
assortative mixing patterns. Assortativity increased during
seizures, reached a maximum prior to the end of seizures, and
decreased already prior to seizure end. Interestingly, the observed
concave-like temporal evolution of assortativity over the seizure
period resembled closely the ones seen for the global correlation
structure (Schindler et al., 2007), for the largest eigenvalue of
adjacency matrices based on coherence and cross power (Müller
et al., 2011), for clustering coefficient and average shortest path
length (Schindler et al., 2008; Bialonski et al., 2011), and–if
inverted–for synchronizability (Schindler et al., 2008). Taken
together, these findings not only provide important clues on
how the topology of functional brain networks changes during
seizures but also on how seizures stop. In order to further
improve our understanding of network mechanisms underlying
seizure generation paralleling generation and maintenance of
normal, physiological brain dynamics during the seizure-free
interval, we here follow Kuhnert et al. (2010); Kramer et al.
(2011); Geier et al. (2013) and investigate the long-term behavior
of degree-degree correlations in evolving epileptic networks.

2. Materials and Methods

2.1. Patient Data
We analyzed long-term, multichannel invasive EEG
(iEEG) recordings from seven patients who suffered from
pharmacoresistant focal epilepsy with neocortical and/or
hippocampal origin (cf. Table 1). After presurgical evaluation,
all patients underwent resective surgery that led to complete
seizure control. The patients had signed informed consent that
their clinical data might be used and published for research
purposes, and the study was approved by the ethics committee of
the University of Bonn.

iEEG data were recorded continuously from chronically
implanted intrahippocampal depth and/or subdural grid and
strip electrodes (all manufactured by AD-TECH, WI, USA)
using a Stellate Harmonie recording system (Stellate, Montreal,
Canada; amplifiers constructed by Schwarzer GmbH, München,
Germany). Decisions regarding electrode placement were purely
clinically driven and were made independently of this study. The
total number of electrode contacts ranged from Nrs = 44 to
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TABLE 1 | Clinical data of the patients.

ID Age/Gender dur. foc. hem. foc. reg. szr. type AED Nrs Nsz d

1 25/f 20 Right Temporal-mesial CPS LEV, LTG 60 4 175

2 57/m 51 Right Frontal CPS LEV, OXC, TPM 74 5 87

3 52/m 51 Left Temporal-mesial CPS LEV, LTG 44 1 74

4 48/f 34 Right Temporal-mesial – TPM 90 0 327

5 27/f 15 Left Temporal-mesial CPS, SG LEV, LTG 50 2 144

6 13/m 1 Left Parietal – LEV 64 0 100

7 37/m 4 Right Temporal-mesial CPS, SG LTG 48 4 108

ID, identification number; gender: f, female and m, male; age and duration (dur.) of epilepsy in years; foc. hem., focal hemisphere; foc. reg., focal region; seizure (szr.) type: CPS, complex

partial seizures; SG, secondary generalized seizures; antiepileptic drugs (AED): LEV, levetiracetam; LTG; lamotrigine; OXC, oxcarbazepine; TPM, topiramate; Nrs, number of recording

sites; Nsz , number of seizures; d, duration of iEEG recording in hours.

Nrs = 90. Data were band-pass filtered between 0.1 and 70Hz,
sampled at 200Hz using a 16 bit analog-to-digital converter, and
referenced against the average of two recording contacts outside
the focal region. Reference contacts were chosen independently
for each patient. The overall recording time amounted to 1015 h
(range 74–327 h) during which 16 spontaneous seizures occurred
(cf. Table 1). In each patient, antiepileptic medication was varied
individually during the recording period.

2.2. Constructing Functional Networks and
Assessing their Topological Properties
2.2.1. Defining Nodes and Links
Following Horstmann et al. (2010); Kuhnert et al. (2010,
2013), we constructed functional networks from iEEG data by
associating network nodes with electrode contacts and inferred
network links by estimating interdependencies between iEEG
time series from pairs (n,m) (n,m ∈ {1, . . . ,Nrs}) of brain
regions, regardless of their anatomical connectivity. For this
purpose we used an established method for studying time-
variant changes in phase synchronization, namely the mean
phase coherence (Mormann et al., 2000):

Rnm =

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

j=0

exp i
(

8n(j)− 8m(j)
)

∣

∣

∣

∣

∣

∣

, (1)

which is the temporal average of the differences of the
instantaneous phases 8 of iEEG time series from nodes
n and m, and N denotes the number of data points. By
definition, Rnm is confined to the interval [0,1] where Rnm =

1 indicates fully phase-synchronized systems. We used the
analytic signal approach (Gabor, 1946; Panter, 1965) and derived
the instantaneous phases of an iEEG time series using the
Hilbert transform. An important property of this approach is
that the instantaneous frequency relates to the predominant
frequency in the Fourier spectrum (Boashash, 1992; Frei et al.,
2010), which may be subject to fluctuations in the iEEG
time series. In such a case, the instantaneous frequency varies
rhythmically around the predominant frequency resulting in
spurious estimates of the instantaneous phase, which can,
however, be reduced by taking the temporal average (cf.
Equation 1). From an electrophysiological point of view, we

consider it more reasonable to look adaptively (via the Hilbert
transform) at synchronization between predominant rhythms in
the iEEG than to look at synchronization in some a priori fixed
frequency bands for which there is no power in the time series
(cf. Bruns, 2004; Osterhage et al., 2007; Frei et al., 2010).

