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Identification of the differ
ential expression of
genes and upstream microRNAs in small cell lung
cancer compared with normal lung based on
bioinformatics analysis
Xiuwei Li, MDa, Chao Ma, MDb, Huan Luo, MDc, Jian Zhang, MDa, Jinan Wang, MDa, Hongtao Guo, MDa,∗

Abstract
Small cell lung cancer (SCLC) is one of the most lethal cancer, mainly attributing to its high tendency to metastasis. Mounting
evidence has demonstrated that genes and microRNAs (miRNAs) are related to human cancer onset and progression including
invasion and metastasis.
An eligible gene dataset and an eligible miRNA dataset were downloaded from the Gene Expression Omnibus (GEO) database

based our screening criteria. Differentially expressed genes (DE-genes) or DE-miRNAs for each dataset obtained by the R software
package. The potential target genes of the top 10 DE-miRNAs were predicted by multiple databases. For annotation, visualization
and integrated discovery, Metascape 3.0 was introduced to perform enrichment analysis for the DE-genes and the predicted target
genes of the selected top 10 DE-miRNAs, including Pathway and Process Enrichment Analysis or protein–protein interaction
enrichment analysis. The intersection of predicted target genes and DE-genes was taken as the final DE-genes. Then apply the
predicted miRNAs-targets relationship of top 10 DE-miRNAs to the final DE-genes to gain more convinced DE-miRNAs, DE-genes
and their one to one relationship.
GSE19945 (miRNAmicroarray) and GSE40275 (gene microarray) datasets were selected and downloaded. 56 DE-miRNAs and

861 DE-genes were discovered. 297 miRNAs-targets relationships (284 unique genes) were predicted as the target of top 10
upregulating DE-miRNAs. 245 miRNAs-targets relationships (238 unique genes) were identified as the target of top 10
downregulating DE-miRNAs. The key results of enrichment analysis include protein kinase B signaling, transmembrane receptor
protein tyrosine kinase signaling pathway, negative regulation of cell differentiation, response to growth factor, cellular response to
lipid, muscle structure development, response to growth factor, signaling by Receptor Tyrosine Kinases, epithelial cell migration,
cellular response to organic cyclic compound,Cell Cycle (Mitotic), DNAconformation change, cell division, DNA replication, cell cycle
phase transition, blood vessel development, inflammatory response, Staphylococcus aureus infection, leukocyte migration, and
myeloid leukocyte activation. Differential expression of genes-upstream miRNAs (RBMS3-hsa-miR-7–5p, NEDD9-hsa-miR-18a-
5p, CRIM1-hsa-miR-18a-5p, TGFBR2-hsa-miR-9–5p, MYO1C-hsa-miR-9–5p, KLF4-hsa-miR-7–5p, EMP2-hsa-miR-1290,
TMEM2-hsa-miR-18a-5p, CTGF-hsa-miR-18a-5p, TNFAIP3-hsa-miR-18a-5p, THBS1-hsa-miR-182–5p, KPNA2-hsa-miR-
144–3p, GPR137C-hsa-miR-1–3p, GRIK3-hsa-miR-144–3p, and MTHFD2-hsa-miR-30a-3p) were identified in SCLC.
RBMS3, NEDD9, CRIM1, KPNA2, GPR137C, GRIK3, hsa-miR-7–5p, hsa-miR-18a-5p, hsa-miR-144–3p, hsa-miR-1–3p along

with the pathways included protein kinase B signaling, muscle structure development, Cell Cycle (Mitotic) and blood vessel
development may gain a high chance to play a key role in the prognosis of SCLC, but more studies should be conducted to reveal it
more clearly.

Abbreviations: CRIM1 = Cysteine Rich Transmembrane BMP Regulator 1, CTGF = Cellular Communication Network Factor 2,
DE = differentially expressed, EMP2 = epithelial membrane protein 2, GEO = Gene Expression Omnibus, GO = gene ontology,
GPR137C = G protein-coupled receptor 137C, GRIK3 = glutamate ionotropic receptor kainate type subunit 3, KEGG = Kyoto
encyclopedia of genes and genomes, KLF4 = Kruppel like factor 4, KPNA2 = Karyopherin subunit alpha 2, miR =microRNA, miRNA
= microRNA, MTHFD2 = methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate cyclo-
hydrolase, MYO1C = myosin IC, NCBI = National Center for Biotechnology Information, NEDD9 = neural precursor cell expressed,
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developmentally down-regulated 9, NSCLC = non-small-cell lung carcinoma, RBMS3 = RNA binding motif single stranded
interacting protein 3, SCLC = small cell lung cancer, TGFBR2 = transforming growth factor beta receptor 2, THBS1 =
thrombospondin 1, TMEM2 = cell migration inducing hyaluronidase 2, TNFAIP3 = TNF alpha induced protein 3.
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1. Introduction

Small cell lung cancer (SCLC) is a high grade poorly differentiated
neuroendocrine carcinoma of the lung, which represents
approximately 15% of bronchogenic carcinomas and up to
25% of lung cancer deaths.[1,2] SCLC is associated with early
metastasis and poor patient survival.[3] Regardless of stage, the
current prognosis for patients with SCLC is unsatisfactory
despite improvements in diagnosis and therapy made during the
past 25 years. Without treatment, SCLC has the most aggressive
clinical course of any type of pulmonary tumor, with median
survival from diagnosis of only 2 to 4 months.[2] Overall survival
in SCLC is dismal with a 5-year survival of ∼2% for extensive
stage metastatic disease, which comprises 70% of cases at initial
diagnosis.[4] SCLC is more responsive to chemotherapy and
radiation therapy than other cell types of lung cancer; however, a
cure is difficult to achieve because SCLC has a greater tendency to
be widely disseminated by the time of diagnosis.[2]

