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a b s t r a c t

The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pathological pulmonary
symptoms. Most efforts to develop vaccines and drugs against this virus target the spike glycoprotein,
particularly its S1 subunit, which is recognised by angiotensin-converting enzyme 2. Here we use the
in-house developed tool CaverDock to perform virtual screening against spike glycoprotein using a cryo-
genic electron microscopy structure (PDB-ID: 6VXX) and the representative structures of five most pop-
ulated clusters from a previously published molecular dynamics simulation. The dataset of ligands was
obtained from the ZINC database and consists of drugs approved for clinical use worldwide.
Trajectories for the passage of individual drugs through the tunnel of the spike glycoprotein homotrimer,
their binding energies within the tunnel, and the duration of their contacts with the trimer’s three sub-
units were computed for the full dataset. Multivariate statistical methods were then used to establish
structure-activity relationships and select top candidate for movement inhibition. This new protocol
for the rapid screening of globally approved drugs (4359 ligands) in a multi-state protein structure (6
states) showed high robustness in the rate of finished calculations. The protocol is universal and can
be applied to any target protein with an experimental tertiary structure containing protein tunnels or
channels. The protocol will be implemented in the next version of CaverWeb (https://loschmidt.chemi.-
muni.cz/caverweb/) to make it accessible to the wider scientific community.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

A new coronavirus (SARS-CoV-2) outbreak began in Wuhan in
the province of Hubei at the end of 2019. Despite many similarities
to the 2002 outbreak of SARS-CoV, the new SARS-CoV-2 outbreak
had higher morbidity and mortality. Most infected individuals
show mild or no symptoms, but some present general complica-
tions such as acute respiratory distress syndrome, pneumonia,
and septic shock, potentially leading to the patient’s death [1–4].
Drawing on established knowledge about the original virus,
research groups worldwide have focused their efforts on two viral
proteins: i) the spike (s)-glycoprotein, with the aim of disrupting
its recognition of the membrane-bound angiotensin-converting
enzyme 2 (ACE-2); and ii) the main viral protease (Mpro, 3CLpro)
[5,6], to disrupt viral replication by hindering the processing of
several polyproteins that are translated from the viral RNA.
Another approach for tackling the spread of the new virus builds
on work on the original SARS virus, which resulted in the develop-
ment of a vaccine designed to induce the production of antibodies
against the viral s-glycoprotein [7,8], preventing it from recognis-
ing and binding to ACE-2. Unfortunately, at the time [9], work on
this vaccine was discontinued because it had side effects in animal
models that prevented its testing in humans [10,11].

Even though there are already several vaccines in the market for
the prevention of SARS-CoV-2 [12–16], there are currently over
300 therapies [17–20] in development that are intended to prevent
the spread of the virus (https://covid-19tracker.milkeninstitute.
org/) and minimize side-effects [21–24]. These efforts to create a
vaccine or a potent inhibitor that can be used as an a posteriori
medical treatment with acceptable side-effects are being
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undertaken by both private companies and academic institutions.
Both viral and host proteins are being targeted. While most efforts
are focused on disrupting the viral protease or viral polymerase,
the viral genome is also being targeted to disrupt its replication.
In particular, the host enzymes involved in nucleotide synthesis
are being studied to halt the final step in viral genome replication.
However, most therapies in development target proteins acting
upstream of replication; there are almost 40 preclinical and over
30 clinical trials targeting viral surface proteins including the s-
glycoprotein. Several host cell membrane proteins are also being
targeted, including CD147 and TMPRSS2 [25] and, most impor-
tantly, ACE-2 [26,27].

When the SARS-CoV-2 enters the body, s-glycoprotein units on
the surface of the virus act as ‘‘hooks”, triggering attachment to a
host cell [28–30]. The s-glycoprotein is homo-trimer with three
domains—the cytoplasmic tail, the transmembrane region, and
the ectodomain [31]. The ectodomain is further divided into three
areas: the proximal membrane region, the S2 subunit, and the S1
subunit. The receptor-binding domain is located in the S1 subunit.
ACE-2 recognises the S1 subunit, and between 1 and 3s-
glycoprotein monomers can bind to ACE-2 by opening and moving
upwards. The covalent bond between subunits S1 and S2 is primed
for cleavage to permit the displacement of the S1 subunit before
the s-glycoprotein/ACE-2 binding event. The viral membrane then
fuses with that of the host cell via a series of substantial conforma-
tional changes. Blocking these conformational changes would be a
way to taper the propagation of the virus [32]. There are published
studies, which targeted in this way HIV protease [33] and the s-
glycoprotein of both the SARS-CoV [34,35] and MERS-CoV viruses
[36].

