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Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational
methods have not been widely used for angiogenic target discovery and prioritization in this field, partly
because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the
opportunities they may offer. With this review, written for vascular biologists who lack expertise in com-
putational methods, we aspire to break boundaries between both fields and to illustrate the potential of
these tools for future angiogenic target discovery. We provide a comprehensive survey of currently avail-
able computational approaches that may be useful in prioritizing candidate genes, predicting associated
mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools
that use flexible, machine learning frameworks for large-scale data integration and gene prioritization.
For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight
interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some
guidelines which can help to optimize the process of accurate target discovery.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Angiogenesis has broad pathophysiological implications in pro-
moting disorders like cancer, ischemia, inflammation, infection and
immune responses [1]. Some disorders are characterized by abnor-
mal, excessive angiogenesis, whereas others are typified by sparse
angiogenesis with vessel regression. Angiogenic therapeutic strate-
gies aim to normalize and restore blood vessels, thereby regulating
tissue oxygenation and nutrient supply. Depending upon the disor-
der, most of the available therapies focus on either blocking growth
factor signaling pathways (e. g. vascular endothelial growth factor
(VEGF) signaling), thereby blocking angiogenesis (anti-angiogenic
therapy (AAT)), or delivering components, mostly growth factors,
to promote angiogenesis (pro-angiogenic therapy) [2]. In both
types of therapies, inappropriate tuning of VEGF levels can lead
to an increase in leaky or regressed blood vessels, as opposed to
the anticipated normalization. Even in metastatic tumors where
anti-angiogenic therapeutics have been widely tested, anti-VEGF
targeted therapies show a large variability in response across
tumor types and are often characterized by resistance and insuffi-
cient efficacy [3]. This emphasizes the need for discovering alterna-
tive therapeutic opportunities. For this purpose, at least two
aspects should be addressed: (i) identification of novel molecular
targets for anti-angiogenic therapy development; and (ii), ideally,
specific effects of the anti-angiogenic therapy for a particular
endothelial cell (EC) subtype or condition.

There are around 20,000 protein-coding genes in the human
genome and millions of cells in any given tissue, making it a
complex, multi-dimensional problem [4]. Single-cell sequencing
approaches attempt to solve this problem by characterizing cell
subtypes and identifying cell type-specific marker genes at differ-
ent biological scales (transcriptome, epigenome, proteome, meta-
bolome, interactome) [5]. However, true biological function
results from the complex interplay between these different scales.
Integrative approaches like network prediction methodologies and
machine learning (ML) can help mitigate these challenges. There-
fore, the angiogenesis field can benefit from a shift of focus
towards integrating complex, multi-omic, biological big datasets
for target / mechanism discovery.

Mathematical, statistical and ML models can be used to inte-
grate such high dimensional datasets. However, most of the avail-
able studies either use mathematical modeling to simulate
(in vitro) biomechanical changes in angiogenesis via proangiogenic
stimuli, their effects on angiogenic morphological phenotypes (mi-
gration, vessel sprouting, shear stress, etc.) or implement statistical
ML models to predict dysfunctional vasculature from imaging
studies [6–8]. Very few studies focus on the prediction and discov-
ery of angiogenic gene signatures using high throughput ‘omics’
datasets [9]. This review will provide a brief overview of overall
developments in single-cell characterization of angiogenic cellular
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heterogeneity, computational tools that predict mechanisms using
single-cell abundance information, tools that integrate multiple
omics sources at a single-cell level, and techniques that can help
with prioritizing important genes. This review does not aim to pro-
vide depth and technical detail into specific tools or methodologies
for specialized analyses of high throughput data, but rather over-
views, in a user-friendly manner for the vascular biologist who is
not an expert in computational biology, a breadth of techniques
that can be used to identify targets for anti-angiogenic therapy
development. This overview will serve as a springboard for inte-
grative research and target discovery in the angiogenesis field
and should be regarded as an open invitation for this field to con-
sider and exploit the enormous potential of these computational
approaches.

2. Single-cell omics in characterizing vascular heterogeneity

Endothelial cells (ECs), the main cellular players of angiogene-
sis, form new blood vessels under the stimulus of pro-angiogenic
factors secreted by tissues requiring vascularization. EC pheno-
types are heterogeneous and vary across different organs, within
the vascular loop segments of an organ, and even between neigh-
boring ECs and physiological functions [10]. High-throughput tran-
scriptomics has been successfully used to identify novel clusters of
ECs, map the evolution of EC states and identify changes in EC
subtype-specific mechanisms based on the similarities or differ-
ences between their transcriptomes. Such techniques allow fine
resolution in characterizing EC populations by providing
transcriptomic snapshots of tissue-level changes in samples iso-
lated from different biological conditions [11]. This has led to the
initiation of multiple single-cell atlases that have characterized
EC populations in various conditions. We will discuss them briefly
in the following sections.

2.1. Adult healthy organs/tissues

Early bulk RNA sequencing studies discovered that ECs from
different organs are transcriptionally heterogeneous, suggesting
tissue-specific functions [12]. However, bulk RNA transcrip-
tomics averages global expression and does not give more infor-
mation about the cells that represent a tissue/organ. To get
more insight and to better dissect the heterogeneity between
and within organs, a tissue-wide EC atlas based on high-
throughput single-cell transcriptomics analysis identified 78
unique groups of EC subpopulations across 11 distinct tissue
(organ) types in mice [13]. This study disclosed profound differ-
ences at the single-cell level in overall gene expression and
transcription factor expression levels, where multiple arterial,
venous, and lymphatic EC markers were shared across organs
(demonstrating cross-organ, tissue phenotype homogeneity,
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and a cross-linked network). In contrast, capillary ECs exhibited
primarily an organ-restricted, heterogeneous phenotype depen-
dent on the organ-specific metabolic and physiological needs.
Similar atlases focused on adult, healthy (human/murine)
organs like the liver [14], heart [15], brain [16], lung [17] and
kidney [18] were able to identify distinct EC subpopulations.

2.2. Developing tissues

Single-cell RNA sequencingwas also used to characterize ECpop-
ulations in developing tissues, namely developing mouse embryos
[19], zebrafish skeletal muscle [20] and embryonic stem cell differ-
entiation [21]. EC heterogeneity and lineage relationships during
early vascular development were resolved by applying single-cell
RNA sequencing and lineage tracing methodologies to a time win-
dow where key vascular and angiogenic events occur in human
andmouse embryos [22]. Analysis of primordial ECs inmice showed
that ECs have distinctive characteristics that were described as
branching out frommesodermal cells during vascular development
and having allantois- and non-allantois-derived cell subtypes [23].

2.3. Disease

Apart from healthy organs, EC populations also differ between
diseases through multiple levels of heterogeneity [11]. Tumor ECs
are one group of key components in the tumor microenvironment
that play an essential role in tumor progression and metastasis,
showing both angiogenic and anti-angiogenic properties. Tumor
EC heterogeneity has been reported inmultiple cancer types includ-
ing lymphoma [24], glioblastoma [25], breast [26], liver [27,28], lung
[29,30], cervical [31], colorectal cancer [32–34], pancreatic [35], gas-
tric [36] and renal [37–39] cancer. For instance, in human non-small
cell lung cancer (NSCLC), a direct comparison of tumor versus non-
malignant ECs revealed that Myc targets were the most enriched
signatures in tumor ECs [40]. This finding is consistentwithprevious
evidence of c-Myc’s role in tumor angiogenesis. A human spatial
transcriptomic atlas could reveal a loss of endothelial arteriovenous
zonation inmalformed brain vasculature compared to normal brain
vasculature with an emergence of a transcriptomic state character-
ized by increased angiogenic potential and immune cell cross-talk
[41]. Furthermore, a shift in the ratio of certain EC subtypes was
found to be another type of EC heterogeneity in diseases. This is par-
ticularly evident in idiopathic pulmonary fibrosis (IPF), where out of
the 5 ECs subtypes identified, a specific subtype (known as peri-
bronchial)was highly prevalent in IPF samples compared to another
pulmonary disease (i.e., obstructive pulmonary disease) [42].

2.4. Studies focusing on identifying angiogenic targets

Very few studies have used single-cell biomolecular abundance
to identify angiogenic targets for anti-angiogenic therapy develop-
ment. Focusing on NSCLC, freshly isolated tumoral and peri-
tumoral ECs were profiled for their transcriptomes to identify
novel tip tumor EC subtypes (‘‘tip” ECs lead the vessel sprout
[43,44]) and further integrated with multi-omics data to identify
conserved phenotypes and markers across patients, tumor / tissue
types, species and animal models [29]. This integrative analyses led
to the prioritization of potential candidates for anti-angiogenic
therapy, validated for their roles through in vitro vessel sprouting
experiments. In the context of age-related macular degeneration
(AMD), which is characterized by the formation of leaky blood ves-
sels, integrative computational analyses (meta-analysis with the
above lung tumor EC atlas, available bulk RNA sequencing datasets
and genome-scale metabolic modeling of EC proliferation) on
single-cell (normal vs neovascularized) choroidal EC populations
isolated from pre-clinical mouse models were successful in identi-
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fying potential metabolic anti-angiogenic candidates [45]. Silenc-
ing the selected metabolic enzyme targets in vitro and in vivo
demonstrated an evident reduction in vessel sprouting and blood
vessel area, thereby validating the predictions. The above studies
showcase the strength of integrative computational analyses in
identifying experimentally verifiable anti-angiogenic targets.