In view of the potentially limited impact of the further
developments of standard therapeutic regimens on patient
survival, the development of targeted therapies based on a better
understanding of the molecular basis of the disease is urgently
needed.[5] At the genetic level, SCLC appears to be very
heterogeneous, although somatic mutations targeting classical
oncogenes and tumor suppressors, such asMYC, TP53, and RB1
have been reported, more genes involved in SCLC are waiting for
us to explore furtherer.[5] MicroRNAs (miRNAs) are a group of
small endogenous single-stranded non-coding RNAs, ∼21 to 25
nucleotides in length.[6] MiRNAs can negatively modulate gene
expression via binding to the 30-untranslated region of messenger
RNA (mRNA), thereby leading to direct degradation of mRNA
or suppression of protein translation. Through this approach,
miRNAs are involved in regulation of many biological processes
such as proliferation, apoptosis, cell cycle and differentiation, and
DNA repair.[7] Over the past decades, mounting studies have
demonstrated that miRNA is frequently abnormally expressed in
various types of cancer including SCLC, and the dysregulation of
miRNA plays a paramount role in tumorigenesis, invasion and
metastasis.[8,9] However, research exploring Differential expres-
sion miRNAs in SCLC based on large-scale human tissues are
rarely seen.
With the rapid development of gene chip and RNA sequencing

technologies, Gene Expression Omnibus (GEO) gradually plays
an important role in the bioinformatic analysis.[10] It can provide
us with novel clues for discovering reliable genes and miRNAs. In
the present study, we explore the differential expression of genes
and miRNAs in SCLC and normal lung tissue and the potential
molecular mechanisms related to them based on GEO database
and comprehensive bioinformatic analysis.
2. Materials and methods

2.1. MiRNA and gene microarrays

In the discovery step, we log in to the National Center for
Biotechnology Information (NCBI) GEO database (https://www.
2

ncbi.nlm.nih.gov/geo) to look for the microarrays we need.
We only considered datasets that compared the miRNA and gene
expression in SCLC tissue with normal lung tissue. Besides,
the containing of samples in such datasets should be over forty.
The titles and abstracts of these datasets were screened, and the
full information of the datasets of interest was further evaluated.
We will choose one most suitable miRNA and gene microarrays
respectively.

2.2. Screening for DE-miRNAs and DE-genes

Data were normalized using the normalizeBetweenArray func-
tion from R package “LIMMA” from the bioconductor project.
The miRNA and gene differential expression analysis were
conducted using the limma software package in the Bioconductor
package (http://www.bioconductor.org/). The related codes were
put into R, and the DE-miRNAs and DE-genes in SCLC tumor
samples compared to normal lung samples were analyzed
through the limma package. FDR (False Discovery Rate) adjusted
P-value< .001 and jfold change (FC)j>2 were set as the
thresholds for identifying DE-miRNAs and DE-genes.
The upregulated or downregulated DE-miRNAs and DE-genes
were sorted according to the size of their jfold change (FC)j.

2.3. Prediction of target genes for DE-miRNAs

The potential target genes of the top 10 most upregulated and
downregulated DE-miRNAs were obtained from the intersection
of prediction of miRTarBase Release 7.0 (http://mirtarbase.mbc.
nctu.edu.tw), TargetScan Release 7.2 (http://www.targetscan.
org) and miRDB Version 5.0 (http://mirdb.org). miRTarBase
Release 7.0 is an experimentally validated microRNA-target
interactions database, which is updated on September 15, 2017.
TargetScan Release 7.2 updated on March 2018, and it is a web
server that predicts biological targets of microRNAs by searching
for the presence of sites that match the seed region of each
miRNA. miRDB Version 5.0 released on August 2014, it is an
online database for miRNA target prediction and functional
annotations.

2.4. Enrichment analysis

The monthly updated database for annotation, visualization and
integrated discovery (Metascape 3.0, http://metascape.org) was
introduced to perform enrichment analysis for the DE-genes and
the predicted target genes of the selected 20 DE-miRNAs,
including Pathway and Process Enrichment Analysis or Protein-
protein Interaction Enrichment Analysis. All genes in the genome
have been used as the enrichment background. Terms with a P-
value< .01, a minimum count of 3, and an enrichment factor>
1.5 (the enrichment factor is the ratio between the observed
counts and the counts expected by chance) are collected and
grouped into clusters based on their membership similarities.
More specifically, P-values are calculated based on the
accumulative hypergeometric distribution,[11] and q-values are
calculated using the Banjamini–Hochberg procedure to account