Several conformations of the viral s-glycoprotein have been
observed by electron microscopy, including both semi-open (PDB
ID 6VYB) and closed (PDB ID 6VXX) conformations [37]. The exis-
tence of visibly different conformations demonstrates that the viral
s-glycoprotein can undergo conformational changes affecting not
just its surface but also the gorge within the S1 subunit and the
S2 subunit. Previous docking and virtual screening studies have
focused on localised sites such as the active site of the viral Mpro
protease [38–41] or the receptor-binding domain of the s-
glycoprotein [42–44]. There were also studies aiming at drug
repurposing targeting the gorge of the s-glycoprotein [45–47]. A
long tunnel created by the formation of the s-glycoprotein trimer
has received less attention. Therefore, we decided to search for
the drugs that bind in the gorge as well as along the putative tun-
nel of the ectodomain up to the cleavage site. Studying drug inter-
actions in such long tunnels would be laborious and
computationally expensive if using alchemical [48,49] or ligand
migration methods [50,51]. A long tunnel in a dynamical protein
is a perfect target for study using the software tool CaverDock
[52–54].

CaverDock is an in-house tool that uses Caver [55], to identify
tunnels in protein structures, and an optimised version of the
well-established algorithm from AutoDock Vina to calculate possi-
ble ligand trajectories along those tunnels and the corresponding
binding energies [56]. CaverDock discretises each identified tunnel
into a series of discs and models a ligand’s passage through the
tunnel by constraining one ligand atom to lie within a disc, sequen-
tially. The ligand’s conformation and binding energies are then cal-
culated using Autodock Vina, with the ligand (aside from the
constrained atom) being free to explore the conformational space;
the protein is treated as a rigid body. Once the conformation and
binding energy have been calculated, the constrained atom is
shifted to the next disc and the process is repeated until the ligand
has moved through the full length of the tunnel. The tool is contin-
uously maintained and is freely available as both a stand-alone
program and a webtool named CaverWeb [57,58].
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Since the start of the pandemic, the scientific community has
recognized the need for collaboration and sharing of results by
pledging to make data publicly available as soon as possible. In this
work, we used data from a 10 ms molecular dynamics (MD) simu-
lation of the s-glycoprotein trimer conducted at the D.E. Shaw
Institute [59], from which we extracted the main representative
conformations. We also used the original closed structure of the
s-glycoprotein retrieved from the Protein Data Bank, giving a total
of six structures to study [60]. Each structure was subjected to vir-
tual screening using every drug in the globally approved drugs sub-
set of the ZINC15 database [61]. This subset contained at the time
of retrieval, 4359 unique drugs approved by the US Food and Drug
Administration, European Medicines Agency, and other significant
authorities. A single drug in the subset was not correctly handled
by MGL tools for lack of parameters and the virtual screening
was done with 4358 unique drugs.

Although the MD simulation that we used is remarkably long by
almost any standards (10 ms), all the conformations used in this
study came from a single simulation, except the structure obtained
by cryo-EM. A better assessment of the full canonical ensemble
could be obtained by performing several replicas in the simplest
scenario. Even more complex and comprehensive sampling could
be achieved by using enhanced sampling methods [62], for exam-
ple adaptive sampling [63], umbrella sampling, [64] metadynam-
ics, [65] replica exchange molecular dynamics [66] and others
[67–69]. Although for smaller proteins this could be achievable
in a reasonable amount of time, for proteins as large as the s-
glycoprotein (1353 residues) such task becomes very time
demanding and computationally expensive.

Binding energies along the s-glycoprotein tunnel were calcu-
lated for every drug and all six structures. We then compared the
results obtained to identify the best ligands for each tunnel posi-
tion in each conformation. We also analysed each drug to identify
the contacts made with each monomeric unit of the s-glycoprotein
trimer. This allowed us to select drugs that were predicted to inter-
act with all three monomers and are thus likely to suppress the
opening of the S1 subunits and thereby prevent the binding of
the s-glycoprotein to ACE-2. Quantitative structure–activity rela-
tionships analysis (QSAR) was carried out to correlate the binding
energies of the drugs with their physicochemical properties using
multivariate statistical methods, providing the top-scoring mole-
cules based on their interactions with individual conformations
of s-glycoprotein (Fig. 1). The computational workflow established
within this study can be generalized and automated to make it
applicable to other target proteins.
2. Methods

2.1. Construction of the s-glycoprotein ensemble

The cryo-EM structure of the trimeric SARS-CoV-2 spike glyco-
protein was obtained from the RCSB Protein Data Bank [70]. The
selected structure (PDB ID: 6VXX) corresponds to the closed state
of this protein. To obtain sufficient conformational diversity for
our analysis of the s-glycoprotein trimer, we used the results of a
10 ms MD simulation conducted by the D. E. Shaw group, which
started from the same cryo-EM structure of s-glycoprotein. This
trajectory was clustered using the cpptraj [71] module of Amber-
Tools 16 [72] and a distance-based metric defined by the mass-
weighted root-mean-square deviation (RMSD) of the backbone
atoms of the residues surrounding the gorge of the S1 domain.
The RMSD was calculated relative to the starting structure. All resi-
dues located within 20 Å of the centreline of the tunnel in the ini-
tial s-glycoprotein structure (calculated as described below; 565 in
total) were included when calculating this metric. The hierarchical



Fig. 1. Computational workflow showing the steps performed during the virtual screening with CaverDock using the full globally approved drug dataset and six protein
states, along with the subsequent analytical steps. This workflow is currently being implemented on the web server CaverWeb [29] to allow the wider community to easily
perform such virtual screens.
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agglomerative clustering algorithm was used with average-
linkage, a minimum distance between clusters (epsilon) cut-off
of 2.5, sieve 5, and a minimum of 5 clusters.