2.2.2. Deriving a Temporal Sequence of Functional

Networks
For further analyses, we split the offline bandpass-filtered
(1–45Hz) iEEG time series into consecutive non-overlapping
windows of 20.48 s duration each (corresponding to N = 4096
data points) and estimated, for each window, the elements Rmn

of the phase synchronization matrix R. From this matrix, we
constructed binary networks using a thresholding approach and
set the non-diagonal elements of the adjacency matrix A to
Amn = 1 if the corresponding entry Rmn of R exceeded a
threshold 2, and to Amn = 0 otherwise (Amm = 0 ∀m).
For each matrix R, we chose 2 such that the resulting network
possessed a predefined link density (Anderson et al., 1999)

ρ =
k̄

(Nrs − 1)
, (2)

with the number of nodes Nrs and the mean degree

k̄ = N−1
rs

∑Nrs
n=1 kn (kn :=

∑Nrs
m=1 Anm denotes the degree of

node n). To do so, we performed a rank ordering of the entries
of the lower triangular part of R (excluding the main diagonal)
and chose 2 as the (ρMrs − 1)-largest entry (with the number
of all possible links Mrs = (N2

rs − Nrs)/2). We set ρ = 0.1
to define links. With the aforementioned steps of analysis, we
derived a temporal sequence of functional brain networks during
inter-ictal, peri-ictal, and ictal periods spanning several days for
each patient.

2.2.3. Assortativity
To assess degree-degree correlations in each functional network,
we employed the assortativity coefficient a (Newman, 2002,
2003). It quantifies whether links of the network tend to
connect nodes of similar degrees with each other (in which
case the network is called assortative; a > 0) or whether links
preferentially connect high-degree nodes with low-degree nodes
(dissortative network; a < 0). This tendency can be quantified
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by assessing the correlation between the degrees of nodes at both
ends of links. To simplify the implementation of the assortativity
coefficient, we can reformulate it in terms of the degrees of
nodes (see Appendix B in Bialonski and Lehnertz, 2013; see
also Lehnertz et al., 2014) which then reads

a =
(

F1F3 − F22
)−1

(

2F1

Nrs
∑

n= 1

n− 1
∑

m= 1

Anmknkm − F22

)

, (3)

where Fu =
∑Nrs

n= 1 k
u
n. By definition, a is confined to the interval

[−1, 1]. Positive (negative) values of a indicate an assortative
(dissortative) network, while a value of zero is indicative of a
degree-degree uncorrelated network.

The finite size (i.e., the finite number of nodes) of
networks can induce degree-degree correlations even for
network ensembles that are degree-degree uncorrelated by
construction (Barrat et al., 2008). In order to account for such
finite-size effects and to distinguish between these and genuine
degree-degree correlations, we considered ensembles of Erdős-
Rényi random networks. Erdős-Rényi network ensembles are
degree-degree uncorrelated and well investigated in the literature
on random graphs (Erdős and Rényi, 1959, 1960, 1961; Newman,

2002). For each patient, we created an ensemble of 20 Erdős-
Rényi networks, having the same finite number of nodes Nrs

and the same link density ρ as the functional networks. From
these random network ensembles, we determined the mean value
as well as the standard deviation of the assortativity coefficient.
We consider values of the assortativity coefficient of functional
networks that deviate more than one standard deviation from
the mean value obtained for Erdős-Rényi networks to indicate
genuine degree-degree correlations which cannot be explained by
finite-size effects.

TABLE 2 | Temporal means and standard deviations of assortativity

coefficient a and clustering coefficient C for each patient.

ID a C

1 0.13 ± 0.19 0.55 ± 0.06

2 0.39 ± 0.10 0.55 ± 0.04

3 0.47 ± 0.14 0.45 ± 0.06

4 0.53 ± 0.09 0.53 ± 0.03

5 0.16 ± 0.16 0.55 ± 0.04

6 0.20 ± 0.10 0.46 ± 0.04

7 0.49 ± 0.11 0.42 ± 0.05

FIGURE 1 | Temporal evolutions of the assortativity coefficient of

functional brain networks derived from patient 4 (upper part) and

from patient 1 (lower part). Time profiles were smoothed using a

moving average over 30 windows corresponding to 10.24min for better

legibility. Discontinuities are due to recording gaps. Tics on x-axes

denote midnight. Vertical red lines mark the times of electrical onset of

seizures, and the horizontal black lines (standard deviation is shown in

green) denote the mean assortativity coefficient of Erdős-Rényi networks

having the same number of nodes and the same link density as the

functional networks. Below the time courses, we show the respective

frequency distributions of the assortativity coefficient and power spectral

density estimates of the temporal evolutions (Lomb-Scargle

periodograms, computed by applying the algorithm proposed in Press

and Rybicki, 1989 to the full, unfiltered, demeaned time profiles).
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Results of previous studies pointed toward a coevolution of
the assortativity coefficient (Bialonski and Lehnertz, 2013) and
the clustering coefficient (Schindler et al., 2008) during seizures,
which may indicate that assortative mixing comes along with
or may be due to the transitivity of network links, a hypothesis
which has been discussed for social networks (Newman and
Park, 2003). In order to investigate whether such a coevolution
can also be observed on longer time scales encompassing inter-
ictal and peri-ictal periods, we determined—in addition to
the assortativity coefficient—the clustering coefficient for each
functional network.

2.2.4. Clustering Coefficient
The clustering coefficientC (Albert and Barabási, 2002; Boccaletti
et al., 2006) characterizes the transitivity in networks. We here
define the local clustering coefficient Cn of node n as

Cn =

{

1
kn(kn−1)

∑

m,l (AnlAnmAml) if kn > 1

0 if kn ∈ {0, 1},
(4)

taking care of nodes with no or only one connection (i.e., kn ∈

{0, 1}). By averaging Cn over all nodes, we obtained the clustering
coefficient C. Cn and C are confined to the interval [0, 1] by
definition.