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
http://www.bioconductor.org/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.targetscan.org/
http://www.targetscan.org/
http://mirdb.org/
http://metascape.org/
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for multiple testings.[12] Kappa scores[13] are used as the
similarity metric when performing hierarchical clustering on
the enriched terms, and sub-trees with a similarity of >0.3 are
considered a cluster. The most statistically significant term within
a cluster is chosen to represent the cluster. For each given gene list,
protein–protein interaction enrichment analysis has been carried
out with the following databases: BioGrid6, InWeb_IM7,
OmniPath8. The resultant network contains the subset of
proteins that form physical interactions with at least one other
member in the list. If the network contains between 3 and 500
proteins, the Molecular Complex Detection (MCODE) algo-
rithm9 has been applied to identify densely connected network
components. Pathway and process enrichment analysis has been
applied to each MCODE component independently.
2.5. Conjoint analysis of DE-miRNAs and DE-genes

In this step, due to the special regulation mechanism of miRNAs,
we intersect the upregulated DE-genes and the predicted target
genes of top 10 most downregulated DE-miRNAs, apply the
prediction miRNAs-targets relationship of top 10 most down-
regulated DE-miRNAs to the intersection. Then, intersect the
downregulated DE-genes and the predicted target genes of top 10
most upregulated DE-miRNAs, apply the prediction miRNAs-
targets relationship of top 10 most upregulated DE-miRNAs to
the intersection. In order to gain more convincing DE-miRNAs,
DE-genes, and their one to one relationship.
2.6. Statistical analysis

The results were shown as mean±SD. Differences between two
groups were estimated using unpaired Student’s t test. A two-
tailed value of P< .05 or FDR adjusted P-value< .05 was
considered as statistically significant.
3. Results

3.1. Microarrays

We found eight datasets regarding normal lung tissue compared
with SCLC tissue. But six of them have more smaller simply size,
so finally, only GSE19945 and GSE40275 datasets were selected
to further study. The dataset GSE19945 was based on the
platform of GPL9948 (Agilent Human 0.6K miRNAMicroarray
G4471A), contained 8 human normal lung samples and 35
human SCLC samples. GSE40275 is a GPL15974 platform
(Human Exon 1.0 ST Array)-based dataset, contained 43 human
normal lung samples and 15 human SCLC samples (Table 1).
3.2. Identification of DE-miRNAs and DE-genes

To identify DE-miRNAs and DE-genes from GSE19945
and GSE40275, respectively, we conducted normalized and
Table 1

Basic information of the selected datasets.

Datasets (type) Platform

The number of
human normal
lung samples

The
huma

lung ca

GSE19945 (miRNA microarray) GPL9948 8
GSE40275 (gene microarray) GPL15974 43

3

differential expression analysis using limma software package,
data before and after normalization were shown in Figure 1.
Based on this analysis and our screening criteria, a total of 56
miRNAs were found to be significantly differentially expressed in
human SCLC samples when compared to human normal lung
samples, including 24 upregulated and 32 downregulated
miRNAs. Furthermore, amount to 861 significantly differentially
expressed genes were discovered, of which 350 upregulated and
511 downregulated. For better visualization, heatmap of DE-
genes were provided in Figure 2, volcano plots of these DE-
miRNAs and DE-genes were provided in Figure 3, the top 20
most upregulated and top 20 most downregulated miRNAs and
genes were ranked by jfold change (FC)j in Tables 2–5.
3.3. The target genes of DE-miRNAs

The top 10 upregulated DE-miRNAs were hsa-miR-9–3p, hsa-
miR-1290, hsa-miR-7–5p, hsa-miR-183–5p, hsa-miR-130b-3p,
hsa-miR-9–5p, hsa-miR-301b-3p, hsa-miR-96–5p, hsa-miR-
182–5p, and hsa-miR-18a-5p. The top 10 downregulated DE-
miRNAs were hsa-miR-144–5p, hsa-miR-1–3p, hsa-miR-30a-
3p, hsa-miR-144–3p, hsa-miR-486–5p, hsa-miR-451a, hsa-miR-
126–5p, hsa-miR-145–5p, hsa-miR-145–3p, hsa-miR-126–3p.
We searched for the above miRNAs target genes in databases
miRTarBase, TargetScan and miRDB respectively. The genes
predicted by the three databases at the same time were identified
as target genes for DE-miRNAs. Finally, 297 miRNAs-targets
relationships (284 unique genes) were simultaneously predicted
by three databases as the target of top 10 upregulating DE-
miRNAs. In the same way, 245 miRNAs-targets relationships
(238 unique genes) were identified as the target of top 10
downregulating DE-miRNAs. For better visualization, miRNAs-
genes network of these DE-miRNAs were provided in Figure 4,

4. Enrichment analysis

4.1. Pathway and process enrichment analysis

For the predicted target genes of DE-miRNAs and the DE-genes,
pathway and process enrichment analysis have been carried out
with the following ontology sources: Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathway, Gene Ontology (GO)
Biological Processes, Reactome Gene Sets, Canonical Pathways,
and CORUM. The top 5 Pathway and Process Enrichment
Analysis for target genes of the 10 upregulated DE-miRNAs
included protein kinase B signaling, transmembrane receptor
protein tyrosine kinase signaling pathway, negative regulation of
cell differentiation, response to growth factor, cellular response
to lipid. All of the above belong to the GO Biological Processes
category. The top 5 Pathway and Process Enrichment Analysis
for target genes of the top 10 downregulated DE-miRNAs
included muscle structure development, response to growth
factor, Signaling by Receptor Tyrosine Kinases, epithelial cell
migration, cellular response to organic cyclic compound. Except
number of
n small cell
ncer samples Download web link