2.2. Tunnel analysis

Before the tunnel analysis, three protein segments were
removed from the MD snapshots (residues 365 to 372, 1333 to
1340, and 2301 to 2308 – equivalent to residues 447–470 in chains
A, B and C in the cryo-EM structure numeration (PDB ID: 6VXX).
These segments were detached from the protein during the MD
simulation and became unrealistically bound at the mouth of the
s-glycoprotein tunnel (see discussion below).. The tunnel extend-
ing through the s-glycoprotein trimer was characterized using
HOLE v2.2.005 [73]. The vector for the HOLE calculation was
defined by the centre points between the C-alpha atoms of the fol-
lowing residues: LYS 1034 and PRO 986 in all three subunits of the
s-glycoprotein structure, and LYS 858, 1826, 2794 and PRO 810,
1778, 2746 in the MD snapshots. A sample rate of 0.9 Å was used,
and the end radius was set to 10 Å. We analysed the tunnel radii
and cut the segment going through the S1 domain until the first
extreme tunnel bottleneck was reached; the distance at which this
bottleneck was encountered varied between 60 and 80 Å depend-
ing on the structure or snapshot under consideration. The output of
the HOLE was converted into the CAVER 3 PDB file format [55] to
enable discretization for CaverDock calculations. However, the
tunnel predicted by HOLE for the s-glycoprotein structure con-
tained disconnections that made it undiscretisable. Therefore, we
re-modelled this tunnel using CAVER 3.02, starting from C-alpha
of Thr A 1009. The probe radius, shell radius, and shell depth were
set to 0.7, 20, and 20, respectively. Finally, the selected tunnel parts
were discretized into a series of discs using the discretiser tool
with default settings [53].

2.3. Ligand dataset

The globally approved drug dataset was downloaded from the
ZINC database [61] on the 26th of May 2020 in mol2 format. Only
the first protonation state of each drug molecule was saved. The
SMILES codes for all ligands were collected and stored in CSV files,
which were then uploaded to the Mordred [74] web server to
obtain the molecular descriptor values needed for the QSAR
calculations.

2.4. CaverDock calculations

Only the part of the tunnel in the S1 domain was considered in
the CaverDock calculations. We discretised the tunnel into a set of
discs using the program’s default settings [53]. The ligand and
receptor files were prepared using MGLtools 1.5.7 [75]. The grid
box was generated around the relevant part of the tunnel using a
script from the CaverDock package. The default drag atom (i.e.
the atom closest to the centroid of the molecule) was used. Calcu-
lations were run in the inward direction only, in the lower-bound
trajectory mode.

2.5. Principal components analysis

Principal Component Analysis (PCA) [76] was used to facilitate
understanding of the data resulting from the CaverDock calcula-
tions. The data matrix consisted of 4358 ligands (objects) docked
into six different protein states obtained from the CaverDock tra-
jectories. The data for each ligand consisted of its minimum bind-
ing energy along the CaverDock trajectory and three percentage
values representing the proportion of the trajectory during which
the ligand was in contact with one, two, or all three individual
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units of the s-glycoprotein trimer. The data were autoscaled to unit
variance and centred before analysis.

2.6. Partial least squares analysis

Partial Least Squares (PLS) analysis [77] was used to explore the
relationships between the minimal binding energies of 4358
ligands (objects) docked to six different protein states (dependent
variables Y) and 1326 molecular descriptors of individual ligands
(independent variables X). 2D and 3D molecular descriptors were
calculated using the software tool Mordred [74] which is particu-
larly suitable for our purpose because it can calculate descriptors
even for large molecules. PLS reveals the correlation structure
among variables X and Y by reweighting variables X with PLS
weights and projecting them to a smaller number of new latent
variables. Autoscaled and centred data were used in the PLS anal-
ysis. The importance of every molecular descriptor in the model
was assessed using the variable importance in the projection
(VIP) parameter [78] and plots of the PLS variable weights [78].
Internal validation was performed to assess the quality of the
developed PLS models [79] by cross-validation and permutation
testing. During cross-validation [77], a portion of the Y data are
excluded during model development, and the resulting model is
used to predict the missing data. The predictions are then com-
pared to the original data to obtain a Q2 value. Q2 provides a more
realistic estimate of a model’s predictive power than the squared
multiple regression coefficient R2. In this study, 1/7 of the com-
pounds were deleted during each cross-validation round. During
permutation testing, the model was recalculated 999 times by ran-
domly re-ordering the dependent variable y. The statistical pack-
age SIMCA-P version 12 (Umetrics, Umeå, Sweden) was used to
perform all statistical analyses.