With the help of EndoDB (an EC-specific transcriptomics data-
base [46] and keyword-based searches), we curated around 87
datasets that explicitly characterized EC heterogeneity and com-
pared these studies based on the computational analyses per-
formed to extract biological knowledge (Fig. 1, Supplementary
Table 1). Despite the availability of detailed single-cell atlases,
most of the above studies typically focus on resolving populations
of ECs and perform functional enrichment to identify / predict bio-
logical processes based on pre-defined gene sets. Specialized anal-
ysis for the systematic prediction of biological networks,
integration of multi-omics datasets or prioritization of essential
genes is rarely performed. In the subsequent sections, we intro-
duce the readers to the specialized computational arsenal that
might provide depth to the biological interpretations and AAT tar-
get identification, in addition to the routine analyses. Table 1 pro-
vides a summary of the different classes of techniques that perform
specialized downstream analyses and the publicly available tools
that provide formal implementation of the analyses. Table 2 enlists
web-based applications belonging to the different classes of tech-
niques that can be used by non-expert users to obtain a simple
and quick hands-on experience of the different techniques. A glos-
sary of different terms (techniques) is also provided in Box 1 to
introduce the non-expert readers to various concepts.
3. Mechanism discovery in single-cell datasets

High-throughput (single-cell) omics studies provide a snapshot
of the changes in abundance of biomolecules (genes/proteins/
metabolites) between biological samples, which directly result
from synchronous changes occurring in various cellular processes.
Specialized downstream analyses use this abundance of informa-
tion to discover correlative or cause-effect relationships between
different biomolecules to find underlying biological mechanisms.
3.1. Functional enrichment-based methods

Most single-cell studies that characterized EC heterogeneity
preferred a functional enrichment-based analysis to predict biolog-
ical functions (Fig. 1). Enrichment-based methods typically assume
that genes with similar expression changes across conditions
should belong to similar functions. Over-representation analysis
(ORA), gene set enrichment analysis (GSEA) and gene set variation
analysis (GSVA) are the most commonly used methods to identify
enriched processes in endothelial single-cell datasets (Table 1,
Table 2, Fig. 2A). ORA identifies whether the overlap between the
test gene list and a reference gene set is unlikely due to random
chance (Fig. 2A) [47]. Online tools, such as g:Profiler [48], Panther
[49] and Enrichr [50] perform ORA on a given list of genes. To over-
come the assumption of ORA that all genes are equal regardless of
their magnitude of differential expression, functional class scoring
methods, like GSEA, rank genes based on the expression differences
between control and case samples (or clusters) calculated by any
differential metric (e. g. log-fold change, P-value, product of
log-fold change sign and -log10(P-value), etc.) [47]. Subsequently,
the association between members of a given gene set and the
control-case phenotypes is measured by calculating an ‘enrich-
ment score’ that uses the rank information of overlapping genes
with a given gene set to score a biological process (Fig. 2B). Many
tools like the ‘clusterProfiler’ R package [51], GenePattern [52] and



Fig. 1. UpSet Plot showing the classification of studies characterizing single-cell EC heterogeneity with respect to the applied computational techniques. A total of 87 studies
detailed in Supplementary Table 1, characterize single-cell EC heterogeneity with the distribution of studies that use different task-specific computational techniques.
Performing differential expression of biomolecular abundances between conditions and subsequent coupling with functional enrichment techniques are commonly used to
discover novel biological knowledge in single-cell ECs (82 studies). This is followed by the use of biological network inference techniques to identify novel biomolecular
interactions from changes in gene expression (18 studies). Within biological network inference approaches, most studies intend to predict cell–cell communication through
ligand-receptor interactions followed by inference of gene-regulatory networks. Only one study focused on predicting varying pathway activity using genome-scale
metabolic networks. Also, biological network inference studies are only used complementary to functional enrichment techniques (overlap between biological network-
based studies and functional enrichment). Among integration-based approaches, most studies fuse single-cell transcriptomes from multiple datasets laterally as compared to
vertical fusion of multiple omics data types. Automated gene-prioritization for the identification of AAT targets is the least explored (only 3 studies have attempted
prioritization of genes). The bar plot in the bottom left shows comparison of the number of studies which use a particular technique. The bar plots on the top indicate the
number of studies that have used a combination of different tools for analysis. The filled dots and lines in the matrix visually represent studies that use different combinations
of the tools enlisted in the rows.
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the GSEA tool developed by the Broad Institute, implement gene
set enrichment analysis. GSVA, on the other hand, performs an
unsupervised estimation of pathway activity variation across sam-
ples by converting the log-normalized gene expression matrix (ge-
nes vs samples) into a GSVA score matrix (gene sets vs samples),
where the GSVA score represents the overall activity of the gene
set within a sample (Fig. 2C). GSVA is implemented in the GSVA
package in R [53]. BIOMEX, a bioinformatics software suite
developed for non-expert users, contains state-of-the-art imple-
mentations of these popular enrichment-based methods for
multi-omics data interpretation [54].

Even though functional enrichment analyses provide a quick
and easy overview into the biological processes that are associated
with a list of genes, most analyses are affected by overlapping
genes and variable distributions of differentially regulated genes
in gene sets. Differing gene set sizes, sample sizes and an imbal-
anced number of samples per group may also impact the analyses
[47]. Apart from these technical problems, there are also concerns
in applying the above enrichment methods to single-cell sequenc-
ing data that may lead to false positives, which may occur due to
the measured proportion of genes being lower or in situations
where an overall gene count is imbalanced across conditions
[55]. Therefore, caution is advised against solely using enrichment
analyses to draw biological interpretations and conclusions. Bio-
logical network enrichment methods that also use the information
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of underlying biological mechanisms, can be an effective alterna-
tive to the above methods [47].

3.2. Biological network prediction-based methods

Prediction of active biological networks using transcript abun-
dance information can complement functional enrichment analy-
ses in identifying (associative or causal) biological interactions
and hence, interpretations. Typically, cell-specific ligand-receptor
interaction (cell–cell communication), active gene regulatory and
metabolic networks can be predicted using single-cell transcript
relative abundance estimated from angiogenic single-cell datasets
(Table 1, Table 2, Fig. 2).

3.2.1. Cell-cell communication inference
Recent advances in single-cell and spatial omics have drasti-

cally increased the resolution at which we can study biological
systems. These next-generation tools yield unprecedented
opportunities to go beyond a mere description of cell types
and states, allowing us to better study the dynamics of biolog-
ical systems, an important aspect of which is defined by how
cells interact with each other to establish tissue functioning.
Since 2019, computational biology has witnessed a steep
increase in the number of tools available to study several
aspects of cell–cell communication (CCC). Early methods such



Table 1
Computational tools for knowledge discovery and target prioritization.

Class Methodology Tools

A. Functional enrichment-based methods
Over-Representation

Analysis
identifies enriched gene-sets based on the strength of overlap between user-defined gene list and
reference gene sets

g:Profiler; Panther; Enrichr

Gene Set Enrichment
Analysis

enriches gene sets based on the degree / significance of relative gene expression changes clusterProfiler; GenePattern;
GSEA tool, BIOMEX

Gene Set Variation
Analysis

estimates varying gene-sets across samples by generating gene-sets vs samples scoring matrix GSVA package, BIOMEX

B. Cell-cell communication inference
Differential

Combination
Methods

use differentially expressed ligands and receptors to identify interactions between clusters of cells. CellTalker; iTALK; PyMINEr

Expression
Permutation Tools

statistical scoring of each ligand-receptor pair based on permutation test-based filtering, non-parametric
tests with a null model or defined empirical rules

CellChat; CellPhoneDB; Giotto;
ICELLNET; SingleCellSignalR

Network-Based
Methods

uses networks of interactions between ligands, receptors, and downstream targets to prioritize ligand-
receptor interactions

CCCExplorer; NicheNet;
SoptSC; SpaOTsc

Tensor-Based
Methods

help to generate a hypergraph (network representing many-to-many relationships) of ligands and
receptors from co-expression data.

scTensor

C. Gene regulatory network inference
GRN Inference

Methods
prediction of activation / inhibition relationships based on co-expression of transcription factors and their
targets (or transcription-factor target promotor binding) across conditions or time dependent changes.

GENIE3; SCENIC; AR1MA1;
SCODE

D. Single-cell metabolic network inference
Genome-Scale

Metabolic
Reconstruction

mathematical model of whole cell metabolism that can be tailored to predict condition-specific metabolic
fluxes using uptake and ‘omics’ abundance constraints

COBRA toolbox, COBRApy,
RAVEN toolbox

Flux Balance Analysis
(FBA)

a method to estimate pseudo steady-state metabolic fluxes in a genome-scale metabolic reconstruction
that is required to optimize the synthesis of specific metabolites

Single-cell data-
based tailoring

modification of optimization solver to account for cell–cell metabolic variation scFEA

E. Unsupervised multi-omics data fusion
Joint Dimensionality

Reduction
captures cell–cell correspondence by identifying shared feature associations between paired or unpaired
modalities

Seurat V3; BindSC;
MOFA+; MATCHER

Network-Based
Fusion
Approaches

captures cell–cell correspondence by identifying conserved cluster structures between paired or unpaired
modalities

Seurat V4; CiteFuse

Statistical Modeling uses the Bayesian framework of modeling to scale and map different modalities BREM-SC; Clonealign
Deep learning

representations
uses auto-encoders to identify non-linear relationships between features and modalities to make
interpretations

TotalVI;
GLUE

F. Supervised multi-omics data fusion
Raw Fusion an early integration technique, where the fusion of several data sources takes place at the raw data level
Transitional Fusion an intermediate integration technique, where different data sources are fused while learning

Decision Fusion a late integration technique, where each data source is modeled separately and integrates the data at the
decision level through decision aggregation

ScanCluster

Partial Least-Squares
Discriminant
Analysis

reduces data dimensionality while remaining fully aware of the class labels and can be used for
classification purposes

MixOmics; MINT;
DIABLO

G. Gene Prioritization
One-class

classification
(OCC)

OCC aims at identifying data elements of a given class among all objects by learning mostly from a training
set that only contains objects of that class.