35 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19945
15 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40275

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19945
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40275
http://www.md-journal.com
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Figure 1. Normalization of datasets GSE19945 (A) and GSE40275 (B). (A1 and B1) Data before normalization; (A2 and B2) data after normalization.
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for Signaling by Receptor Tyrosine Kinases (Reactome Gene Sets
category), all above belong to the GO Biological Processes
category. The top 5 Pathway and Process Enrichment Analysis
for the upregulated DE-genes included Cell Cycle (Mitotic), DNA
conformation change, cell division, DNA replication and cell
cycle phase transition. They all belong to the GO Biological
Processes category, except that Cell Cycle (Mitotic) belongs to
Reactome Gene Sets category. The top 5 Pathway and Process
Enrichment Analysis for the downregulated DE-genes included
blood vessel development, inflammatory response, Staphylococ-
cus aureus infection, leukocyte migration and myeloid leukocyte
activation. Only S aureus infection belongs to the KEGGPathway
category, others belong to GO Biological Processes. For more
details on Pathway and Process Enrichment Analysis, see
Tables 6–9. To further capture the relationships between the
terms, a subset of enriched terms have been selected and rendered
as a network plot, where terms with a similarity >0.3 are
connected by edges. We select the terms with the best P-values
from each of the 20 clusters, with the constraint that there are no
more than 15 terms per cluster and no more than 250 terms in
total. The networks of enriched terms are visualized using
Cytoscape (Figs. 5 and 6), where each node represents an
enriched term and is colored first by its cluster ID (Fig. 5A1 and
B1, Fig. 6A1 and B1) and then by its P-value (Fig. 5A2 and B2,
Fig. 6A2 and B2).

4.2. Protein–protein interaction enrichment analysis

For the upregulated and downregulated DE-genes, protein–
protein interaction enrichment analysis has been carried out with
4

the following databases: BioGrid, InWeb_IM, OmniPath. The
resultant network contains the subset of proteins that form
physical interactions with at least one other member in the list. If
the network contains between 3 and 500 proteins, the Molecular
Complex Detection (MCODE) algorithm has been applied to
identify densely connected network components. The MCODE
networks identified for the DE-genes have been gathered and are
shown in Figure 7.
Pathway and process enrichment analysis has been applied

to each MCODE component independently, and the three best-
scoring terms by P-value have been retained as the functional
description of the corresponding components, shown inTables 10
and 11 underneath corresponding network plots within Figure 7.
4.3. Conjoint analysis of DE-miRNAs and DE-genes

We got four upregulated and eleven downregulated DE-genes
and their upstream miRNAs in this step. The downregulated
DE-genes and their upstream miRNAs are as below, RBMS3
(RNA Binding Motif Single Stranded Interacting Protein 3)-
hsa-miR-7–5p, NEDD9 (Neural Precursor Cell Expressed,
Developmentally Down-Regulated 9)-hsa-miR-18a-5p, CRIM1
(Cysteine Rich Transmembrane BMP Regulator 1)-hsa-miR-
18a-5p, TGFBR2 (Transforming Growth Factor Beta Receptor
2)-hsa-miR-9–5p, MYO1C (Myosin IC)-hsa-miR-9–5p, KLF4
(Kruppel Like Factor 4)-hsa-miR-7–5p, EMP2 (Epithelial
Membrane Protein 2)-hsa-miR-1290, TMEM2 (Cell Migration
Inducing Hyaluronidase 2)-hsa-miR-18a-5p, CTGF (Cellular
Communication Network Factor 2)-hsa-miR-18a-5p,
TNFAIP3 (TNF Alpha Induced Protein 3)-hsa-miR-18a-5p,
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Figure 2. The heatmap of differentially expressed genes.
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THBS1 (Thrombospondin 1)-hsa-miR-182–5p. We found the
upregulated DE-genes and their upstream miRNAs, KPNA2
(Karyopherin Subunit Alpha 2)-hsa-miR-144–3p, GPR137C (G
Protein-Coupled Receptor 137C)- hsa-miR-1–3p, GRIK3
(Glutamate Ionotropic Receptor Kainate Type Subunit 3)-
5

hsa-miR-144–3p and MTHFD2 (Methylenetetrahydrofolate
Dehydrogenase (NADP+ Dependent) 2, Methenyltetrahydro-
folate Cyclohydrolase)-hsa-miR-30a-3p. The conjoint analysis
was more convinced (Fig. 8). Details are shown in Tables 12
and 13.
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A                                                                                                      B

Figure 3. Volcano plot of the differentially expressed (DE) miRNAs (A) and DE-genes (B). (A) The black dots represent miRNAs that are not differentially expressed
between 8 human normal lung samples and 35 human small cell lung cancer samples, and the red dots and green dots represent the upregulated and
downregulated miRNAs in human small cell lung cancer samples, respectively. (B) The black dots represent genes that are not differentially expressed between 43
human normal lung samples and 15 human small cell lung cancer samples, and the red dots and green dots represent the upregulated and downregulated genes in
human small cell lung cancer samples, respectively.