2.7. MM/GBSA calculations

The free energy of binding (DGbind) was calculated by the
molecular mechanics/generalized Born solvent accessible surface
area (MM/GBSA) method [80,81] to determine the interaction
energy of each drug bound to the spike glycoprotein in the
minimum-energy snapshots for each CaverDock calculation with
the 6VXX structure. The topology and input files were prepared
for each complex for performing an energy-minimization cycle
and the energy calculations. The atomic partial charges of each
ligand were obtained from the ZINC data base as MOL2 files, and
converted to the PREPI files and the parameter modification files
(frcmod) using the Antechamber module of AmberTools 14 [82].
The tLEAP program of AmberTools 14 was then used to specify
the ff14SB force field [83], the parameters for the ligands and the
Born radii as mbondi3. The complexes were minimized using the
PMEMD.CUDA [84,85] module of AMBER 16 [86] due to the large
size of the systems. Five rounds of optimization were conducted
in an implicit generalized Born solvent (igb = 8), each one consist-
ing of 2500 cycles of steepest descent followed by 7500 conjugate
gradient cycles, were performed as: (i) one step with all heavy
atoms restrained with 500 kcal/mol∙Å2 harmonic force constant,
and (ii) four steps with decreasing restraints on the protein back-
bone atoms with 500, 125, 25 and 1 kcal/mol∙Å2 force constant.
The cut-off for the non-bonded interactions was set to 1000 Å.
The ante-MMPBSA.py [80] module of AmberTools 14 was used to
convert the original topology of the complex and specify the Born
radii as mbondi3, and generate the corresponding topology files for
the complex, receptor and ligand, to be used in the MM/GBSA calcu-
lations. TheMMPBSA.py [80] module of AmberTools 14 was used to
calculate the free energy of binding between the protein and the
ligand in the complex after the minimization cycle. The generalized
Born method was used (&gb namelist) with implicit generalized
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Born solvent model (igb = 8) and 0.1 M ionic strength (saltcon = 0.1).
The solvent accessible surface area was computed with the LCPO
algorithm [87]. Decomposition of the pairwise interactions was
generated (&decomp namelist), with discrimination of all types of
energy contributions (idecomp = 4) for the whole residues
(dec_verbose = 0).

2.8. Analysing the similarity between the top ten hits

We analysed the 10 best binders in order to identify which
common structural features could be used as a basis for searching
similar drugs in the future. We performed this structural search
using the FindMCS module from RDKit 2016.03.5 [https://github.-
com/rdkit/rdkit]. The parameter ringMatchesRingOnly was
switched to True, so that the aliphatic carbon chains would not
be matched with aromatic rings. We analysed all ten molecules
and every pair combination. Furthermore, we calculated the Tani-
moto similarity with the DataStructs.FingerprintSimilarity module
to quantify the similarity of molecules in each pair.
3. Results and discussion

3.1. Cryo-EM structure of spike glycoprotein

We initially analysed the cryogenic electron microscopy (cryo-
EM) structure in the closed conformation (PDB ID: 6XVV). This
choice was made because our objective was to block the viral infec-
tion mechanism by over-stabilizing the closed conformation to
suppress the protein’s biological activity. Despite missing some
loops on the surface, the cryo-EM structure had a sufficiently high
resolution and structural integrity inside the tunnel for virtual
screening with CaverDock. Because the goal was to block large con-
formational changes of the s-glycoprotein trimer, we ranked the
best binding drugs based on both their overall binding energies
and the extent of their contacts with all three monomeric units.
Three distinct clusters of drugs with binding profiles showing clear
energy minima were identified, each binding to a different region
of the tunnel (Fig. 3). The first cluster consisted of drugs binding
in the region immediately behind the first bottleneck of the sub-
unit S1 gorge, between 12 Å and 21 Å from the trimer’s surface.
Since this region is immediately behind the tunnel’s second tight-
est bottleneck, we hypothesise that drugs in this cluster are flexible
enough to cross that narrow part of the tunnel and then undergo a
conformational change to adopt an optimal binding conformation.

The second and smallest cluster of drugs binds in the middle of
the tunnel. Although we consider this group to be a cluster, the
binding positions of the drugs at the extremes of the cluster differ
by 10 Å: ZINC000004099004 binds 26 Å from the surface, while
ZINC000008214470 binds at 36 Å. The final region of the tunnel
is also the most populated; 99.5% of the drugs tested in the virtual
screen bind most strongly in its deepest third, between 45 Å and
65 Å from the surface. All the top ten drugs identified in this study
(Fig. 2) belong to this final cluster and have consistently lower
binding energies than any drug binding preferentially in the other
two regions. Besides, most of the drugs with the lowest binding
energies belong to the cluster binding at the position 3 (Electronic
Supplementary Information ESI – Energy plots folder (https://
loschmidt.chemi.muni.cz/data/caverdock/pinto_2021_suppl/). The
profile of the tunnel in this region is narrower than in the other
tunnel regions.