3. Results

In Figure 1, we show time courses of the assortativity coefficient
a derived from the temporal sequences of functional brain

networks from two patients. We observe exclusively assortative
mixing for patient 4, whereas for patient 1 repeated switches
between phases of assortative and dissortative mixing can
be observed (see Table 2 for the temporal means and their
standard deviations of the assortativity coefficient for each
patient). Of all patients, patient 1 was the only case for
which we could observe long periods (up to several hours)
of dissortative mixing. Shorter periods (up to several minutes)
of dissortative mixing were observed in two other patients
(patient 5 and 6). Since the number of recording sites Nrs

(i.e., the size of a network) varied across patients, we checked
whether this might have led to the large fluctuations seen in
time-resolved degree-degree correlations but could not observe
a clearcut relationship (the Pearson correlation coefficient
between Nrs and mean assortativity coefficients amounted
to 0.12).

The evolutions of the assortativity coefficients shown in
Figure 1 exhibit large fluctuations over time and appear to be
partly periodic. The power spectral density estimates point to
strong contributions from processes acting on timescales of some
tens of hours but only small contributions from processes acting
on timescales less than 30min. For four patients, we observe a
strong component at about 24 h with less pronounced (about
a factor of 8 and more) contributions at the subharmonics at
about 12 and 8 h. This may point toward an influence of daily
rhythms, while components of even longer time scales might
be related to alterations of antiepileptic medication during the
presurgical evaluation. Not only do we observe large intra- and
interindividual fluctuations for the assortativity coefficient a, but

FIGURE 2 | Top: Exemplary frequency distributions of the assortativity

coefficient derived from data recorded during day (solid) and night times

(dashed) for two patients (left and middle) and for the pooled data from all

patients (right). Bottom: Relative changes of assortativity (ānight − āday )/āday
during day and night times for each patient. āday and ānight denote median

values of the respective distributions.
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even the extent of the intraindividual fluctuations is very different
(see the standard deviations of a in Table 2).

Interestingly, the time courses shown in Figure 1 indicate that
less assortative (or even dissortative) mixing can be observed
preferentially during night times. In order to investigate whether
this observation extends beyond exemplary data, we split the data
recorded during night times (ranging from 22 p.m. to 6 a.m.)
and during day times (ranging from 6 a.m. to 22 p.m.). In the
upper part of Figure 2, we show distributions of the assortativity
coefficient for patients 1 and 4 as well as for the pooled data from
all patients. Given the large interindividual variability, differences
between distributions are diverse (see lower part of Figure 2), but
a preferentially less assortative mixing during night times can be
observed for the group of patients investigated here.

Having identified daily rhythms as a potential factor that
may strongly influence the long-term evolution of degree-degree
correlations in functional epileptic networks, we next evaluated
whether relevant aspects of the epileptic process, particularly
possible pre-seizure alterations, contribute to the observed long-
term fluctuations. Following Mormann et al. (2003); Le Van
Quyen et al. (2005); Mormann et al. (2005); Schulze-Bonhage
et al. (2006); Feldwisch-Drentrup et al. (2011); Lehnertz and
Dickten (2015), we assumed that a pre-ictal phase of 4 h duration
exists (Mormann et al., 2007) and compared the distributions
of values of the assortativity coefficient from the pre-ictal
periods with those from inter-ictal periods. The latter distribution
included all data that were recorded at least 4 h prior to and
30min after a seizure.

In the upper part of Figure 3, we show the distribution
of the assortativity coefficient for data from the pre-ictal
and inter-ictal period from patient 1 as well as for the
pooled data from all patients. Interestingly, the pre-ictal
phase appears to be characterized by a slightly (about 10%)
decreased assortative mixing, and in only one patient, we could
observe a pre-ictal increase of degree-degree correlations (cf.
lower part of Figure 3). Although these findings may help to
further improve the understanding on how and which network
reconfigurations promote seizure generation, more sophisticated
analysis techniques (Andrzejak et al., 2009) applied to a larger
dataset would be needed in order to statistically judge the
observed pre-ictal changes.

Eventually, we studied whether temporal changes in
assortative mixing are correlated with temporal changes in
network transitivity (as quantified by the clustering coefficient).
The temporal evolutions of the clustering coefficient for
exemplary patients are shown in Figure 4. Similar to the
case of the assortativity coefficient, the time courses of the
clustering coefficient show large fluctuations and periodic
structures. These periodicities act on timescales of about 24 h,
with less pronounced contributions from subharmonics at
about 12 and 8 h, which confirms previous results (Kuhnert
et al., 2010). The intra- and interindividual fluctuations of the
clustering coefficient (cf. Table 2) are much less pronounced
than the fluctuation of the assortativity coefficient. We only
observed weak correlations between assortativity and clustering
coefficient (as quantified by the Pearson correlation coefficient ̺;

FIGURE 3 | Top: Frequency distributions of the assortativity coefficient

derived from data recorded during pre-ictal (solid) and inter-ictal periods

(dashed) for one patients (left) and for the pooled data from all patients (right).

Bottom: Relative changes of assortativity (āpre − āinter)/āinter during pre-ictal

and inter-ictal periods for each patient (patients 4 and 6 had no seizures during

the recording period). āinter and āpre denote median values of the respective

distributions.

cf. Figure 5) in five patients (Pearson correlation coefficient
ranged from −0.20 to 0.28), while in two patients, the
correlation vanished (|̺| ≪ 0.1). These results indicate that for
the functional brain networks investigated here, the assortativity
coefficient provides information about the long-term evolution
of the functional brain networks, which is complementary to the
information provided by the clustering coefficient.