A                                                                                                              B

Figure 4. miRNAs-genes networks of top 10 upregulated and downregulated DE-miRNAs. (A) The network of the top 10 upregulated DE-miRNAs and their
targets. (B) The network of the top 10 downregulated DE-miRNAs and their targets, because the 10th downregulated DE-miRNA hsa-miR-126-3p cannot find the
same predicted target gene in the databases at the same time, so there is just nine genes in (B). DE=differentially expressed.
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5. Discussion
Small-cell lung carcinoma has long been divided into two
clinicopathological stages, including limited stage and extensive
stage. The stage is generally determined by the presence or
absence of metastases, whether or not the tumor appears limited
to the thorax, and whether or not the entire tumor burden within
the chest can feasibly be encompassed within a single
radiotherapy portal. In general, if the tumor is confined to one
lung and the lymph nodes close to that lung, the cancer is said to
be limited stage. If the cancer has spread beyond that, it is said to
be extensive stage.[14] In patients with extensive stage, median
survival of 6 to 12 months is reported with currently available
therapy, but long-term disease-free survival is rare.[2] Regardless
of stage, the current prognosis for patients with SCLC is
unsatisfactory despite improvements in diagnosis and therapy
made during the past 25 years. Without treatment, SCLC has the
most aggressive clinical course of any type of pulmonary tumor,
with median survival from diagnosis of only 2 to 4 months.
About 10% of the total population of SCLC patients remains free
of disease during the 2 years from the start of therapy, which is
the time period during which most relapses occur. Even these
7

patients, however, are at risk of dying from lung cancer (both
small and non-small cell types).[15] The overall survival at 5 years
is 5% to 10%.[15–18]

In the medicine field, gene therapy is the therapeutic delivery of
nucleic acid into a patient’s cells as a drug to treat disease.[19] The
first attempt at modifying human DNA was performed in 1980
by Martin Cline, but the first successful nuclear gene transfer in
humans, approved by the National Institutes of Health, was
performed in May 1989.[20] The possibility of correcting
defective genes and modulating gene expression through gene
therapy has emerged as a promising treatment strategy for
cancer.[21] Furthermore, the relevance of tumor immune
microenvironment in supporting the oncogenic process has
paved the way for novel immunomodulatory applications of gene
therapy.[21] Gene editing is a potential approach to alter the
human genome to treat genetic diseases, viral diseases, and
cancer.[22–24] The first commercial gene therapy, Gendicine, was
approved in China in 2003 for the treatment of certain
cancers.[25] Finding differential genes in cancerous and normal
tissues is particularly important, but current genetic differences
between SCLC and normal lung have rarely been reported.
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Figure 6. The visualized networks of enriched upregulated and downregulated DE-genes. (A) the visualized networks of upregulated DE-genes, where each node
represents an enriched term and is colored first by its cluster ID (A1) and then by its P-value (A2). (B) The visualized networks of downregulated DE-genes, where
each node represents an enriched term and is colored first by its cluster ID (B1) and then by its P-value (B2). DE=differentially expressed.
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miRNAs are defined as small non-coding RNAs with a length
of about 20 to 25 nucleotides, which exert pivotal effects in
various biological processes.[26] miRNAs can regulate gene
expression at post-transcriptional level through 3’-untranslated
region (3’ UTR) pairing with target gene mRNAs.[27] miRNAs
regulate various targets which have critical roles in a wide
spectrum of biological processes, including tumorigenesis and
development, cell proliferation, metastasis, invasion, and apo-
ptosis.[28] therefore, miRNA can be used as a potential and
effective target for the diagnosis and treatment of a variety of
tumors. In addition, the role of miRNA in the diagnosis and
treatment of cancer provides a new strategy in the field of cancer
therapy.[29,30] miR-30a-5p has been reported to inhibit the cell
proliferation, invasion, migration, and autophagy in some types
of tumors.[31,32] Xiang Yang et al found that Inhibition of Beclin-
1 by induction of miR-30a-5p may improve the therapeutic
outcome via resensitizing the drug-resistant cells to chemothera-
py in SCLC.[33] Minting’s team revealed that TSPAN12
promoted chemoresistance of SCLC under the regulation of
miR-495.[34] More and more abnormal expressed miRNAs in
different tumors have been reported, but fewer reports in SCLC
8

till now. Deeper research is still to be done to find more miRNAs
with differential expression SCLC and normal lung.
In our study, we screened an eligible gene dataset and an

eligible miRNA dataset in the GEO database, and obtained the
DE-genes or DE-miRNAs for each dataset by bioinformatics
analysis, in this step, we choose the FDR criteria as <0.001 in
order to gain more credible difference and less noise in the
following steps. Then we performed target gene prediction on the
top 10DE-miRNAs, the intersection of predicted target genes and
DE-genes was taken as the final DE-genes. Then apply the
predictionmiRNAs-targets relationship of top 10DE-miRNAs to
the final DE-genes to gain more convincing DE-miRNAs, DE-
genes and their one to one relationship.
From the results of the Pathway and Process Enrichment