3.2. The s-glycoprotein dynamical ensemble

The D. E. Shaw research institute studied the dynamical ensem-
ble of the s-glycoprotein by performing a 10 ms MD simulation
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starting from the closed cryo-EM structure mentioned above
(PDB ID: 6VXX). This simulation became stable after 6 ms, as shown
by the root-mean-square deviation (RMDS) plot (SI-Fig. 1). Due to
the s-glycoprotein’s high flexibility, the cryo-EM structure lacks
several parts of its sequence, causing several segments to be seem-
ingly disconnected from the rest of the structure. Unfortunately,
during the MD simulation, two fragments corresponding to resi-
dues 447–470 in chains A, B and C in the cryo-EM structure numer-
ation (PDB ID: 6VXX) detached themselves from their correct
positions and drifted to different locations within the structure.
These events are responsible for the two spikes seen in the RMSD
plots at around 2.1 and 5.2 ms (SI-Fig. 2). These unrealistically
dynamical fragments, which were originally located on the outer
surface of the s-glycoprotein were excluded from all subsequent
analyses in this work.

We clustered the MD snapshots based on the RMSD of the gorge
residues to obtain diverse but biologically relevant conformations
of the s-glycoprotein. The obtained clusters are ranked in terms
of their populations. The most populated cluster, s1, dominated
almost the entire second half of the trajectory (SI-Fig. 1). The mean
RMSD of the gorge residues in this cluster was 3.46 ± 0.13 Å, which
is close to the average value for the entire simulation (3.66 ± 0.3
8 Å) (SI-Fig. 3). Conversely, the least populated cluster (s7) had
RMSD values indicating that it remained close to its starting struc-
ture (1.62 ± 0.69 Å). Representative structures of the clusters (SI-
Fig. 3) and their tunnels (SI-Figs. 5 and 6) were also obtained,
enabling further analysis (SI-Fig. 3).

CaverDock calculations were performed using representative
structures of the 5 most populated clusters in the same way as
described for the cryo-EM structure (Fig. 2). Each tunnel had a
unique profile, but in all cases, the narrowest section was in the
deepest region of the tunnel, close to the S2 subunit. The vast
majority of the ligands have their lowest binding energies in this
region (Fig. 3). This was expected given that this region resembles
a binding pocket with many possible molecular interactions. The
sole exception is the most populated state, s1, for which the major-
ity of the ligands have their lowest binding energies in the middle
of the tunnel (Fig. 2). The tunnel in this state is slightly wider than
in the other states, making it difficult for ligands to form contacts
with all three monomers. The tendency for the binding energies
of drugs to be lowest immediately before or after a bottleneck
was seen for all states.

3.3. Principal Component analysis (PCA)

Multivariate statistical analyses were used to: (i) comprehend
the large data sets obtained from the CaverDock calculations, (ii)
establish structure–activity relationships, and (iii) select the best
potential drug candidates. Two statistically significant models
were generated by PCA using the CaverDock results obtained using
the set of 4358 ligands and six protein states. The data used in the
PCA were the minimum binding energies for each drug along the
trajectory and the proportions of the trajectory during which the
docked ligand was in contact with one, two, and all three individ-
ual subunits of the s-glycoprotein trimer, expressed as
percentages.

The first PCA model (PCA-1) used 24 variables: 3 related to the
minimum binding energies for each protein state, and 3 quantify-
ing the percentages of the trajectory during which the drug was in
contact with 1, 2, and 3 units of the trimeric s-glycoprotein. Ten
statistically significant principal components were obtained, col-
lectively explaining 98% of the variation in the data. The second
model, PCA-2, was generated using 12 variables representing the
energy minima and the percentages of each trajectory during
which the drug was in contact with all three monomeric units of
the s-glycoprotein trimer for each of the six studied protein states.
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Fig. 2. Tunnels in the six protein states showing the regions where the drugs bind with the lowest binding energy. Top: Visualization of the tunnel used for virtual screening
in the six protein states analysed with CaverDock. These states are the cryo-EM structure (red) and 5 representative structures (s1 in orange, s2 in green, s3 in blue, s4 in
purple and s5 in pink) obtained by clustering the results of an MD simulation. Yellow spheres in the tunnels indicate the centre of mass of each drug when bound at the
location where it binds most strongly. The plots below each structure show the corresponding tunnel profiles (in Å) using solid lines. Each black dot indicates the position
where one drug binds most strongly together with the corresponding binding energy in kcal/mol. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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This model yielded only two principal components that explained
85% and 8% of the variation in the data, respectively. Because it had
only two principal components, this model was easier to interpret
than the first. The top hits predicted by the two models were very
similar, so only the results obtained with the simpler model 2 will
be discussed further. By inspecting the distribution of the docked
compounds in the 2D space spanned by the first two principal
components (Fig. 4), the compounds interacting most strongly
with all three subunits of the spike protein were identified (ESI -
pml_sessions/session-6vxx). Such compounds are most likely to
modify the conformational behaviour of the s-glycoprotein and
thus affect its biological function. The distribution of the 12 vari-
ables used to cluster the ligands is shown at the bottom of Fig. 4.