4. Discussion

We investigated the long-term variability of degree-degree
correlations (assortativity) of functional brain networks
constructed from invasive EEG recordings from seven
patients suffering from focal epilepsies with neocortical and/or
hippocampal origin. We observed large fluctuations in time-
resolved degree-degree correlations, ranging from dissortative
to assortative functional brain networks. For all patients, we
observed the temporal evolution of the assortativity coefficient
to possess periodic structures. Power spectral densities of the
temporal evolutions were dominated by contributions at a time
scale of some tens of hours, which may point toward a potential
influence of daily rhythms, and/or to changes of the antiepileptic
medication. Potential processes related to much smaller time
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FIGURE 4 | Same as Figure 1 but for the clustering coefficient C.

FIGURE 5 | Two-dimensional histograms of the frequencies of

occurrence of pairs (a,C) for patient 1 (left), patient 4

(middle), and aggregated for all patients (right). Histograms

are normalized to the maximum bin count. ̺ denotes the

Pearson correlation coefficient which we determined for the

respective datasets.

scales (<30min) contributed much less to the overall power, a
finding also observed in a previous study (Kuhnert et al., 2010)
for the clustering coefficient and the average shortest path length.
In the majority of patients (five of seven patients), functional
brain networks tended to show higher degree-degree correlations
during day times than during night times. However, we also
observed the opposite behavior for two patients. As there was no
sleep scoring available, we cannot relate the data to specific sleep
stages. Still, the overall trend indicates that assortativity seems to
be reduced during night times.

Only small differences in degree-degree correlations could
be found between functional brain networks during inter-ictal
periods and those during periods of an assumed pre-ictal state.

While we observed a pre-ictal decrease of the assortativity in
four patients, we also observed a pre-ictal increase in assortativity
for one patient (no seizures were recorded for two patients).
It remains to be shown whether the observed tendency of
functional brain networks to show slightly less assortative mixing
pre-ictally can be regarded as predictive of the extreme event
epileptic seizure.

In the light of results reported in previous studies (Ponten
et al., 2007; Schindler et al., 2008; Kramer et al., 2010,
2011; Kuhnert et al., 2010; Bialonski et al., 2011; Bialonski
and Lehnertz, 2013), our findings might point toward the
following: We speculate that daily rhythms may be reflected
in periodic reorganizations of functional brain networks.
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FIGURE 6 | Sketch of how functional brain networks may explore the

space of accessible network topologies (here parametrized by the

clustering coefficient C, average shortest path length L, and

assortativity coefficient a) in a process-dependent way: Daily rhythms

may be reflected in periodic reorganizations of functional brain networks.

Superimposed on that may be a reorganization in functional network

connectivity reflecting pathophysiological activity.

Superimposed on that may be a reorganization in functional
network connectivity reflecting pathophysiological activity.
The space of accessible network topologies, however, may
be explored in a different and process-dependent way (cf.
Figure 6).

Changes due to daily rhythms seem to be reflected in
functional brain networks, which have a larger transitivity and
a larger average shortest path length (Kuhnert et al., 2010) but
show less assortative mixing (as observed here) during night
times than during day times. In contrast, as reported in previous
studies, changes related to ictal activity seem to be associated with
functional brain networks which are characterized by a larger
transitivity, larger average shortest path length (Ponten et al.,
2007; Schindler et al., 2008; Kramer et al., 2010; Bialonski et al.,
2011), and more assortative mixing (Bialonski and Lehnertz,
2013) during seizures than before or after seizures. These latter
changes suggest that functional brain networks might be more
segregated during than before or after seizures (Kramer et al.,
2010; Bialonski and Lehnertz, 2013): Nodes form different
groups (Kramer et al., 2010) in which they share a similar
node degree (leading to an increased assortativity, Bialonski and
Lehnertz, 2013) and are tightly connected to each other (leading
to an increased transitivity, Ponten et al., 2007; Schindler et al.,
2008; Kramer et al., 2010; Bialonski et al., 2011). Between these
groups, only sparse connections exist (leading to an increased
average shortest path length, Ponten et al., 2007; Schindler et al.,
2008; Kramer et al., 2010; Bialonski et al., 2011) which, in turn,
may weaken the synchronizability of a network as a whole as
suggested in previous studies (Schindler et al., 2008; Bialonski
and Lehnertz, 2013). Changes in functional brain networks
related to daily rhythms, however, appear to be expressed in
a different way: During day times, nodes of the networks may
be well connected (leading to a decreased average shortest path
lengths, Kuhnert et al., 2010) via a few hub-like structures (i.e.,
nodes with high degrees; leading to an increased assortativity

as observed here) which integrate information from all over
the network. Individual nodes of lower degrees tend to be
interconnected only sparsely (leading to a decreased clustering
coefficient, Kuhnert et al., 2010). During night times, the hub-
like structures disappear or are less pronounced (leading to
a decreased assortativity as observed here), giving way to a
segregation of groups (associated with an increased average
shortest path length, Kuhnert et al., 2010) in which nodes are
mutually well interconnected (leading to an increased clustering
coefficient, Kuhnert et al., 2010).

We note that these differences between changes of network
topologies related to physiological and pathophysiological
activities only become apparent when considering degree-degree
correlations, in addition to the previously investigated network
measures (cf. Figure 6). This underlines the usefulness of
characterizing functional brain networks using different network
measures, including assortativity. It remains to be shownwhether
the differences in network changes according to physiological
and pathophysiological activity can also be observed in a larger
sample of patients (which will allow for a better statistics).

We consider future research as promising which aims at a
more detailed characterization of time evolving functional brain
networks. For instance, if these networks indeed possess a more
pronounced hub-like structure during day than during night
times, we speculate that this will likely be reflected in respective
changes in the distributions of betweenness centralities. Hubs
that appear during day times and which integrate information
from most of the other nodes may be identifiable by the largest
betweenness centralities that occur in a network.