PU Learning similar to one-class classification, PU-Learning focuses on one-class. However, in PU learning, two sets of
examples are supposed to be accessible for training: a positive set P and an unlabeled set, which is
expected to contain both positive and negative examples. In PU learning, a binary classifier is trained in a
semi-supervised manner from solely positive and unlabeled sample points.

GuiltyTargets; n2a-SVM;
Node2vec; DeepPVP

ML-Based Gene
Prioritization

detecting disease-associated genes through ML technologies. exTasy; Endeavour; Genehound
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as CCCExplorer [56] and CMN (community-wide molecular
network) [57] were developed for bulk gene expression data.
However, since the introduction of single-cell transcriptomics,
the number of CCC modeling tools has drastically increased.
Armingol et al. summarize the recent CCC literature and orga-
nize the methods into four categories, depending on their
approach [58]. CCC methods use differential expression or co-
expression information of different ligands and receptors across
conditions to predict and prioritize ligand-receptor interactions
(Fig. 2D). Differential combination-based methods such as Cell-
Talker [59], iTALK [60] and PyMINEr [61] use differentially
expressed ligands and receptors to identify interactions between
clusters of cells. Expression permutation-based tools, such as
CellChat [62], CellPhoneDB [63], Giotto [64], ICELLNET [65]
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and SingleCellSignalR [66] score each ligand-receptor pair, and
subsequently perform filtering based on permutation tests
(Box 1), non-parametric tests with a null model, or empirical
methods. Network-based methods, such as CCCExplorer [56],
NicheNet [67], SoptSC [68] and SpaOTsc [69], use networks of
interactions between ligands, receptors and downstream targets
to prioritize ligand-receptor interactions, some of them even
taking into account spatial information, such as SpaOTsc. The
fourth category of tensor-based methods (Box 1), exemplified
by scTensor [70], generalizes the graph-based methods (Box 1)
– which could be equivalently formulated as matrix-based
methods – even further to a tensor-based setting.

While many tools have been developed, evaluation and
benchmarking of all these tools to reveal their respective



Table 2
Web-based applications for knowledge discovery and target prioritization.

Class Application(s) Link References

A. Functional enrichment-based methods
Over-Representation Analysis gProfiler https://biit.cs.ut.ee/gprofiler/gost [48]

WebGestalt 2019 https://www.webgestalt.org/ [155]
Panther Gene List Analysis https://pantherdb.org/ [49,156]
Enrichr https://maayanlab.cloud/Enrichr/ [50]

Gene Set Enrichment Analysis WebGestalt 2019 https://www.webgestalt.org/ [155]
EndoDB https://vibcancer.be/software-tools/endodb [46]
EnrichNet https://www.enrichnet.org [157]
ShinyGO https://ge-lab.org/go/. [158]
GeneTrail https://genetrail.bioinf.uni-sb.de [159]
TissueEnrich https://tissueenrich.gdcb.iastate.edu/. [160]
WhichGenes https://www.whichgenes.org/api/. [161]
ClusterGrammer https://github.com/maayanlab/clustergrammer [162]

Gene Set Variation Analysis PAGER Web APP https://aimed-lab.shinyapps.io/PAGERwebapp/ [163]
B. Cell-cell communication inference

TALKLR https://yuliangwang.shinyapps.io/talklr/ [164]
InterCellar https://bioconductor.org/packages/InterCellar/ [165]

Expression-permutation based methods scConnect https://github.com/JonETJakobsson/scConnect [166]
CellPhoneDB https://www.cellphonedb.org/ [63]
CellLinker https://www.rna-society.org/cellinker/ [167]
FlyPhoneDB https://www.flyrnai.org/tools/fly_phone/web/ [168]

C. Gene regulatory network inference
GRN Inference Methods DIANE https://diane.bpmp.inrae.fr [169]

COXPRESdb https://coxpresdb.jp [170]
GeneFriends https://www.GeneFriends.org [171]
COEXPEDIA https://www.coexpedia.org [172]
SEEK https://seek.princeton.edu/ [173]
GeNeCK https://lce.biohpc.swmed.edu/geneck [174]

D. Single-cell metabolic network inference
Genome-Scale Metabolic

Reconstruction databases

Virtual Metabolic Human https://www.vmh.life/#home [175]
Metabolic Atlas https://metabolicatlas.org/explore/Human-GEM/gem-browser [176]
BiGG Models https://bigg.ucsd.edu/ [177]

Flux visualizations Fluxer https://fluxer.umbc.edu/ [178]
Escher-FBA https://sbrg.github.io/escher-fba/#/ [179]

E. Unsupervised multi-omics data fusion
Bulk multi-omics datasets MiBiOmics https://shiny-bird.univ-nantes.fr/app/Mibiomics [180]

OmicsNet https://www.omicsnet.ca/OmicsNet/home.xhtml [181]
F. ML-based Gene Prioritization (single or multiple data sources)
ML-Based Gene Prioritization ToppGene https://toppgene.cchmc.org/prioritization.jsp [182]

PhenoPred https://www.phenopred.org/ [183]
Endeavour https://endeavour.esat.kuleuven.be/ [146]
pBRIT https://143.169.238.105/pbrit/ [184]
PhenoApt https://www.phenoapt.org/ [185]

Text mining-based Gene Prioritization PolySearch2 https://polysearch.ca/ [186]
Network-based Gene Prioritization PINTA https://securehomes.esat.kuleuven.be/�bioiuser/pinta/ [187]

GeneMANIA https://genemania.org/ [188]
WebPropagate https://anat.cs.tau.ac.il/WebPropagate/ [189]
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strengths and weaknesses is still in its infancy. Recently, Dim-
itrov et al. [71] performed a comparative study, revealing a
large heterogeneity in the output of these methods, even
though many of them use similar resources. This poses a for-
midable challenge to biologists who have to interpret the
varying outcomes of these tools, requiring necessary biological
follow-up and validation experiments.

3.2.2. Gene regulatory network inference
Inferring the dynamics of gene regulation is a powerful

approach to understand how biological systems are con-
trolled. Gene regulatory network (GRN) inference methods aim
to infer how transcription factor combinations control down-
stream target genes. Historically, GRN inference methods were
developed concurrently with large-scale gene expression profil-
ing methods [72]. In this context, GRN inference methods typi-
cally infer gene regulatory networks, where edges between
transcription factors and target genes are predicted from gene
expression compendia (Fig. 2E). A landmark algorithm in this
field has been the GENIE3 algorithm [73], which elegantly
decomposes the network inference problem as a series of fea-
ture importance estimation problems. For every gene, a random
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forest model (Box 1) is built, which is subsequently used to
perform feature (i.e. transcription factor) ranking, in this way
identifying the most important transcription factors, based on
whose expression profile the expression profile of the target
gene can be predicted. Both in early benchmarks [72], as well
as more recent ones [74], the GENIE3 algorithm has shown con-
sistently good performance. Furthermore, it forms the basis of
many subsequent developments, including dynamic versions of
GENIE3 to infer dynamic GRNs from time series data [75] and
single-cell GRN inference methods such as SCENIC [76].

However, expression data alone is not sufficient to accurately
model gene regulation. Current approaches include other types of
data such as epigenomics (e.g. scATAC-sequencing (Box 1)) and
the presence of binding motifs to enhance GRN inference [77].
The advent of single-cell transcriptomics data has led to an explo-
sion of new methods to infer GRNs, some of which focus more on
cell type-specific GRNs, while others are more dedicated to infer-
ring the dynamics of GRNs over time [78]. Several novel types of
GRN inference can be distinguished here. Condition-specific meth-
ods (sometimes also referred to as differential network inference)
refer to a class of methods that infer one network for each condi-
tion. Examples of such methods include case-specific random for-
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Fig. 2. Techniques for specialized mechanism discovery. The commonly used tools for mechanism predictions are based either on functional enrichment (A to C) or
biological network inference (D to F). (A) Over-representation analysis (ORA): ORA compares the fraction of observed list of genes overlapping with known gene sets
(observed) versus the fraction of total list of genes within an organism’s genome that overlaps with known gene sets (expected) to identify enriched gene sets. The overlaps
are indicated by Venn diagrams. (B) Gene-set enrichment analysis (GSEA): GSEA ranks genes based on differential expression between control and case samples (indicated by
red dots in the Volcano plot) and subsequently, uses the ranks of overlapping genes between the observed and expected cases to score the membership of a gene list to each of
the known gene sets (shown as dot plot in the figure). The statistical significance of the enrichment score per gene set is calculated using permutation tests (Box 1). (C) Gene-
set variation analysis: GSVA converts the log-normalized gene expression matrix (genes vs samples) into a GSVA score matrix (gene sets vs samples) by ranking genes per
sample. (D) Cell-cell communication inference (CCI): CCI methods use the information of differentially expressing (indicated by the red dots in the Volcano plot) or co-
expressing ligands and receptors (indicated by heatmap) and compare them with a database of known ligand-receptor interactions to prioritize potential ligand-receptor
interactions in a given condition (indicated by a Circos plot connecting ligands to receptors). (E) Gene-regulatory network (GRN) inference: GRN inference methods use the
information of transcription factor (TF) expression profile and expression profile of their downstream target genes (indicated by heatmap vectors) to find meaningful co-
expressing pairs, which are represented as a network of TF-target interactions. (F) Metabolic network inference: Active, condition-specific metabolic networks are derived by
using metabolic gene expression data (heatmap) as biochemical constraints for tailoring a generic genome-scale metabolic network of an organism. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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ests [79] and Bayesian Pólya trees (Box 1) [80]. Dynamic network
inference methods use additional time series information (e.g.
obtained by trajectory inference) to obtain a dynamic network,
where edges might be present only in a specific time window.
Examples of such approaches include AR1MA1 [81] and SCODE
[82]. It can be expected that novel advances in single-cell sequenc-
ing technologies, such as high-throughput CRISPR/Cas perturba-
tions, will significantly impact GRN inference methods, leading to
better methods that will reconstruct gene regulation at a much
higher resolution.
3.2.3. Single-cell metabolic network inference
As metabolic changes are challenging to observe at the single-