Analysis, it can be seen that protein kinase B signaling, muscle
structure development, Cell Cycle (Mitotic) and blood vessel
development are more likely to be involved in the development of
SCLC. Protein kinase B signaling has been found to be involved in
the survival and proliferation of a variety of tumor cells,[35]

including SCLC[36,37] and non–small-cell lung cancer (NSCLC)
cells.[38] About muscle structure development, there are some of
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Figure 7. Visualized protein–protein interaction enrichment analysis of DE-genes. (A) Visualized protein–protein interaction enrichment of upregulated DE-genes.
(B) Visualized protein–protein interaction enrichment of downregulated DE-genes. If the network contains between 3 and 500 proteins, the Molecular Complex
Detection (MCODE) algorithm has been applied to identify densely connected network components. The MCODE networks identified for individual gene lists have
been gathered and are shown in (A2) or (B2). DE=differentially expressed.
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Figure 8. The intersections of DE-genes and the target genes of DE-miRNAs. (A) The intersection of upregulated DE-genes and the target genes of downregulated
DE-miRNAs. (B) The intersection of downregulated DE-genes and the target genes of upregulated DE-miRNAs. DE=differentially expressed.
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the more common paraneoplastic syndromes associated with
lung cancer, such as syndrome of inappropriate anti-diuretic
hormone (SIADH) and Nervous system problems, which will
make muscle weakness or cramps.[39] The cell cycle, the process
by which cells progress and divide, lies at the heart of cancer.[40]

In cancer, as a result of genetic mutations, this regulatory process
malfunctions, resulting in uncontrolled cell proliferation.[40] Yi’s
study demonstrated that asparagine synthetase had an important
role in the growth of human lung cancer cells by inhibiting the
proliferation and arresting the cell cycle of lung cancer cells.[41]

Chengyu’s team showed that Licochalcone A induces cell cycle
arrest and apoptosis in lung cancer cells.[42] blood vessel
development, also known as angiogenesis, it is an essential
component in the microenvironment to tumor growth and
Table 2

The top 20 upregulated DE-miRNAs (ranked by jfold change [FC]j).
No. row.names (tT)2 logFC AveExpr t

1 hsa-miR-9–3p 5.915064 1.330272 6.09402
2 hsa-miR-1290 5.513574 2.114575 7.15023
3 hsa-miR-7-5p 5.150517 3.836668 7.65552
4 hsa-miR-183-5p 4.640001 3.027101 11.05447
5 hsa-miR-130b-3p 4.541749 3.302331 10.13871
6 hsa-miR-9-5p 4.352022 0.876776 5.63552
7 hsa-miR-301b-3p 4.195733 �0.00572 8.25508
8 hsa-miR-96-5p 3.916024 5.461447 13.12198
9 hsa-miR-182-5p 3.666389 0.222022 8.97607
10 hsa-miR-18a-5p 3.362656 2.038655 8.10155
11 hsa-miR-200b-3p 3.010067 7.009334 10.26818
12 hsa-miR-200a-5p 2.877382 0.297181 5.66546
13 hsa-miR-429 2.637601 5.148411 7.56125
14 hsa-miR-181c-3p 2.630176 0.029666 5.76586
15 hsa-miR-210 2.520739 3.751153 6.58064
16 hsa-miR-18b-5p 2.458106 0.801803 5.85022
17 hsa-miR-301a-3p 2.359574 4.5873 8.18101
18 hsa-miR-141-5p 2.336924 �0.71679 4.76688
19 hsa-miR-200a-3p 2.251327 5.955112 7.10807
20 hsa-miR-629-3p 2.247075 �0.27248 4.66738

DE=differentially expressed.
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metastasis, whereas inhibiting angiogenesis has become a
promising strategy for cancer therapy.[43] VEGF overexpression
and/or high VEGF serum levels have been reported both in non-
small-cell lung carcinoma (NSCLC) and in SCLC.[44]

As we show them in Table 12, RBMS3, NEDD9, and CRIM1
are the top 3 downregulated genes in the small lung cancer tissue
compared with normal lung. Their upstream miRNAs are hsa-
miR-7–5p, hsa-miR-18a-5p, and hsa-miR-18a-5p, respectively.
Recently, RBMS3 is found to be located at 3p24-p23, where is
often found deleted or mutated in cancers, suggesting its potential
role in tumor suppressing.[45] Yanan’s team found that RBMS3 is
a tumor suppressor gene that acts as a favorable prognostic
marker in lung squamous cell carcinoma.[46] Chenglin
reported that RBMS3 contributes to the tumorigenesis of lung
P adj. P value B Regulated

1 2.75E�07 3.24E�06 6.497889 Up-regulated
2 8.17E�09 1.32E�07 9.967949 Up-regulated

1.55E�09 2.99E�08 11.61341 Up-regulated
4.23E�14 6.34E�12 21.9998 Up-regulated
6.25E�13 4.17E�11 19.34223 Up-regulated

8 1.27E–06 1.17E–05 4.996322 Up-regulated
1 2.21E–10 6.30E–09 13.54054 Up-regulated

1.44E–16 4.32E–14 27.58495 Up-regulated
3 2.22E–11 8.09E–10 15.81088 Up-regulated
9 3.62E–10 9.44E–09 13.05016 Up-regulated

4.24E–13 4.02E–11 19.72477 Up-regulated
8 1.15E–06 1.08E–05 5.09399 Up-regulated
5 2.11E–09 3.95E–08 11.30772 Up-regulated
8 8.22E–07 8.36E–06 5.421978 Up-regulated
3 5.43E–08 7.08E–07 8.098431 Up-regulated
6 6.21E–07 6.53E–06 5.698058 Up-regulated
2 2.80E–10 7.64E–09 13.30423 Up-regulated
7 2.20E–05 0.000163 2.206759 Up-regulated
1 9.39E–09 1.46E–07 9.82998 Up-regulated
7 3.03E–05 0.000209 1.894841 Up-regulated