3.4. Partial least squares analysis (PLS)

A PLS analysis was performed to correlate the minimum bind-
ing energies for each ligand from the CaverDock calculations with
the molecular descriptors of the docked ligands. Binding energies
calculated for all six states of the s-glycoprotein were considered
simultaneously using a single PLS model. The initial model, PLS-
1, used 1326 independent variables and consisted of four principal
components collectively explaining 87% of the variation in the
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data. The correlation coefficient (R2 = 0.87) and cross-validated cor-
relation coefficient (Q2 = 0.87) of this model are identical, suggest-
ing excellent predictive power. To simplify the model, the variable
selection was performed. Specifically, independent variables were
selected based on their position in the loadings plot and variable
importance in the projection (VIP) plot. In this way, the number
of variables was reduced from 1326 to 56. A new model generated
with these variables, PLS-2, had three principal components, with
an R2 of 0.84 and a Q2 of 0.84. Validation by permutation testing
- scrambling the Y variables while keeping the X-matrix
unchanged – indicated that this correlation would be very unlikely
to be observed by chance, as expected given the large number of
observations on which the model is based. The established PLS
models are applicable for predictive purposes. The predictions
can be made even for extensive sets of compounds and can guide
selection of suitable candidates for experimental testing. The PLS
models allow prediction of minimum binding energies solely from
the molecular structure of the ligands. Molecular descriptors can
be generated using the on-line version of MORDRED and inserted
as the variables to the model for fast prediction of binding energies.

The observed minimal binding energies were plotted against
the corresponding predicted values for the starting structure
6VXX and state s4, for which the worst and best fits were obtained,



Fig. 3. Visualization of the tunnel in the cryo-EM structure with the top ten
inhibitors bound to the positions corresponding to their lowest binding energy. The
drugs were ranked by multivariate analyses presented below (Fig. 4). The protein
structure (PDB ID: 6VXX) is shown as a grey ribbon, while the tunnel predicted by
CaverDock is indicated by the red surface. Inhibitors are shown using all-atom
models, coloured by atom type. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

G.P. Pinto, O. Vavra, S.M. Marques et al. Computational and Structural Biotechnology Journal 19 (2021) 3187–3197
respectively (SI-Fig. 7). VIP values were computed to quantify the
relative importance of the chosen molecular descriptors in explain-
ing the differences in the minimum binding energies for all six
states (SI-Fig. 8). The most influential variables were FMF (a molec-
ular framework ratio descriptor of the shape of the molecule), Bal-
abanJ (Balaban’s J graph index, which describes the molecular
structure of small molecules), piPC (a path count descriptor of
molecular topology), MWC and SRW04 (walk count descriptors,
the latter of which relates to self-returning walks), VR (a nor-
malised Randic-like eigenvector-based index derived from the Bar-
ysz matrix, weighted by atomic number), and VE (the average
coefficients of the last eigenvectors of the Barysz matrix, weighted
by van der Waals’ volume). Detailed information about all molec-
ular descriptors computed using MORDRED is available at
https://mordred-descriptor.github.io/documentation/master/de-
scriptors.html and in the book 3D QSAR in Drug Design [39].
3.5. Top ranked drugs

We obtained a ranking of the best binders from the PCA and
selected the top ten for further analysis (Fig. 5). These ligands
had consistently low binding energies in all of the studied protein
structures and exhibited a high percentage of contacts with all
three monomeric units of the s-glycoprotein trimer during the
CaverDock simulations. Although drugs in clusters S1, S3, and S5
occasionally formed contacts with only one monomer, these cases
represented less than 10% of the corresponding trajectory. This
ranking reflects our assumption that strong interactions with all
three monomers in different states of the trimer will reduce the tri-
mer’s capacity for conformational change, which is essential for the
biological activity of the spike glycoprotein. We also found that
multivariate statistical methods were needed to rank the drugs
meaningfully. For example, a simple ranking of the drugs based
on their minimum binding energies would not have placed Dacla-
tasvir (Fig. 5) in the top ten because its binding energies for all six
conformations are higher than those of some drugs that were not
selected. It was thus clear that interaction with all three monomers
was weighted strongly in the ranking of the drugs; for three of the
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studied protein states, Daclatasvir was observed in contact with
two and three subunits of the s-glycoprotein trimer, and in the
remaining three states (clusters s1, s3 and s5) it was in contact
with two or three subunits for at least 96.4% of the trajectory (SI-
Table 1).

Among the drugs ranked in the top ten was a dye for cataract
surgery (ZINC000169289767), three drugs currently used as antivi-
ral agents against the hepatitis C virus (ZINC000164760756,
ZINC000936069565, ZINC000068204830), an antifungal
(ZINC000028639340), a microsomal triglyceride transfer protein
inhibitor (ZINC000027990463), a hepatoprotective drug for
chronic hepatitis (ZINC000096015174), an agent used to treat
squamous cell carcinoma of the head and neck
(ZINC000003934128), a vasoconstrictor used to treat migraines
(ZINC000003978005), and an agent for treating cerebral and
peripheral vascular events that are also used in Alzheimer’s studies
to inhibit c-secretase (ZINC000003995616).