Another important aspect that is not yet fully explored is
the influence of changes of the antiepileptic medication. Altered
drug levels appear to affect functional brain networks only
locally (Lehnertz and Elger, 1997; Haneef et al., 2015), but
it is not clear if and how they might lead to local and/or
global network reorganizations. Eventually, it is in general a
challenging and non-trivial problem how to relate local to global
network properties. Thus, knowing whether and how exactly
the reported periodic changes and reorganizations of functional
brain networks can be related to features of the node and/or link
dynamics may help to gain deeper insights into the complicated
dynamics underlying epileptic networks.

Funding

SB and KL acknowledge support by the Volkswagen Foundation
(Grants No. 85390 and No. 85392).

Acknowledgments

We thank Vimal Kishore for helpful comments on earlier
versions of this manuscript and Daniel Aguilar-Hidalgo for
constructive discussions.

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2015 | Volume 9 | Article 462

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Geier et al. Degree-degree correlations in epileptic networks

References

Agosta, F., Sala, S., Valsasina, P., Meani, A., Canu, E., Magnani, G., et al. (2013).

Brain network connectivity assessed using graph theory in frontotemporal

dementia. Neurology 81, 134–143. doi: 10.1212/WNL.0b013e31829a33f8

Agosta, F., Galantucci, S., Valsasina, P., Canu, E., Meani, A., Marcone,

A., et al. (2014). Disrupted brain connectome in semantic variant

of primary progressive aphasia. Neurobiol. Aging 35, 2646–2655. doi:

10.1016/j.neurobiolaging.2014.05.017

Albert, R., and Barabási, A. L. (2002). Statistical mechanics of complex networks.

Rev. Mod. Phys. 74, 47–97. doi: 10.1103/RevModPhys.74.47

Anderson, B. S., Butts, C., and Carley, K. (1999). The interaction of size and

density with graph-level indices. Soc. Netw. 21, 239–267. doi: 10.1016/S0378-

8733(99)00011-8

Andrzejak, R. G., Chicharro, D., Elger, C. E., and Mormann, F. (2009). Seizure

prediction: any better than chance? Clin. Neurophysiol. 120, 1465–1478. doi:

10.1016/j.clinph.2009.05.019

Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. (2008).

Synchronization in complex networks. Phys. Rep. 469, 93–153. doi:

10.1016/j.physrep.2008.09.002

Bagler, G., and Sinha, S. (2007). Assortative mixing in protein contact

networks and protein folding kinetics. Bioinformatics 23, 1760–1767. doi:

10.1093/bioinformatics/btm257

Barabási, A. L., and Oltvai, Z. N. (2004). Network biology: understanding the cell’s

functional organization. Nat. Rev. Genet. 5, 101–113. doi: 10.1038/nrg1272

Barabási, A. L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a

network-based approach to human disease. Nat. Rev. Genet. 12, 56–68. doi:

10.1038/nrg2918

Barrat, A., Barthélemy, M., and Vespignani, A. (2008). Dynamical Processes on

Complex Networks. New York, NY: Cambridge University Press.

Barthélemy, M. (2011). Spatial networks. Phys. Rep. 499, 1–101. doi:

10.1016/j.physrep.2010.11.002

Barzegaran, E., Joudaki, A., Jalili, M., Rossetti, A. O., Frackowiak, R. S., and

Knyazeva, M. G. (2012). Properties of functional brain networks correlate with

frequency of psychogenic non-epileptic seizures. Front. Hum. Neurosci. 6:335.

doi: 10.3389/fnhum.2012.00335

Bashan, A., Bartsch, R. P., Kantelhardt, J. W., Havlin, S., and Ivanov, P. C.

(2012). Network physiology reveals relations between network topology and

physiological function. Nat. Commun. 3, 702. doi: 10.1038/ncomms1705

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D.

R., and Meyer-Lindenberg, A. (2008). Hierarchical organization of human

cortical networks in health and schizophrenia. J. Neurosci. 28, 9239–9248. doi:

10.1523/JNEUROSCI.1929-08.2008

Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., and Grafton, S. T. (2011).

Conserved and variable architecture of human white matter connectivity.

Neuroimage 54, 1262–1279. doi: 10.1016/j.neuroimage.2010.09.006

Berg, A. T., and Scheffer, I. E. (2011). New concepts in classification of

the epilepsies: entering the 21st century. Epilepsia 52, 1058–1062. doi:

10.1111/j.1528-1167.2011.03101.x

Bialonski, S., and Lehnertz, K. (2013). Assortative mixing in functional brain

networks during epileptic seizures. Chaos 23, 033139. doi: 10.1063/1.4821915

Bialonski, S.,Wendler, M., and Lehnertz, K. (2011). Unraveling spurious properties

of interaction networks with tailored random networks. PLoS ONE 6:e22826.

doi: 10.1371/journal.pone.0022826

Boashash, B. (1992). Time Frequency Signal Analysis: Methods and Applications.

Melbourne, VIC: Longman Cheshire.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U. (2006).

Complex networks: structure and dynamics. Phys. Rep. 424, 175–308. doi:

10.1016/j.physrep.2005.10.009

Bollen, J., Gonçalves, B., Ruan, G., and Mao, H. (2011). Happiness is assortative in

online social networks. Artifical Life 17, 237–251. doi: 10.1162/artl/a/00034

Borgatti, S. P., Everett, M. G., and Johnson, J. C. (2013).Analyzing Social Networks.

London: SAGE Publications Limited.