cell transcriptome level, innovative techniques that post-process
transcriptome abundance to predict genome-scale metabolic path-
way states are instrumental. Genome-scale metabolic models
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(GEMs) are mathematical libraries of whole cell metabolism that
can be easily tuned using extracellular metabolite uptake condi-
tions and integrated with condition-specific biological ‘omics’
datasets, to predict optimal genome-scale metabolic routes
required for fulfilling cellular demand [83]. Rohlenova et al. tai-
lored a generic human genome-scale metabolic reconstruction by
integrating bulk and single-cell transcriptomic profiles of prolifer-
ating choroidal ECs (CECs) and subsequently conducted a stepwise
elimination procedure to systematically remove metabolic genes
(reactions) with low or no expression (activity) and predicted a
minimal constraint-based GEM for proliferating CECs [45]. This
study was the first to integrate endothelial single-cell transcrip-
tomic abundance with GEMs (Fig. 2F). Applying flux balance anal-
ysis (a method to estimate pseudo steady-state metabolic fluxes in
a genome-scale metabolic network given a cellular objective
function; e. g. biomass [83]) to this CEC-tailored GEM, core meta-
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bolic enzymes that play an essential role in maximal production of
biomass and extracellular matrix collagen synthesis during choroi-
dal neovascularization were predicted and these predictions were
also validated experimentally. The integration of omics data with
metabolic networks to predict condition-specific metabolism is
challenging as different types of data (transcriptomics, proteomics,
metabolomics) indirectly measure changes in either substrate or
enzyme, representing different biological constraints that need to
be tailored differently within GEMs [84].

Apart from the above application, methods that predict active
metabolic networks across cell clusters by optimizing the agree-
ment of flux distributions with single-cell expression distributions
are slowly being applied to single-cell datasets [85]. An interesting
study by Alghamdi et al. implemented scFEA, a novel graph neural
network-based optimization solver that identifies cell groups shar-
ing similarmetabolic variations (correlated to the changes in single-
cell transcriptome abundances) and validated theirmethodology on
datasets with tissue-level targeted metabolomics profiling [86].
Tools like COBRA toolbox [87], COBRApy [88], and RAVEN toolbox
[89] facilitate the construction of GEMs and seamless integration
of omics data with metabolic models as constraints. Such applica-
tions can pave the way for the prediction of single-cell metabolic
changes in ECs from transcriptomic abundance and thereby help
understand cell-type or subtype-specific metabolic functions. Sup-
plementary to these computational approaches, single-cell metabo-
lomics technologies are slowly expanding to facilitate
comprehensive validation of single-cell metabolic states [90,91].

4. Multi-omics data fusion methods for single-cell datasets

In order to discover meaningful biological mechanisms, it is
essential to sample information about different biomolecules
(e.g., DNA, RNA, protein, metabolites) from a given tissue of inter-
est. Single-cell omics technologies are rapidly expanding their
scope to measure multiple modalities like the genome, transcrip-
tome, epigenome, proteome and metabolome in both temporal
and spatial scales for obtaining deeper insights and resolution into
biological variations between cell types, phenotypes, markers and
processes [92]. Developing technologies that simultaneously assay
multiple omics layers has further advanced this inquiry. Although
multi-omics single-cell fusion methodologies are already being
applied to cancer biology, most of the single-cell studies in the field
of angiogenesis (or EC) research either focus on generating / ana-
lyzing datasets belonging to a single modality (single omics data
type such as transcriptomics data) (Box 1, Fig. 1) or simply compar-
ing modalities by meta-analysis (e.g., proteome with single-cell
transcriptome [29]) without systematic integration to identify
common cell-clusters or relationships. ML techniques provide suit-
able frameworks for integrating multiple omics datasets, as they
use the multi-dimensional information of genes and cells, which
are inherently heterogeneous across biological scales. According
to the availability of reference omics datasets with known cell
annotations, multi-omics fusion methods can be classified into
unsupervised (no prior knowledge of reference cell types), super-
vised (reference cell annotations from single-cell atlases), and
semi-supervised (when cell annotations from samples are limited
due to the usage of noisy data, erroneous annotations or the avail-
ability of label information only for a part of the data) methods
(Table 1, Table 2).

4.1. Unsupervised omics data fusion

Unsupervised data fusion techniques are applied when no prior
knowledge of reference cell types is available. This makes unsuper-
vised fusion techniques most suited for data integration and dis-
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covery in single-cell omics datasets. Many statistical and
mathematical approaches have been developed for unsupervised
data fusion, depending on whether biomolecules from different
compartments are profiled within the same cell (paired datasets)
or from different cells and experiments (unpaired datasets). Unsu-
pervised approaches aim to identify cell–cell or cluster–cluster cor-
respondence across omics layers. Unsupervised fusion methods
can be classified into multiple methods based on the underlying
mathematical/statistical concept used for omics data integration.

Joint Dimensionality reduction (jDR)-based methods are
among the most popular single-cell multi-omics fusion methods.
Cell-cell correlation-based methods like Seurat v3 [93] and bindSC
[94] examine the linear association between different modalities/-
datasets to identify linear combinations that capture cell–cell
correspondence across unpaired modalities (Table 1, Fig. 3A).
Non-negative matrix factorization (NMF; Box 1)-based fusion
methods like MOFA+ identify common clusters across modalities
by assuming a pre-existing underlying relationship between cells
[95]. As NMF methods assume that two different omics modalities
(e. g. attributes from epigenome and transcriptome) are compo-
nents of the same underlying biological signal, they identify a com-
mon latent space (Box 1, Fig. 3B) where there are conserved
clusters of cells. NMF methods also correct for experimental batch
effects as they can explicitly model experimental batches as a sep-
arate component of the underlying biological signal (Box 1,
Fig. 2B). Manifold (Box 1)-based methods like MATCHER create
low-dimensional representations (or manifolds) for paired modal-
ities and align these manifolds in a shared space where the data-
sets become comparable (Fig. 3C) [96]. An important caveat of
jDR approaches is that a specific modality can be given more
weight (unless properly normalized) because of higher feature
dimensions and scales than another modality (e.g., chromatin
accessible regions in scATAC approaches vs transcript abundance
from scRNA-seq).

Network-based fusion approaches like Seurat v4 [97] and Cite-
Fuse [98] use similarity-based network models inferred from each
modality to identify a common representation space (Fig. 3D). This
similarity allows for identifying affinities between cells across
unpaired or paired modalities. Network fusion approaches inte-
grate datasets with the assumption that each modality discovers
the same cell types, which might not be the case in all biological
conditions. Statistical approaches like BREM-SC [99] and Clonea-
lign [100] systematically integrate multi-omics data using a Baye-
sian framework for probabilistic modeling (Fig. 3E). Such methods
model relationships between features across modalities. Although
relatively simple to implement, these approaches only focus on
statistical integration without considering biological variance in
different contexts.

The aforementioned mathematical/statistical concepts can also
be integrated with deep learning representations like autoen-
coders to identify non-linear relationships between features and
modalities by transforming them into interpretable, common,
low-dimensional subspaces. Typically, autoencoders have input,
hidden, and output layers (Fig. 3F). The input layer is an encoder
that transforms data from high-dimension to low-dimension cell
states. The hidden middle layer stores the information about the
low-dimensional space shared by different modalities, thus, per-
forming integration and clustering. The output layer decodes the
low-dimensional information at the hidden layer to reconstruct
the input. Tools like totalVI [101] and GLUE [102] combine NMF
and graph-based embedding with autoencoders to fuse multiple
paired modalities. To acquire a comprehensive list of tools and
techniques regarding unsupervised data fusion techniques, we
suggest the readers refer to additional review articles [92,103–
105].