Table 3

The top 20 downregulated DE-miRNAs (ranked by jfold change [FC]j).
No. row.names (tT)2 logFC AveExpr t P adj. P value B Regulated

1 hsa-miR-144-5p �4.624300372 �1.046760099 �9.881056514 1.36E–12 7.41E–11 18.57445015 Down-regulated
2 hsa-miR-1-3p �4.340794155 �1.477112646 �10.18097508 5.51E–13 4.13E–11 19.46735479 Down-regulated
3 hsa-miR-30a-3p �4.260354557 �0.058575622 �5.754377022 8.54E–07 8.54E–06 5.384405266 Down-regulated
4 hsa-miR-144-3p �3.994684449 3.072322266 �7.363648769 4.04E–09 6.92E–08 10.66489313 Down-regulated
5 hsa-miR-486-5p �3.990005887 �0.57556997 �7.845250941 8.32E–10 1.92E–08 12.22661053 Down-regulated
6 hsa-miR-451a �3.895519701 7.592862726 �8.76886158 4.27E–11 1.42E–09 15.16422935 Down-regulated
7 hsa-miR-126-5p �3.655368436 �0.148090084 �11.17903707 2.96E–14 5.91E–12 22.35257096 Down-regulated
8 hsa-miR-145-5p �3.393445083 2.223485789 �7.158216173 7.96E–09 1.32E–07 9.994067066 Down-regulated
9 hsa-miR-145-3p �3.34441456 �1.555524692 �8.966549157 2.29E–11 8.09E–10 15.78126983 Down-regulated
10 hsa-miR-126-3p �3.163321224 5.661856211 �9.663889496 2.63E–12 1.22E–10 17.92062666 Down-regulated
11 hsa-miR-338-3p �3.151471897 2.901651144 �6.581439692 5.41E–08 7.08E–07 8.101051464 Down-regulated
12 hsa-miR-143-3p �3.127310346 1.486364681 �6.398805586 9.95E–08 1.22E–06 7.500173957 Down-regulated
13 hsa-miR-572 �3.11513591 0.574523022 �7.104702089 9.50E–09 1.46E–07 9.818952064 Down-regulated
14 hsa-miR-139-5p �2.919539687 �2.057906281 �5.133961696 6.65E–06 5.62E–05 3.373065874 Down-regulated
15 hsa-miR-30a-5p �2.918076742 3.48383931 �5.867197048 5.86E–07 6.40E–06 5.753649644 Down-regulated
16 hsa-miR-30c-2-3p �2.844327892 �2.84150328 �15.21910997 7.69E–19 4.61E–16 32.68634749 Down-regulated
17 hsa-miR-223-3p �2.55367987 4.002522917 �5.469776476 2.20E–06 1.97E–05 4.456969259 Down-regulated
18 hsa-miR-133b �2.404354083 �2.063368824 �5.943042447 4.55E–07 5.16E–06 6.002266651 Down-regulated
19 hsa-miR-150-5p �2.35929296 2.210012514 �4.271275626 0.000106638 0.00063349 0.675470925 Down-regulated
20 hsa-miR-222-3p �2.3459483 �0.702300768 �4.27474125 0.000105485 0.00063291 0.685965283 Down-regulated

DE=differentially expressed.

Li et al. Medicine (2020) 99:11 www.md-journal.com
adenocarcinoma.[47] The upstream of RBMS3, hsa-miR-7-5p
was reported to exert a tumor-suppressive function in glioblas-
toma and glioma by regulation of the EGFR, PI3K/ATK, Raf/
MEK/ERK, and IGF-1R pathways.[48] NEDD9 has been
identified as a pro-metastasis gene in several types of cancers
including melanoma and breast cancer.[49] A recent article report
that NEDD9 promotes lung cancer cell migration and invasion
through the induction of epithelial-mesenchymal transition
potentially via focal adhesion kinase activation.[49] Shunsuke’s
study showed that NEDD9 plays a pivotal role in cell metastasis
and invasion of NSCLC cells, and expression of NEDD9 appears
Table 4

The top 20 upregulated DE-genes (ranked by jfold change [FC]j).
row.names (tT) logFC AveExpr t

BEX1 5.261001 4.845903 29.824
ASCL1 5.248224 5.065807 11.96659
TOP2A 4.703925 4.952057 23.53278
HIST1H3B 4.404367 7.362825 15.98388
HIST1H3C 4.39036 6.875054 12.12195
DCX 4.303129 4.665839 22.25454
HIST1H3I 4.208221 7.472089 17.28547
TUBB2B 4.134942 6.342362 34.10833
NUF2 4.052735 4.406568 23.56597
STMN1 4.021866 7.34713 28.93454
CENPF 4.012109 4.891905 24.49174
NOL4 3.911498 4.510551 10.846
CCNB1 3.885803 5.613738 32.62044
TPX2 3.838696 4.740715 21.39822
PRC1 3.834336 5.601847 22.26174
CCNB2 3.726617 4.856283 23.36728
FAM111B 3.677761 4.714654 17.68991
INA 3.646147 4.157539 20.39803
ASPM 3.644909 4.177032 23.76836
UCHL1 3.5919 6.765656 15.43391