The top ten ranked drugs were analysed further. We re-scored
the binding energies of the respective drugs with the protein using
a very robust, but computationally more demanding method, the
molecular mechanics/generalized Born solvent accessible surface
area (MM/GBSA) [80,81]. For this purpose, we took the
minimum-energy complexes obtained with CaverDock on the
cryo-EM structure, 6VXX. These complexes were minimized using
a classical MM force field (AMBER ff14SB83), and we calculated the
total free energy of binding with the MM/GBSA approach, DGbind

Total,
as well as the DGbind individual contributions from the individual
residues. The results showed that most of these drugs can interact
with the protein with very strong and favourable energies
(SI-Tables 3 and 4). Daclatasvir, Dihydroergocristine and
Lomitapide were leading the list in terms of the DGbind

Total values.
The only exception was Trypan blue, which showed an unfavour-
able positive DGbind

Total value in that complex. This suggests the need
for larger conformational changes on the protein (with respect to
the 6VXX structure) to accommodate this molecule in such a
position. If we observe Fig. 5, we find that using CaverDock, Trypan
blue scored the best with cluster S2 and not with 6VXX, which is in
agreement with our explanation. We recommend prioritizing the
experimental testing according to the new DGbind

Total scores
(SI-Table 3).
3.6. Comparison with previously published virtual screening studies

There were other studies tackling the s-glycoprotein as a whole
or its receptor-binding domain RBD (Table 1). Trezza et al. used
short classical MD simulations to relax the system and subse-
quently perform virtual screening with the FDA-approved drugs
from Drugbank [88]. Additionally, the authors performed super-
vised MD simulations to study the binding of the s-glycoprotein
RBD to the human angiotensin-converting enzyme 2, and steered
MD simulations with two drugs complexed with the RBD of the
s-glycoprotein. They present a top ten binding drugs: Lumacaftor,
Paritaprevir, Dihydroergotamine, Trypan blue, Midostaurin, Dihy-
droergotoxine, Simeprevir, Lurasidone, Spinosyn D, and Olaparib.
We notice that three of these drugs (Dihydroergotamine, Trypan
blue and Simeprevir) were included among top ten hits in our
study. Panda et al. performed virtual screening with anti-viral
compounds obtained from the ChEMBL database against the three
targets: Mpro, RBD, and s-glycoprotein. The authors then performed
MD simulations to validate their best binding drug, pc786, which is
still in the clinical trials. This study yielded a top ten for each tar-
get, for the RBD they prioritized the drugs: pc786, Tegavivint, Mar-
aviroc, Doxazosin, Dolutegravir, JNJ-49095397, Temsavir,
Lorecivivint, VP-14637, and Tecovirimat. On the other hand, fol-
lowing top-ten drugs were selected for the whole s-glycoprotein:

https://mordred-descriptor.github.io/documentation/master/descriptors.html
https://mordred-descriptor.github.io/documentation/master/descriptors.html


Fig. 4. Scores and loadings plots of the first two principal components of the second PCA model. Top: Scores plot of the first two principal components showing the
distributions of all studied compounds based on their minimal binding energies and number of contacts with the three subunits of the spike glycoprotein. The top hits were
selected from this plot. The positions of the compounds in the 2D space are determined by the locations of variables in the loadings plot (bottom). Compounds showing the
strongest binding to all three units in the different states of the spike protein are located on the left of the plot (red box). Bottom: Loadings plot of the first two principal
components showing the distribution of the variables in the 2D space. This plot corresponds to the scores plot presented above. The variables describing the minimal binding
energies calculated for the six different s-glycoprotein states are on the right, while those describing the contact percentage with the three individual subunits of the spike
protein trimer are located on the left. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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pc786, Lorecivivint, Tegavivint, Maraviroc, Itraconazole, Dolute-
gravir, Troglitazone, Elvitegravir, Danirixin, and Linagliptin.

Another virtual screening study targeting the RBD by Kalathiya
et al. yielded the drugs that the authors deemed good binders: Chi-
tosan, Rapamycin, Paclitaxel, Selamectin, Everolimus, Ritonavir,
and Danoprevir. Wei et al. used the FDA-approved drugs dataset
from DrugBank as Trezza’s publication and natural compounds
from Traditional Chinese Medicine Systems Pharmacology. They
performed virtual screening of these two datasets on RBD and
ran short MD simulations on the best-binding drugs. Their top
ten binding drugs for the FDA-approved dataset: Digitoxin,
Nilotinib, Lemborexant, Raltegravir, Antrafenine, Flunitrazepam,
Entrectinib, Flavin adenine dinucleotide, Pazopanib, and Loxapine.
Awad et al. studied the same drug dataset. The methodology
developed by the authors was however slightly different and
yielded different top ten candidates: Silodosin, Ebastine, Salazosul-
fadimidine, Indacaterol, Chidamide, Regorafenib, Tasosartan,
Bagrosin, Lumacaftor, and Risperidone. The authors target the
RBD only with classical docking and implemented absorption, dis-
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tribution, metabolism, and excretion values in their workflow. The
authors also used MM/GBSA calculations in order to validate their
best binding drugs and suggest eight drugs as promising leads.
Romeo et al. targeted the s-glycoprotein with molecular docking
and MD simulations in order to confirm the best binding drug’s
conformations. Their top ten list of candidate drugs includes:
31 h-phthalocyanine, Hypericin, Dihydroergotamine, JNJ-
10311795, TZ2PA6, Quarfloxin, TMC-647055, Tadalafil, and
Tepotinib. The drug Dihydroergotamine shows the overlap with
our study and Trezza’s study. Another experimental study analysed
in depth 17 hits for drug repurposing screening for Covid19 from a
library of 1425 43 FDA-approved compounds and clinical candi-
dates. Three of these drugs were not part of our study, as they were
investigational, pre-clinical and a dietary supplement. The other 14
were: Amiodarone, Bosutinib, Clofazimine, Domperidone,
Entecavir, Fedratinib, Gilteritinib, Ipratropium Bomide, Lomitapide,
Metoclopramide, Niclosamide, S1RA, Thioguanine and Verapamil.
We conclude that there is an overlap of three drugs (Dihydroergo-
tamine, Trypan blue and Simeprevir) from one study and one drug