Fig. 3. Techniques for unsupervised fusion of single-cell multi-omics modalities. In all the figure panels, Modality 1 (red in color), Modality 2 (blue in color) represent two
omics modalities. Heatmaps represent variation in feature across cells. Paired modality integrations are illustrated in green color, whereas unpaired modality integration are
represented by mixture of blue and orange colors. Colored dots and triangles represent different types of cells. (A) Cell-cell correlation: Cells from modalities 1 and 2 are
integrated by measuring correlation between the features from the two omics modalities. (B) Non-negative matrix factorization (NMF): NMF methods map features from two
paired modalities and cell-level batch effects to latent factors (Box 1). The number of latent factors being less compared to original number of genes in the figure signifies
dimensionality reduction. Cluster identities are assigned to common cells in this latent space (Box 1). (C) Manifold-based fusion: Manifold fusion methods map the input
feature dimensions from modalities 1 and 2 to a low-dimensional manifold space (In the figure, 9 row-wise features are mapped to 3 dimensions). The manifolds (Box 1)
generated for each paired modality are aligned with each other to identify common cells between modalities. (D) Network-based fusion: Similarity networks are generated
for the unpaired modalities 1 and 2. Cells with similar feature profiles are connected to each other within this network. The conserved connections between the two networks
are used for integration. (E) Statistical modeling: Statistical modeling methods identify shared clusters and common cells between paired modalities 1 and 2 by generating a
probabilistic model (Box 1). As the same prior probability distribution is used for clusters in both modalities to tune the model, shared cell-specific random effects are
captured, which are useful for finding posterior cell identities. (F) Deep learning representations: Deep learning for unsupervised omics integration is performed using
autoencoders (Box 1), which contains an encoder-decoder scheme. In theory, any of the methods (A to E) can be combined in the hidden layer of the autoencoder scheme to
predict cell clusters. Here, the NMFmethod is shown as an example. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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4.2. Supervised/semi-supervised omics data fusion

Unsupervised learning assumes that all observations are pro-
duced by a set of common, latent variables. In contrast, supervised
learning assumes that one set of data, termed inputs, is the source
5243
of another set of observations, called outputs. Supervised learning
finds a mapping function that translates the input data to the label
information given the input data and output labels. Then the map-
ping function is applied to a set of input data without label infor-
mation. Identifying the label of unseen data is called prediction.
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Depending on the output types of the problem of interest, this pre-
diction can be seen as classification when the output information is
discrete labels, regression when the output information is contin-
uous labels, and prioritization when the output label is a ranking
list of input data. Neural networks (NNs), Support Vector Machines
(SVMs), and random forests are among the most popular and suc-
cessful ML approaches in supervised learning. Similar to unsuper-
vised settings, it has been shown that, in the context of supervised
learning, integrating multiple complementary inputs (biological
data) leads to more robust models and more accurate predictions
for a biological problem of interest. Supervised approaches have
been mainly applied to integrate several genomics data sets and
sometimes incorporate multiple bulk transcriptomic datasets to
predict a phenotype or function of interest. However, they are less
prevalent in single-cell data fusion because of the limited availabil-
ity of accurate annotations for genes and cells together. As a result,
unsupervised-based methods dominate contemporary omics data
integration in single-cell cancer research. While it is believed that
unsupervised-based integration approaches also deliver an unbi-
ased representation of fused omics, they sometimes fail to provide
a stable and realistic picture of the underlying data. Recently, with
the availability of more annotation and phenotypic information for
genes, supervised and semi-supervised omics data fusion has
slowly gained growing attention in cancer research. For example,
Dietrich and colleagues integrate genomics, transcriptome, and
DNA methylome data to understand the mechanisms of drug
response to Chronic Lymphocytic Leukaemia [106]. Here, we focus
on different strategies for integrating several omics data sets using
various ML algorithms.

In a supervised manner, data fusion can be divided into three
categories: raw fusion, transitional fusion, and decision fusion
(Table 1, Fig. 4A–C). One of the most prevalent strategies for inte-
grating biological data sources is raw fusion, also called early inte-
gration (Fig. 4A). The fusion of several data sources takes place at
the raw data level (attribute concatenation). After that, the learn-
ing algorithm is applied to the concatenated data set, which yields
a single result. Nonetheless, the heterogeneity of omics data
sources makes this data fusion technique difficult. In transitional
fusion, also called intermediate integration, different data sources
are fused throughout the learning process (Fig. 4B). Transitional-
based fusion approaches apply the same learning structure to each
data source separately to address constraints and difficulties in
coping with heterogeneous data. In several intermediate integra-
tion methods, such as those dedicated to Multiple Kernel Learning
(MKL) (Box 1) [107–109], the parameter learning step is dependent
on the learning structure level. In contrast, this step is independent
of how the structure was constructed in some methods, such as
Geometric Kernel Fusion (GFK) [110]. Individual structures are
Fig. 4. Techniques for ML-based supervised fusion of attributes from various data
example where the aim is to classify genes as pro-angiogenic (+ class) and anti-angiogen
Raw fusion: A supervised fusion method that first concatenates attributes from data mo
dataset for machine learning and classification. (B) Transitional fusion: Here, a structure o
while learning. The integrated structure is used for classification. (C) Decision fusion
independent learning and only prediction outcomes of + and � class are fused based on m
networks (Box 1) are generated for each modality separately. Attributes for each modali
reconstructed features from each omics modality are concatenated finally providing inf
PLS-DA integrates the different attributes from two modalities (blue and orange colors) in
an example of intermediate integration. Each PLS-DA component (PC1, PC2) represents
support vector machine (one-class SVM): Unlike binary SVM (Box 1), in a one-class SVM
orange color) or low density regions (low number of points with blue color). The support
from the center of the high density region to form a hyperplane that is farther from the
genes that belong to the - anti-angiogenic class. (G) Gene prioritization by Genehoun
phenotype matrix into a completely-filled gene by phenotype matrix using matrix factori
latent factors (Box 1). This completely-filled matrix is used to prioritize genes based on ra
legend, the reader is referred to the web version of this article.)
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eventually integrated into one structure in both scenarios, result-
ing in a single outcome based on all data sources.

A separate model is learned for each data source in decision
fusion, also called late integration (Fig. 4C). Each data source might
be subjected to different ML algorithms in the decision fusion
scheme, and data integration occurs at the decision level. Then,
various computational methods are used to combine and aggregate
the results. This data fusion method successfully merges the
results acquired from several learning algorithms, especially when
each data source has a different underlying data structure, requir-
ing distinct learning methods for each data source. In a supervised
learning manner, this type of integration is often regarded as a nat-
ural way to deal with heterogeneous biological data. This type of
fusion can also use a single source of data or a limited number of
data sources to boost the learning algorithm’s performance. For
example, ensemble-based approaches (Box 1) employ several
learning algorithms to achieve higher predictive performance than
any individual learning algorithm could.

Kernel-based methods are one of the most adaptable and suc-
cessful ML algorithms for developing appropriate data fusion inte-
gration frameworks at all levels of data realization. They are
particularly well suited to intermediate integration [111]. In par-
ticular, by representing the data as a kernel matrix, kernel
approaches detach the original data from the ML algorithms, mak-
ing them available and more manageable for various data integra-
tion strategies. Also, deep learning through various deep
algorithms and different architectures successfully exploits the dif-
ferent structures in multiple omics data types and offers a practical
and scalable framework for data fusion at all levels of data realiza-
tion [112] (Fig. 4D). Data fusion methods also provide a flexible
framework for combining supervised and unsupervised learning
to deliver more accurate single-cell RNA-seq clustering and anno-
tation. For example, scAnCluster [113] offers an end-to-end cell
deep-supervised clustering and annotation model that exploits cell
type labels accessible from reference data to assist cell clustering
and annotation on unlabeled target data.

While principal component analysis (PCA) achieves dimension-
ality reduction in an unsupervised manner, Partial Least Squares
Discriminant Analysis (PLS-DA) reduces dimensionality while
remaining fully aware of the class labels and can be used for clas-
sification purposes. PLS-DA has recently gained increasing atten-
tion for multi-omics integration because of its efficiency in
dealing with data with high dimensional attributes and missing
or noisy data [114]. In particular, MixOmics [115] formulates and
implements several algorithms for integrating multi-omics using
PLS-DA. It can be considered an intermediate data fusion approach
through which the most informative attributes from different
omics are chosen with the constraint of correlation between their
first PLS-DA components (Fig. 4E). In particular, MINT [116] pre-
sources. To commonly explain multiple ML techniques, we use a representative
ic (� class) based on different attributes measured from multiple data sources. (A)
dalities 1 and 2 (blue and orange colors) and subsequently uses the concatenated
r pattern is generated for each modalities 1 and 2 separately but they are integrated
: Unlike transitional fusion, the data structures are generated independently for
ajority voting. (D) Supervised deep learning for omics data integration: Deep neural
ty are reconstructed an compared with input to evaluate learning performance. The
ormation of cluster labels. (E) Partial least squares-discriminant analysis (PLS-DA):
to PC1 and PC2 and learns the cluster information during integration, and, hence, is
a linear combination of correlated attributes from each data source. (F) One-class
, different sets of data points are classified into high (large number of points with
vectors are then chosen from the high density region depending upon the distance

origin. Based on the labelled information from + pro-angiogenic class, it can predict
d: Genehound employs a gene prioritization strategy that transforms a gene by
zation to decompose the gene (green box) and phenotype information (cyan box) as
nking for each phenotype. (For interpretation of the references to color in this figure
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sents integration across samples, akin to batch effect correction,
while DIABLO [117] performs data integration across omics attri-
butes, which are two of the most popular MixOmics approaches.