Braun, U., Plichta, M. M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O.,

et al. (2012). Test-retest reliability of resting-state connectivity network

characteristics using fMRI and graph theoretical measures. Neuroimage 59,

1404–1412. doi: 10.1016/j.neuroimage.2011.08.044

Bruns, A. (2004). Fourier-, Hilbert- and wavelet-based signal analysis: are

they really different approaches? J. Neurosci. Methods 137, 321–332. doi:

10.1016/j.jneumeth.2004.03.002

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C., Crone, N. E., Bergey,

G. K., et al. (2014). Network dynamics of the brain and influence of the

epileptic seizure onset zone. Proc. Natl. Acad. Sci. U.S.A. 111, E5321–E5330.

doi: 10.1073/pnas.1401752111

Croft, D. P., James, R., Ward, A. J. W., Botham, M. S., Mawdsley, D., and Krause,

J. (2005). Assortative interactions and social networks in fish. Oecologia 143,

211–219. doi: 10.1007/s00442-004-1796-8

Csermely, P., Korcsmáros, T., Kiss, H. J., London, G., and Nussinov, R. (2013).

Structure and dynamics of molecular networks: a novel paradigm of drug

discovery: a comprehensive review. Pharmacol. Ther. 138, 333–408. doi:

10.1016/j.pharmthera.2013.01.016

de Haan, W., Pijnenburg, Y. A. L., Strijers, R. L. M., van der Made, Y., van der

Flier, W. M., Scheltens, P., et al. (2009). Functional neural network analysis in

frontotemporal dementia and Alzheimer’s disease using EEG and graph theory.

BMC Neurosci. 10:101. doi: 10.1186/1471-2202-10-101

di Bernardo, M., Garofalo, F., and Sorrentino, F. (2007). Effects of degree

correlation on the synchronization of networks of oscillators. Int. J. Bifurcat.

Chaos Appl. Sci. Eng. 17, 3499–3506. doi: 10.1142/S0218127407019263

Duncan, J. S., Sander, J. W., Sisodiya, S. M., and Walker, M. C. (2006). Adult

epilepsy. Lancet 367, 1087–1100. doi: 10.1016/S0140-6736(06)68477-8

Engel, J. Jr., Thompson, P. M., Stern, J. M., Staba, R. J., Bragin, A., and Mody,

I. (2013). Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194. doi:

10.1097/WCO.0b013e32835ee5b8
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Erdős, P., and Rényi, A. (1961). On the strength of connectedness of a random

graph. Acta. Math. Hung. 12, 261–267. doi: 10.1007/BF02066689

Fagiolo, G., and Mastrorillo, M. (2013). International migration network:

topology and modeling. Phys. Rev. E 88:012812. doi: 10.1103/PhysRevE.68.

036122

Feldwisch-Drentrup, H., Staniek, M., Schulze-Bonhage, A., Timmer, J., Dickten,

H., Elger, C. E., et al. (2011). Identification of preseizure states in epilepsy:

a data-driven approach for multichannel EEG recordings. Front. Comput.

Neurosci. 5:32. doi: 10.3389/fncom.2011.00032

Foster, J. G., Foster, D. V., Grassberger, P., and Paczuski, M. (2010). Edge direction

and the structure of networks. Proc. Natl. Acad. Sci. U.S.A. 107, 10815–10820.

doi: 10.1103/PhysRevE.88.012812

Frei, M. G., Zaveri, H. P., Arthurs, S., Bergey, G. K., Jouny, C., Lehnertz,

K., et al. (2010). Controversies in epilepsy: debates held during the fourth

international workshop on seizure prediction. Epilepsy Behav. 19, 4–16. doi:

10.1016/j.yebeh.2010.06.009

Gabor, D. (1946). Theory of communication. J. I. Electr. Eng. III 93, 429–441.

Geier, C., Kuhnert, M. T., Elger, C. E., and Lehnertz, K. (2013). “On the centrality of

the focus in human epileptic brain networks,” in Recent Advances in Predicting

and Preventing Epileptic Seizures, eds R. Tetzlaff, C. E. Elger, and K. Lehnertz

(Singapore: World Scientific), 175–185.

Geier, C., Bialonski, S., Elger, C. E., and Lehnertz, K. (2015). How important

is the seizure onset zone for seizure dynamics? Seizure 25, 160–166. doi:

10.1016/j.seizure.2014.10.013

Guerrini, R. (2006). Epilepsy in children. Lancet 367, 499–524. doi: 10.1016/S0140-

6736(06)68182-8

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.pbio.0060159

Haneef, Z., Levin, H. S., and Chiang, S. (2015). Brain graph topology changes

associated with anti-epileptic drug use. Brain Connect. 5, 284–291. doi:

10.1089/brain.2014.0304

Holme, P., and Saramäki, J. (2012). Temporal networks. Phys. Rep. 519, 97–125.

doi: 10.1016/j.physrep.2012.03.001

Frontiers in Human Neuroscience | www.frontiersin.org 9 August 2015 | Volume 9 | Article 462

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Geier et al. Degree-degree correlations in epileptic networks

Holme, P., Edling, C. R., and Liljeros, F. (2004). Structure and time

evolution of an internet dating community. Soc. Netw. 26, 155–174. doi:

10.1016/j.socnet.2004.01.007

Horstmann,M. T., Bialonski, S., Noennig, N., Mai, H., Prusseit, J., Wellmer, J., et al.

(2010). State dependent properties of epileptic brain networks: comparative

graph-theoretical analyses of simultaneously recorded EEG and MEG. Clin.

Neurophysiol. 121, 172–185. doi: 10.1016/j.clinph.2009.10.013

Jalili, M., and Knyazeva, M. G. (2011). Constructing brain functional networks

from EEG: partial and unpartial correlations. J. Integr. Neurosci. 10, 213–232.

doi: 10.1142/S0219635211002725

Ke, Q., and Ahn, Y. Y. (2014). Tie strength distribution in scientific collaboration

networks. Phys. Rev. E 90:032804. doi: 10.1103/PhysRevE.90.032804

Koschützki, D., Lehmann, K., Peeters, L., Richter, S., Tenfelde-Podehl, D., and

Zlotowski, O. (2005). “Centrality indices,” Network Analysis, Lecture Notes

in Computer Science, Vol. 3418, eds U. Brandes and T. Erlebach (Berlin;

Heidelberg: Springer), 16–61.