Fig. 5. Top ten inhibitors predicted using CaverDock simulations and machine learning. Drug names and labels are shown in the first column; respective chemical structures
are shown below the table. Binding energies per drug for each protein state – cryoEM 6VXX and MD states S1-S5 – are reported in kcal/mol. The bar plots under each binding
energy represent the percentage of the corresponding trajectory during which these compounds formed contacts with one monomer (red), two monomers (yellow), and three
monomers (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 (continued)
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Table 1
Examples of other previously published virtual screening studies that targeted the s-
glycoprotein or its receptor-binding domain.

Virtual screening
study

Methods Targets

Trezza et al. [89] MD simulations RBD
Panda et al. [90] Molecular docking; MD

simulations
Mpro; RBD;
s-glycoprotein

Kalathiya et al. [91] Molecular docking; MD
simulations

RBD

Wei et al. [92] Molecular docking s-glycoprotein
Awad et al. [93] Molecular docking; MD

simulations; MM/GBSA
RBD

Romeo et al. [47] Molecular docking; MD
simulations

s-glycoprotein

Mirabelli et al. [94] In-vitro high throughput assay Vero E6, Caco-2,
LNcaP and Huh7
cells

MD – Molecular dynamics simulations, MM/GBSA – Molecular mechanics with
generalised Born and surface area solvation, RBD – Receptor binding domain,
Mpro – Main protease.
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(Dihydroergotamine) from another study with our results, even
though different protocols were employed. Most importantly,
there is an overlap of one drug (Lomitapide) with the experimental
work done by Mirabelli et al. [94], showing that this kind of prior-
itization should be seen as only that, and not the absolute final data
in drug repurposing studies. We stress that the results from theo-
retical calculations provide prioritization of the potential drugs for
the experimental testing but should not be seen as the replace-
ment for the laboratory tests by any means.

3.7. Similarity between the top ten binders

Additionally, we have analyzed the most common substruc-
tures with the list of our top ten binders using the MCS search
implemented in RDKit (SI-Table 5). The analysis revealed that all
ten molecules share no common sub-structure. Analysis of all
molecule pairs from the data set revealed that the largest common
substructure is between Dihydroergotamine and Dihydroer-
gocristine (43 atoms; Tanimoto similarity score 0.98), followed
by the pair of Glecaprevir and Dihydroergotamine (15 atoms; Tan-
imoto similarity score 0.70), and Glecaprevir and Dihydroer-
gocristine (15 atoms; Tanimoto similarity score 0.71). Other pairs
showed the common substructures of less than 15 atoms. We
report the fingerprints and common substructures in SMARTS for-
mat in SI-Table 5.

4. Conclusions

Here we describe a computational workflow that was used to
perform virtual screening based on CaverDock trajectories for
4358 drug molecules and six conformational states of the s-
glycoprotein of SARS-CoV-2. This analysis involved a total of
26,148 calculations. Each calculation took a real-time average of
37 min to complete on 8 CPUs, making the method sufficiently fast
for thorough virtual screening. It should be noted that the length of
the tunnel in the studied s-glycoprotein structures ranges between
57 Å and 77 Å, making it several times longer than typical enzyme
tunnels. However, this long tunnel can serve as a good representa-
tive of the structural features present in transmembrane proteins.
We used a machine learning to identify the most promising drug
candidates based on their strength of binding inside the tunnel
and their likely ability to prevent the s-glycoprotein trimer from
undergoing functionally necessary conformational change.
Although we only selected 10 inhibitors here for the sake of brev-
ity, this number could easily be increased. CaverDock is fast
enough to analyse even higher number of snapshots to cover the
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protein’s conformational space more comprehensively or to exam-
ine a significantly greater number of ligands. Importantly, this
workflow is currently being made available on the CaverWeb tool
to enable automated virtual screenings of the ZINC globally
approved drugs dataset. This will enable researchers around the
world to perform virtual screening and data analysis in the same
way as reported here, in a user-friendly manner. It will also be pos-
sible to export the results as comma separated value (CSV) files
and/or Pymol sessions to be opened and processed locally by the
user. The procedure will be applicable to any protein with an avail-
able tertiary structure containing tunnels or channels and should
thus find diverse applications in drug design, protein engineering,
and metabolic engineering. We are currently implementing this
virtual screening platform into CaverWeb [57] to allow the com-
munity to perform similar automated calculations against other
target proteins using the approved drug datasets.
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