As an extension, it is also possible to adapt such supervised
approaches of (multi-)omics data integration for gene prioritiza-
tion tasks. The following section will focus on supervised gene pri-
oritization and discuss the possible advantages of combining
multiple heterogeneous omics in the gene prioritization task using
various data fusion strategies.
5. Gene prioritization methods for target identification

Identifying disease-associated genes is critical to understand
the disease phenotype. The current surge in high-throughput
omics methodologies has provided access to a vast array of infor-
mation that can help explore candidate genes for a biological pro-
cess of interest in pathophysiological angiogenesis. Thousands of
candidate genes can potentially underlie a complex biological pro-
cess, like vessel sprouting. Experimentally confirming the roles of
all these potential genes is impractical, since it is a time-
consuming procedure with costly wet-lab tests to evaluate which
of those candidates is truly promising. Hence, it is essential to per-
form a prioritization step before testing the genes for their roles
experimentally. The gene prioritization task entails identification
of biologically relevant genes from a wide list of potential genes
for subsequent examination and study. While candidate gene pri-
oritization seems to be an intelligent strategy, it is challenging
due to the noisy nature of omics data, our limited knowledge of
the phenotypic roles of genes, their manifestations in different
pathological conditions, and their relationships with other genes.

Prioritizing candidate genes using ML techniques allow formal
integration of heterogeneous attributes and samples (instances)
for classification or regression. This provides a much more efficient
solution by evaluating only the most promising genes, rather than
all candidate genes. Although ML methods are routinely used in
prioritizing genes in various fields [118–121], to the best of our
knowledge, they have never been applied to prioritizing genes in
the context of angiogenesis. ML methods rely on a suitable training
dataset (set of seed genes and biological samples) as most of these
techniques exploit the ‘‘guilt-by-association” principle for setting
up a prioritization model. Typically, prior knowledge of positive
and negative training classes is required to train most supervised
and semi-supervised ML methods, such as Support Vector Machi-
nes, Deep Neural Networks, random forests, etc., and then test
the models using cross-validation strategies. For example, if the
aim is to prioritize genes essential for growth, it is imperative to
design a prior set of essential and non-essential genes with mea-
sured attributes, while model training, and test it on a new set of
genes for which the role in survival is unknown.
5.1. Single-class ML methods

In gene prioritization, we can produce a list of, for example, cell-
specific or function-specific genes as positive training genes using
biological annotation-based or literature-based data sources. How-
ever, choosing negative training genes for a cell type of interest is
more complicated and requires focused experimental scrutiny. In
fact, our current biological knowledge does not allow us to produce
a consensus theoretical ground for determining the actual set of
cell types or functions in which a gene is involved. This observation
led researchers to focus on ML algorithms designed to learn from
only positive data, such as one-class SVM [122]. The one-class
SVM strategy transforms the typical binary classification problem
into a one-class learning problem by modeling regions using a
function that classifies regions with higher density of points (typ-
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ically genes with known biological functions) as the positive class
and the lower density of points as the negative class (Fig. 4F). This
approach works under the assumption that genes with similar bio-
logical functions will have similar attributes. Then, the decision
values of the one-class SVM models are employed to rank genes,
i.e., genes are prioritized based on their importance in defining cell
types or functions. A study by Yu et al. [123] uses the one-class
supervised SVM approach for prioritizing disease-candidate genes
based on text mining from various biomedical databases.

5.2. Semi-supervised ML-based approaches

Alternatively, the gene prioritization task is tracked by learning
from both positive (P) and unlabeled (U) data, also called the PU
learning approach. Mordelet and Vert [120] use the bagging
approach (Box 1) to randomly sample genes from the unknown
class and treat them as negative. Another approach, proposed by
Fusilier and colleagues [124], first treats all unknown data (genes)
as negatives and trains a classifier for positive (seed genes) vs
unknown (genes). Then, the model iteratively reduces the negative
data set from within the unknown data (genes) by focusing on the
most dissimilar genes to the seed genes. Wenric and Shemirani
[125] extended the PU learning framework using a random forest
classifier to rank genes in a case-control RNA-Seq experiment. Sim-
ilarly, GuiltyTargets [126] uses PU learning for training a logistic
regression model on a protein–protein interaction network anno-
tated with disease-specific differential gene expression. N2A-SVM
[127] employs SVM and PU learning to prioritize Parkinson-
associated genes, profiled from an autoencoder-based low dimen-
sion representation of protein–protein interaction networks—ob-
tained via node2vec [128]. DeepPVP [129] uses deep neural
networks and automated inference to detect potential causal vari-
ations in whole exome or whole-genome sequence data. Although
simplistic, this method has its limitations. A typical simplification
adopted in PU learning is dealing with the unlabeled set as nega-
tive and assessing the model as if it were fully supervised. In par-
ticular, when the available positives (training seeds) are not a
representative subset of all positives, including known and
unknown positives, they are not an unbiased or random sample.
Moreover, considering unlabeled data as negative could introduce
false negatives into the model’s training process. These issues are
exacerbated when the amount of positive training data is limited,
and hence a method that penalizes false negatives needs to be
developed.

5.3. ML-based gene prioritization using multi-omics data

Traditionally, a heuristic-based integrated analysis (Box 1) is a
straightforward and commonly used approach to prioritize genes.
For example, a study used a heuristic integrated analysis based
on combining single-cell RNA sequencing with orthogonal datasets
from other studies for prioritizing metabolic targets that affect ves-
sel sprouting in choroidal ECs [45]. Even though the strategy was
able to identify important targets that could be experimentally val-
idated, such heuristic analyses are not flexible enough to be gener-
alized for a new set of seed genes, as there is no systematic
integration to capture correlations amongst multiple omics layers.
Although less available in the context of angiogenesis, systematic
integration of multi-omics datasets for gene prioritization tasks
has been growing steadily in other contexts (Table 1, Table 2).
Endeavor [118] combines similarity-based ML models for prioritiz-
ing disease-candidate genes in each omics data separately and pro-
vides a global ranking by combining the ranking of the genes in
each modality using order statistics. Similarly, eXtasy [130] uses a
random forest classifier to rank non-synonymous single nucleotide
variants given a specific biological disease phenotype. Likewise, a
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graph-based approach was used to construct an integrated net-
work, combining gene regulatory, protein–protein interaction, text
mining, and co-expression data to prioritize growth regulators in
Arabidopsis thaliana. Subsequently, supervised ML methods were
used to show that the local topological properties of the integrated
network improve gene prioritization [131].

Kernel-based strategies are among the most robust techniques
to integrate multi-omics data at different levels of data realization.
In particular, kernel fusion-based SVM can exploit different priori-
tization strategies, such as one-class classification [123,132,133]
and PU learning [120]. For example, De Bie and colleagues [132]
introduced the first kernel-based multiple-omics data fusion
approach for gene prioritization. After transforming all omics into
kernels using a Radial Basis Function (RBF), they proposed an MKL
(i.e., learning the weights of each omics-associated kernel in the
fused kernel) formulation for one-class SVM to prioritize disease-
associated genes. Subsequently, to handle noise from different
omics data sources, another study introduced a kernel fusion-
based gene prioritization approach using geometrically-inspired
kernel integration that captures the complementary nature
between multiple omics modalities [133]. Furthermore, a gene pri-
oritization strategy for the prediction of human phenotype ontol-
ogy (HPO) terms using late-integration operators (e.g., ordered
weighted averaging), to combine several annotation-based omics
data sources, was also proposed [134]. While most of the prioriti-
zation tools, as mentioned earlier, model each trait separately,
Genehound [121] uses a multi-task approach to prioritize genes.
Genehound formulates the gene prioritization task as the factoriza-
tion of an incompletely filled gene-phenotype matrix to impute the
unknown values to identify common patterns across various phe-
notypes (Fig. 4G). Then, to deliver a more accurate prediction, it
incorporates phenotypic side data and multiple genomic side data
simultaneously into the process of factorization.
6. Exemplary computational pipeline for the prediction of
promising anti-angiogenic targets

Although the above techniques from sections 3 – 5 can be used
individually for specific applications, we propose the unification of
these different techniques into a conceptual workflow that can
optimize the discovery of novel anti-angiogenic targets (Fig. 5).
First, single-cell omics datasets (publicly available or in-house
newly generated) belonging to different modalities can be merged
into a unified dataset. Performing quality control (e.g. elimination
of low quality cells, features, doublets, etc.) and subsequent nor-
malization, a feature selection for highly variable features and
dimensionality reduction, needs to be performed. These trans-
formed datasets can be fused using single (datasets belonging to
the same omics datatype) or cross-modality (datasets belonging
to different omics datatypes) fusion techniques, depending on
the research question. Cross-modality fusion can be performed
depending upon the kind of modalities (whether they are paired
or unpaired). For paired modalities, techniques like NMF, manifold
or statistical fusion can be used. For unpaired modalities, tech-
niques like network-based fusion can be used. The fused datasets
(either from single or cross-modality fusion) can be used for unsu-
pervised clustering and cell-type annotations. If the clustering does
not represent biologically relevant clusters, steps from feature
selection and dimensionality reduction need to be repeated. In
order to take this decision, clusters can be visualized using the t-
SNE/UMAP cluster plots. Once the fusion is successful to capture
biologically relevant clusters, features between different clusters
or conditions can be compared using differential feature analysis
techniques. The differential features between clusters or condi-
tions can be visualized using heatmaps and volcano plots. These
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differential features can be used for functional enrichment and/or
network discovery techniques. Enriched processes can be visual-
ized using dot plots and tree plots. Predicted biological networks
can be visualized using various network layouts. The normalized
data, functional enrichment scores (e.g. GSVA scores) and connec-
tivity metrics of different genes/proteins within the discovered
networks can be used as processed features and fused into a (unsu-
pervised/supervised) machine learning fusion strategy for gene
prioritization. The prioritized targets thus identified, can be used
for experimental validation.
7. Future directions

As enlisted above, a plethora of computational tools is avail-
able for the integration of multi-omics datasets, prioritization of
important genes and mechanism discovery. Multi-omics data
integration is already being applied in cancer biology for prog-
nosis, biomarker identification, anti-cancer drug response, iden-
tifying mechanisms and survival predictions [135]. Multi-omics
integration methods successfully identified biological mecha-
nisms specific to patients affected by renal cell carcinoma,
glioblastoma and lung adenocarcinoma [136–138]. Moreover,
recent applications of novel deep-learning technologies are
helping to stratify patients suffering from lung adenocarcinoma,
neuroblastoma, breast cancer, and bladder cancer into different
cancer subtypes [139–145]. Thus, computational multi-omics
approaches have tremendous potential to provide insights into
precision treatments, drug resistance and relapse treatment.
However, these techniques are (to date) seldom applied in the
context of angiogenesis research.