Kramer, M. A., and Cash, S. S. (2012). Epilepsy as a disorder of cortical network

organization. Neuroscientist 18, 360–372. doi: 10.1177/1073858411422754

Kramer, M. A., Kolaczyk, E. D., and Kirsch, H. E. (2008). Emergent network

topology at seizure onset in humans. Epilepsy Res. 79, 173–186. doi:

10.1016/j.eplepsyres.2008.02.002

Kramer, M. A., Eden, U. T., Kolaczyk, E. D., Zepeda, R., Eskandar, E. N., and Cash,

S. S. (2010). Coalescence and fragmentation of cortical networks during focal

seizures. J. Neurosci. 30, 10076–10085. doi: 10.1523/JNEUROSCI.6309-09.2010

Kramer, M. A., Eden, U. T., Lepage, K. Q., Kolaczyk, E. D., Bianchi, M. T., and

Cash, S. S. (2011). Emergence of persistent networks in long-term intracranial

EEG recordings. J. Neurosci. 31, 15757–15767. doi: 10.1523/JNEUROSCI.2287-

11.2011

Kuhnert, M. T., Elger, C. E., and Lehnertz, K. (2010). Long-term variability of

global statistical properties of epileptic brain networks. Chaos 20:043126. doi:

10.1063/1.3504998

Kuhnert, M. T., Bialonski, S., Noennig, N., Mai, H., Hinrichs, H., Helmstaedter,

C., et al. (2013). Incidental and intentional learning of verbal episodic material

differentially modifies functional brain networks. PLoS ONE 8:e80273. doi:

10.1371/journal.pone.0080273

Le Van Quyen, M., Soss, J., Navarro, V., Robertson, R., Chavez, M., Baulac,

M., et al. (2005). Preictal state identification by synchronization changes in

long-term intracranial EEG recordings. Clin. Neurophysiol. 116, 559–568. doi:

10.1016/j.clinph.2004.10.014

Lehnertz, K., and Dickten, H. (2015). Assessing directionality and strength of

coupling through symbolic analysis: an application to epilepsy patients. Phil.

Trans. R. Soc. A 373:20140094. doi: 10.1098/rsta.2014.0094

Lehnertz, K., and Elger, C. E. (1997). Neuronal complexity loss in temporal lobe

epilepsy: effects of carbamazepine on the dynamics of the epileptogenic focus.

Electroencephalogr. Clin. Neurophysiol. 103, 376–380. doi: 10.1016/S0013-

4694(97)00027-1

Lehnertz, K., Bialonski, S., Horstmann, M. T., Krug, D., Rothkegel, A., Staniek, M.,

et al. (2009). Synchronization phenomena in human epileptic brain networks.

J. Neurosci. Methods 183, 42–48. doi: 10.1016/j.jneumeth.2009.05.015

Lehnertz, K., Ansmann, G., Bialonski, S., Dickten, H., Geier, C., and Porz, S. (2014).

Evolving networks in the human epileptic brain. Physica D 267, 7–15. doi:

10.1016/j.physd.2013.06.009

Long, X., Fonseca, P., Aarts, R. M., Haakma, R., and Foussier, J. (2014). Modeling

cardiorespiratory interaction during human sleep with complex networks.

Appl. Phys. Lett. 105:203701. doi: 10.1063/1.4902026

Müller, M. F., Baier, G., Lopez Jimenez, Y., Marin Garcia, A. O., Rummel,

C., and Schindler, K. (2011). Evolution of genuine cross-correlation

strength of focal onset seizures. J. Clin. Neurophysiol. 28, 450–462. doi:

10.1097/WNP.0b013e318231c894

Mac Carron, P., and Kenna, R. (2013). Network analysis of the ìslendinga sögur –

the sagas of icelanders. Eur. Phys. J. B 86:407. doi: 10.1140/epjb/e2013-40583-3

Maslov, S., Sneppen, K., and Zaliznyak, A. (2004). Detection of topological patterns

in complex networks: correlation profile of the internet. Physica A 333, 529–

540. doi: 10.1016/j.physa.2003.06.002

Mormann, F., Lehnertz, K., David, P., and Elger, C. E. (2000). Mean phase

coherence as a measure for phase synchronization and its application to

the EEG of epilepsy patients. Physica D 144, 358–369. doi: 10.1016/S0167-

2789(00)00087-7

Mormann, F., Andrzejak, R., Kreuz, T., Rieke, C., David, P., Elger, C. E., et al.

(2003). Automated detection of a preseizure state based on a decrease in

synchronization in intracranial electroencephalogram recordings from epilepsy

patients. Phys. Rev. E 67:021912. doi: 10.1103/PhysRevE.67.021912

Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R. G., Kraskov, A., David, P., et al.

(2005). On the predictability of epileptic seizures. Clin. Neurophysiol. 116,

569–587. doi: 10.1016/j.clinph.2004.08.025

Mormann, F., Andrzejak, R., Elger, C. E., and Lehnertz, K. (2007). Seizure

prediction: the long and winding road. Brain 130, 314–333. doi:

10.1093/brain/awl241

Motter, A. E., Zhou, C., and Kurths, J. (2005). Network synchronization,

diffusion, and the paradox of heterogeneity. Phys. Rev. E 71:016116. doi:

10.1103/PhysRevE.71.016116

Newman,M. E. J., and Park, J. (2003).Why social networks are different from other

types of networks. Phys. Rev. E 68:036122. doi: 10.1103/PhysRevE.68.036122

Newman, M. E. J. (2002). Assortative mixing in networks. Phys. Rev. Lett.