Angiogenesis is a complex biological process, involving multiple
signals at different levels, including secreted angiogenic signals,
inter- and intracellular signals, environmental cues, cell-intrinsic
signals, and others, which can all interact with each other. Map-
ping and uncovering novel multilevel attributes of pathophysiolog-
ical angiogenesis from multi-omics data can greatly advance our
ability to probe into and interpret these complex signals by eluci-
dating functional cellular networks. As more mechanistic details
are incorporated into complex systems biology models, computa-
tional methods in large-scale models should be incorporated into
existing single-cell datasets to assist in angiogenic target discovery
[45]. To be able to apply such computational tools in routine angio-
genesis research, user-friendly frameworks, benchmarking studies
that compare these tools in different biological scenarios and bio-
logically intuitive visualizations of high dimensional data are nec-
essary. User-friendly intuitive analytical and visualization tools
(like BIOMEX and EndoDB [46,54]) and integration frameworks
(Endeavour [146], PriorityIndex [147], TargetMine [148]) are
already being applied to high-throughput bulk datasets in general
disease biology. Similar software workflows that can include auto-
mated prioritization of targets, mechanism discovery and multi-
omics integration which will formidably benefit this cause. Intro-
ducing the computational tools enlisted in Table 1 within formal
workflows (similar to our proposed strategy (Fig. 5)), can help to
interpret, analyze and implement omics angiogenesis data.

ML methodologies are contributing to many promising
biomedical discoveries [149]. Although applied for morphologi-
cal blood-vessel image analysis in certain cases, there is a sev-
ere lack of ML applications on high-throughput molecular
datasets of angiogenesis. This is surprising given the surge of
endothelial omics datasets/atlases at the bulk and single-cell
scales of cells, organs and tissues. Therefore, sufficient emphasis
must be given to the development of novel ML approaches that
can flexibly integrate high-throughput data systematically
generated from different experimental platforms for the predic-



Fig. 5. A potential pipeline for discovering novel anti-angiogenic targets from single-cell multi-omics datasets. This pipeline showcases a potential workflow that can
seamlessly integrate the discussed techniques for anti-angiogenic target discovery. The olive green boxes represent the data fusion and knowledge discovery techniques. The
light blue boxes highlight the use of unsupervised and supervised data fusion techniques for integrating heterogeneous data sources. The green box highlights the target
predicted from this workflow and its subsequent follow-up with experimental validation. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

A. Subramanian, P. Zakeri, M. Mousa et al. Computational and Structural Biotechnology Journal 20 (2022) 5235–5255

5248



A. Subramanian, P. Zakeri, M. Mousa et al. Computational and Structural Biotechnology Journal 20 (2022) 5235–5255
tion of novel genes, biological processes and their association
with EC types. In addition, multiple challenges like sparsity in
single-cell data, missing data during identification of variation,
batch correction, reference annotation of cell types and refer-
ence annotation of biological processes might affect target pre-
dictions and should be considered / corrected for. Hence,
sufficient benchmarking studies that compare the performance
of tools concerning the above scenarios on both synthetic and
real-world (angiogenesis) datasets need to be developed. Fur-
thermore, the integration of existing single-cell datasets with
prior knowledge of biological networks (gene-regulatory, meta-
bolic and protein–protein interactions), drug-protein interac-
tions, protein structural information, disease-specific mutations,
disease/gene ontologies and vessel morphology based on image
data will immensely assist anti-angiogenic target discovery.

In order to obtain a higher success rate in the prediction of suit-
able targets, the quality of the chosen single-cell datasets is para-
mount. The availability of gold-standard ‘‘ground-truth” datasets
with non-subjective cell-type/gene-level/process-level annota-
tions for testing and comparing tools will help in this regard
[150,151]. Also, distinct label information that characterizes the
identity of genes to different classes of annotations is vital for
supervised ML approaches associated with various purposes.
Therefore, such gold-standard datasets need to provide metadata
with curated, cell-level and gene/process-level annotations. For
generating gold-standard single-cell annotations, it is essential to
integrate various available single-cell atlases and to generate a
database of integrated omics datasets containing curated cell-
level annotations with the option of user-friendly rectification of
cell-type annotations.

Most importantly, predictions from these diverse computa-
tional methodologies need to be backed up with experimental val-
idations of the roles of prioritized genes/biological processes.
Experimental assays that capture the changes in abundance of
the biomolecules monitor detrimental effects of target inhibition
in different biological conditions both in vitro and in vivo. Valida-
tion of biological roles by quantitative measurements of morpho-
logical, physiological, molecular changes and therapeutic effects
of drugs on normalization of dysfunctional vessels are all required
to meet this challenge.

Single-cell RNA-sequencing studies of ECs revealed the pres-
ence of novel EC subtypes, such as immunomodulatory ECs
(IMECs) [29,152], which might play a more important role in
anti-cancer immunity than previously realized. In fact, several
tumor ECs have an immunosuppressive gene signature [152,153],
yet up to nearly a third of the human coding genes lack any solid
functional annotation and are only minimally described in the lit-
erature [154]. It remains to be explored whether ‘‘smart” computa-
tional techniques can be developed to demystify the mystery
genome expressed in IMECs and gene prioritization methods can
be designed to rank genes important for IMECs’ role in anti-
cancer immunity.

We envision that generating appropriate ground-truth data-
sets, multiple levels of information, systematic integration of
this information into flexible computational (ML) workflows,
sufficient benchmarking and experimental validations will help
develop hybrid computational-experimental pipelines that will
ultimately provide targeted solutions to diseases/disorders
involving severe vascular dysfunction. We anticipate that the
use of integrative ML frameworks for identifying novel targets
and the therapeutic effects on specific EC subtypes will help
to decipher novel biological roles of endothelial cells (like
immune function) other than their conventional role in vessel
formation.
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Box 1. Glossary Artificial Neural Networks (ANNs): A
machine learning network of neurons (typically referred as
nodes or units) that learns and finds patterns in data. Like
neurons in the nervous system, each node receives an input,
performs some computation and passes the signal onto the
next node. Separate sets of nodes are typically classified into
input, hidden and output layers. For example, if our aim is to
classify genes into different biological processes based on
gene expression variation across single cells, an ANN will
be designed, such that: (i) the input layer nodes use gene
expression across different single cells as attributes, (ii) the
hidden layer nodes will provide weights (confidence) to gene
expression values from each single cell, and (iii) at the output
layer, the weights of the gene from different nodes will be
summed. These cumulative weight values will be used for
classifying genes into its known biological process. This pro-
cedure is iteratively repeated multiple times so that the net-
work can learn the training data accurately (by adjusting the
weights) and predict their associated biological processes.
ANNs form the basis of deep learning methodologies, where
deep learning ANNs consists of multiple hidden layers that
improve learning (Fig. 4D).

Autoencoders: Deep ANNs that learn an encoded repre-
sentation for a set of data (by transforming real, high dimen-
sional data to low dimensional representations) and uses a
decoder that maps the coded representation to reconstruct
the output. They are well-suited for unsupervised learning
(Fig. 3F).

Bayesian inference or probabilistic modeling: Probabilis-
tic modeling is a statistical technique used to consider the
impact of random events or actions in predicting the poten-
tial occurrence of future outcomes, given that randomness
or uncertainty plays a role in predicting outcomes. Probabilis-
tic models are a powerful idiom to describe the world, using
random variables as building blocks held together by proba-
bilistic relationships. Bayesian inference methods typically
generate probabilistic models that update the probability of
a hypothesis when more evidence or information becomes
available. These methods estimate prior and posterior proba-
bilities to improve confidence over a hypothesis. Bayesian
statistics use the data and consider parameters (e. g. mean,
standard deviation of gene expression) to be random vari-
ables with a distribution that can be inferred from data. Baye-
sian methods enable the estimation of uncertainty in
predictions, extracting crucial information from small data
sets and handling missing data. A prior probability is the prob-
ability that an observation may belong to a group before per-
forming a classification task (for instance, the prior
assumption that a cell belongs to a single-cell cluster before
considering the underlying patterns within the data). Usually,
prior probability distributions are the known probability dis-
tributions that can be used for transforming the input data
(for example, uniform distribution, beta distribution, Dirichlet
distribution, etc.). A posterior probability is the probability of
assigning observations to groups given the patterns in the
data (for example, posterior classification of cells to correct
single-cell given the mapping of prior probabilities to raw
single-cell gene expression). For instance, when integrating
two modalities (transcriptomics and proteomics) to identify
cell clusters, both transcriptomics and proteomics would
have different data distributions as they measure different
biological features. With the known prior probability distribu-
tions that randomly assign cells to clusters, the transcrip-
tomic and proteomic abundances are tuned such that the
shared cell-specific random effects (relationships) between
the omics data types are estimated. This can be used to iden-
tify the posterior probabilities that the cells actually belong to
specific clusters (Fig. 3E).
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Box 1. (continued) Ensemble learning: ML strategy in
which numerous learning models are trained to tackle a clas-
sification or regression task, and their outputs are integrated
to maximize the accuracy of predictions as compared to the
individual learning models.

Graph: Graphs are mathematical structures that embody
the pairwise relationships between objects (e. g. biological
features like genes, proteins (Fig. 2E)). A graph is made up
of nodes (which represents genes, proteins, cells) and the
edges or vertices that connect the nodes represent a relation-
ship. Graphs can be directed where the edges unidirection-
ally start from one node and end in the other node; or
undirected where the edges do not represent any direction.
Graph-based methods automatically generate graphs from
data to gain new information about mechanistic (e. g. the
use of directed graphs for representing biological networks
(Fig. 2E)) or associative relationships (e. g. co-expression-
based graphs).

Graph Neural Network (GNN): While ANNs typically learn
information of individual data points per sample, GNNs learn
the structure of multiple data points from an n-dimensional
attribute space. For instance, when using unsupervised clus-
tering of single-cells, based on their transcriptional profiles,
single cells are the biological instances and genes are the
attributes of the biological measurement. Graphs (networks)
can be created based on the similarity of transcriptional pro-
files between cells (Fig. 3D). These graphs can be trans-
formed into a low dimensional space by a technique called
graph embedding. In a supervised setting, GNNs can learn
these graph embedding representations to classify such cell
similarity graphs. GNNs can also be used for unsupervised
learning using auto-encoders, where the output clusters can
be decoded from the encoded graph embedding.

Heuristic Approaches: Practical and scalable methods
that produce solutions based on a trial-and-error, rule of
thumb or an educated guess. Such solutions may not be
optimal, perfect or rational, but are sufficient for getting
short-term solutions or approximations.

Manifolds: Manifolds represent a wide variety of geomet-
ric surfaces in mathematics (Fig. 3C). In ML, data can come
from a variety of spaces (e.g., the single-cell transcriptome
represents the single-cell gene expression space, the single-
cell proteome represents the single-cell protein abundance
space, etc.). Each of these spaces are multi-dimensional in
nature (e.g., multiple genes represent the multiple dimen-
sions in a single-cell transcriptomic dataset). High dimen-
sional representations cannot always be visualized.
However, data can come from a subset of points (e.g., subset
of single cells) in space that can represent a manifold. In
other words, features having similar patterns across omics
modalities can represent a common manifold. In case of
single-cell multi-omics data integration, manifolds are gener-
ated from pairwise omics modalities (e.g., transcriptome and
epigenome) and are aligned together to identify conserved
clusters of single-cells.

Modality: An omics modality indicates the type of omics
data under consideration. Each omics modality represents a
different characteristic of the underlying biology. Genomics,
transcriptomics, proteomics, epigenomics, metabolomics,
lipidomics, kinomics; each represents different modalities.

Multiple Kernel Learning (MKL): MKL uses a pre-
defined set of kernel functions for learning data distribu-
tions as part of a classification or a regression task. Kernels
or kernel functions are mathematical functions that trans-
form the non-linearly arranged real-world attributes of data
points (characteristics of genes like gene expression) to
higher dimensions for (linear) separation of data points
into groups within this newly generated high dimensional
space.
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Box 1. (continued)
Thus, kernel functions generate transformed kernel matrices
that represent linear or non-linear covariance/correlation matrix
that contains sample (e.g., single cell) similarities in their corre-
sponding input space. Kernel functions like the linear kernel,
polynomial kernel, radial basis kernel, etc. help ML algorithms
like support vector machines to linearly classify non-linear data
albeit in a high dimension space (see below).

Non-Negative Matrix Factorization (NMF): NMF is a
method that can reveal the component parts of a non-
negative signal. A non-negative signal can be any data distri-
bution (for example, distribution of cells in an m-
dimensional gene expression space and n-dimensional protein
abundance space where m, n = biological attributes from a two
different omics data types) and the components of this non-
negative distribution are mapped onto a low dimensional
space (called latent space). When, for example, using single-
cell multi-omics data integration (Fig. 3B), the assumption is
that two different omics data types (e.g., attributes from epi-
genome and transcriptome) are components of the same
underlying biological signal. Hence, some patterns emerging
from each omics data should be conserved in a common ‘‘la-
tent” space. In other words, NMFmaps biological features from
the two omics components onto a low-dimensional common
latent factor space. Each latent factor is a linear combination
of correlated epigenomic and transcriptomic attributes.

Permutation tests: Random re-assignment of sample labels
(e.g., cell labels, assigning genes to processes) frequently used to
compute null (background) models in biological systems. Per-
mutation tests are used for gene set enrichment analysis, cell–
cell communication inference to prioritize enriched processes
or ligand-receptor pairs. For example, in ligand-receptor com-
munication inference, labels representing single-cells are per-
muted and the probability of a ligand-receptor to undergo an
interaction across permuted cell types is calculated to generate
a random background distribution. Comparison of this back-
ground score to the actual ligand-receptor communication
score leads to the identification of significant ligand-receptor
pairs between a pair of cells.

Random forests: An ensemble-learning algorithm that
operates by constructing a forest of decision trees on different
samples for classification or regression. Each decision tree is
a hierarchical network of nodes and connections where each
node represents a decision rule for each attribute, using which
every biological feature (e.g., the gene phosphofructokinase)
can be split into two groups at a time. The decision rules start
with a root node (first decision rule - for example, log-
normalized counts, an attribute of transcript abundance can
be used to split genes into two groups based on cut-offs) and
moves further downwards with a second node (the second
decision rule for splitting genes – for example, number of
genes correlated with a given gene). This iteratively continues
for all attributes until each group of genes cannot be split fur-
ther and each set represents a known set (e.g., phosphofruc-
tokinase belongs to glycolysis). The threshold cut-offs for
splitting are directly determined from the training data distri-
bution. Random forests are a randomly generated bunch of
decision trees bundled together, where every tree in the deci-
sion forest helps in classifying a subset of training examples
(genes) into its classes (biological processes) that were ran-
domly sampled using a bagging approach (where a sampling
with replacement bootstrap approach picks random training
examples from the entire training dataset to generate a deci-
sion tree).
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Box 1. (continued)
In the next step, each data point (gene) is assigned to a class (bi-
ological process) based on a majority vote across decision trees.
Along with bagging, random forests can also find true biological
attributes that are required to find the best split possible,
thereby performing an automated attribute selection. Instead
of the majority voting procedure for the classification task which
involves voting based on predicted class across decision trees,
the regression task involves averaging the value of each attri-
bute across decision trees.

scATAC-sequencing: Like the traditional ATAC (assay for
transposase-accessible chromatin with sequencing) sequenc-
ing, single cell ATAC sequencing (scATAC) uses transposase-
mediated insertion of sequencing primers into open chro-
matin regions for capturing profiles of accessible chromatin
regions at a single-cell resolution. These chromatin-
accessible regions are indicative of active regulatory regions
within the genome.

Support Vector Machines (SVMs): a subset of supervised
ML methods commonly used for classification, regression,
and outlier detection. When aiming to classify biological
instances (genes) into classes (e.g., pro-angiogenic and
anti-angiogenic) based on different attributes (e.g., gene
expression across different single cells), SVMs attempt to
generate an imaginary hyperplane that can divide data
points (e.g., genes) into two (or multiple) groups/classes
based on their attributes (e.g., gene expression in every sin-
gle cell). When there are two attributes calculated for every
data point, we have a two-dimensional (X-Y) plane, where
each data point (or gene) is represented by the values of
attributes X and Y (e.g., gene expression across the two sin-
gle cells). In this 2-D space, a line can classify the data
points into two groups. In a given n-dimensional space,
the SVM procedure generates an n-1 dimensional hyper-
plane for classifying the data points. The distance between
the hyperplane and the nearest data points from each class
to the hyperplane (support vectors (SVs)) is called a margin.
SVM iteratively generates multiple hyperplanes that can
classify data points into two groups. Then, the classification
aims at finding the hyperplane with maximum possible
margin. Moreover, it is difficult to classify data points in
many real-world scenarios using a linear hyperplane. There-
fore, SVM typically exploits non-linear kernel functions (e.g.,
polynomial and radial basis kernels) to transform data
inputs into a space with higher dimensions so that the data
inputs become separable.

Tensor-based methods: Tensor methods (in the context of
cell-cell communications) help to decompose a ligand-
receptor co-expression matrix into multiple components to
generate a hypergraph. A hypergraph is a special form of graph
that can capture many-to-many ligand-receptor relationships
instead of a standard graph which can only capture pairwise
relationships. Tensor-based methods capture the many-to-
many ligand-receptor relationships across single-cells or clus-
ters of single-cell.

Trajectory Inference: determine the pattern of a dynamic
process experienced by cells and then arrange cells based on
their progression.
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