89:208701. doi: 10.1103/PhysRevLett.89.208701

Newman, M. E. J. (2003). Mixing patterns in networks. Phys. Rev. E 67:026126. doi:

10.1103/PhysRevE.67.026126

Newman, M. E. J. (2012). Communities, modules and large-scale structure in

networks. Nat. Phys. 8, 25–31. doi: 10.1038/nphys2162

Osterhage, H., Mormann, F., Staniek, M., and Lehnertz, K. (2007). Measuring

synchronization in the epileptic brain: a comparison of different

approaches. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 17, 3539–3544. doi:

10.1142/S0218127407019330

Panter, P. (1965). Modulation, Noise, and Spectral Analysis. New York, NY:

McGraw-Hill.

Park, C., Kim, S. Y., Kim, Y. H., and Kim, K. (2008). Comparison of the

small-world topology between anatomical and functional connectivity in

the human brain. Physica A 387, 5958–5962. doi: 10.1016/j.physa.2008.

06.048

Pessoa, L. (2014). Understanding brain networks and brain organization. Phys. Life

Rev. 11, 400–435. doi: 10.1016/j.plrev.2014.03.005

Ponten, S. C., Bartolomei, F., and Stam, C. J. (2007). Small-world networks

and epilepsy: graph theoretical analysis of intracerebrally recorded

mesial temporal lobe seizures. Clin. Neurophysiol. 118, 918–927. doi:

10.1016/j.clinph.2006.12.002

Press, W. H., and Rybicki, G. B. (1989). Fast algorithm for spectral analysis of

unevenly sampled data. Astrophys. J. 338, 277–280. doi: 10.1086/167197

Richardson, M. (2010). Current themes in neuroimaging of epilepsy: brain

networks, dynamic phenomena, and clinical relevance. Clin. Neurophysiol. 121,

1153–1175. doi: 10.1016/j.clinph.2010.01.004

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Schindler, K., Leung, H., Elger, C. E., and Lehnertz, K. (2007). Assessing seizure

dynamics by analysing the correlation structure of multichannel intracranial

EEG. Brain 130, 65–77. doi: 10.1093/brain/awl304

Schindler, K., Bialonski, S., Horstmann, M. T., Elger, C. E., and Lehnertz, K. (2008).

Evolving functional network properties and synchronizability during human

epileptic seizures. Chaos 18:033119. doi: 10.1063/1.2966112

Schulze-Bonhage, A., Kurth, C., Carius, A., Steinhoff, B. J., and Mayer, T.

(2006). Seizure anticipation by patients with focal and generalized epilepsy: A

multicentre assessment of premonitory symptoms. Epilepsy Res. 70, 83–88. doi:

10.1016/j.eplepsyres.2006.02.001

Schwarz, A. J., and McGonigle, J. (2011). Negative edges and soft thresholding

in complex network analysis of resting state functional connectivity data.

Neuroimage 55, 1132–1146. doi: 10.1016/j.neuroimage.2010.12.047

Stam, C. J., and van Straaten, E. C. W. (2012). The organization of

physiological brain networks. Clin. Neurophysiol. 123, 1067–1087. doi:

10.1016/j.clinph.2012.01.011

Stam, C. J. (2014). Modern network science of neurological disorders. Nat. Rev.

Neurosci. 15, 683–695. doi: 10.1038/nrn3801

Terry, J. R., Benjamin, O., and Richardson, M. P. (2012). Seizure generation:

the role of nodes and networks. Epilepsia 53, e166–e169. doi: 10.1111/j.1528-

1167.2012.03560.x

Vázquez, A., and Moreno, Y. (2003). Resilience to damage of graphs with degree

correlations. Phys. Rev. E 67:015101. doi: 10.1103/PhysRevE.67.015101

Frontiers in Human Neuroscience | www.frontiersin.org 10 August 2015 | Volume 9 | Article 462

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Geier et al. Degree-degree correlations in epileptic networks

van Diessen, E., Diederen, S. J. H., Braun, K. P. J., Jansen, F. E., and Stam, C.

J. (2013). Functional and structural brain networks in epilepsy: what have we

learned? Epilepsia 54, 1855–1865. doi: 10.1111/epi.12350

Varotto, G., Tassi, L., Franceschetti, S., Spreafico, R., and Panzica, F.

(2012). Epileptogenic networks of type II focal cortical dysplasia: a

stereo-EEG study. Neuroimage 61, 591–598. doi: 10.1016/j.neuroimage.2012.

03.090

Wang, H., Douw, L., Hernández, J. M., Reijneveld, J. C., Stam, C.

J., and van Mieghem, P. (2010). Effect of tumor resection on the

characteristics of functional brain networks. Phys. Rev. E 82:021924. doi:

10.1103/PhysRevE.82.021924

Wilke, C., Worrell, G., and He, B. (2011). Graph analysis of epileptogenic

networks in human partial epilepsy. Epilepsia 52, 84–93. doi: 10.1111/j.1528-

1167.2010.02785.x

Zubler, F., Gast, H., Abela, E., Rummel, C., Hauf, M., Wiest, R., et al. (2015).

Detecting functional hubs of ictogenic networks. Brain Topogr. 28, 305–317.

doi: 10.1007/s10548-014-0370-x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Geier, Lehnertz and Bialonski. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 11 August 2015 | Volume 9 | Article 462

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing
	1. Introduction
	2. Materials and Methods
	2.1. Patient Data
	2.2. Constructing Functional Networks and Assessing their Topological Properties
	2.2.1. Defining Nodes and Links
	2.2.2. Deriving a Temporal Sequence of Functional Networks
	2.2.3. Assortativity
	2.2.4. Clustering Coefficient


	3. Results
	4. Discussion
	Funding
	Acknowledgments
	References