DE=differentially expressed.
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to be a promising biomarker for NSCLC prognosis.[50] The role
of CRIM1 in controlling cancer cell behavior remains
unknown.[51] Losing Hui’s group treated the non-SCLC line
A549 with CRIM1 peptide or RNA interference, they found that
CRIM1 could promote themigration and adhesion of cancer cells
significantly.[51] Turn to its upstream miRNA, hsa-miR-18a-5p
can significantly reduce the hazard of dying for all cases,
regardless of the tumor site.[52]

As in Table 13, KPNA2 (hsa-miR-144–3p), GPR137C (hsa-
miR-1–3p), and GRIK3 (hsa-miR-144–3p) are the top 3
upregulated genes (upstream miRNAs) in the small lung cancer
P adj. P value B Regulated

1.47E�37 2.78E�34 75.35792 Up-regulated
1.68E�17 2.20E�16 29.27582 Up-regulated
6.81E�32 2.02E�29 62.44423 Up-regulated
3.08E�23 1.15E�21 42.52966 Up-regulated
9.73E�18 1.32E�16 29.82673 Up-regulated
1.37E�30 2.54E�28 59.45955 Up-regulated
6.52E�25 3.41E�23 46.39314 Up-regulated
7.57E�41 4.00E�37 82.78514 Up-regulated
6.31E�32 1.89E�29 62.51992 Up-regulated
8.01E�37 1.17E�33 73.69038 Up-regulated
7.82E�33 3.23E�30 64.59531 Up-regulated
9.66E�16 9.71E�15 25.21476 Up-regulated
9.49E�40 2.51E�36 80.31239 Up-regulated
1.10E�29 1.68E�27 57.38048 Up-regulated
1.34E�30 2.51E�28 59.47676 Up-regulated
9.97E�32 2.83E�29 62.06551 Up-regulated
2.05E�25 1.21E�23 47.55346 Up-regulated
1.36E�28 1.64E�26 54.8663 Up-regulated
3.98E�32 1.33E�29 62.97947 Up-regulated
1.67E�22 5.35E�21 40.83594 Up-regulated

http://www.md-journal.com


Table 5

The top 20 downregulated DE-genes (ranked by jfold change [FC]j).
row.names (tT) logFC AveExpr t P Adj. P value B Regulated

AGER �5.06587 9.599286 �28.8106 1.02E�36 1.41E�33 73.45434 Down-regulated
SFTPC �5.01522 11.32473 �14.4585 3.66E�21 9.22E�20 37.7392 Down-regulated
ADH1B �4.81084 7.817146 �28.4005 2.26E�36 2.84E�33 72.66636 Down-regulated
C4BPA �4.75925 8.164412 �21.7203 4.98E�30 8.21E�28 58.17028 Down-regulated
CYP2B7P1 �4.68674 7.751528 �35.7826 4.94E�42 3.26E�38 85.44463 Down-regulated
AQP4 �4.68032 7.780042 �20.1321 2.71E�28 3.06E�26 54.18153 Down-regulated
LRRK2 �4.64208 7.718973 �21.6647 5.70E�30 9.24E�28 58.03465 Down-regulated
CLDN18 �4.63397 8.641473 �33.2212 3.38E�40 1.49E�36 81.32376 Down-regulated
FIGF �4.61054 6.659177 �26.3134 1.54E�34 1.26E�31 68.4889 Down-regulated
GPRC5A �4.48927 8.095534 �27.7322 8.49E�36 8.62E�33 71.35968 Down-regulated
NAPSA �4.47272 8.795141 �24.2681 1.29E�32 5.00E�30 64.10021 Down-regulated
PGC �4.40495 8.9249 �22.7554 4.15E�31 9.13E�29 60.64547 Down-regulated
SFTPB �4.39776 11.03597 �16.9239 1.86E�24 8.84E�23 45.34 Down-regulated
FCN3 �4.39749 8.042272 �26.1382 2.23E�34 1.65E�31 68.12492 Down-regulated
SLC6A4 �4.37897 7.284032 �20.7092 6.17E�29 7.98E�27 55.65878 Down-regulated
LOC653879 �4.35257 9.327099 �12.5211 2.41E�18 3.61E�17 31.22814 Down-regulated
CLIC5 �4.31829 8.027221 �36.3338 2.06E�42 1.82E�38 86.29331 Down-regulated
STEAP4 �4.26722 6.983048 �19.4217 1.75E�27 1.70E�25 52.31808 Down-regulated
TCF21 �4.16799 8.053149 �37.1874 5.47E�43 1.44E�38 87.58261 Down-regulated
SLC34A2 �4.14461 10.11217 �16.7674 2.95E�24 1.33E�22 44.87935 Down-regulated

DE=differentially expressed.
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tissue compared with normal lung. KPNA2 was identified as a
potential biomarker for non-small-cell lung cancer (NSCLC) by
integration of the cancer cell secretome and tissue transcrip-
tome.[53] Xiaolei’s study provided direct evidence to demon-
strates that KPNA2 may contribute to nuclear translocation in
lung cancer.[54] So far, we have not found any research and
reports on the GPR137C gene, which may become an innovation
and hot spot for future research. The expression of GRIK3 was
found in rhabdomyosarcoma, neuroblastoma, thyroid tumor,
Table 6

Top 20 clusters with their representative enriched terms of the targe

GO Category Description

GO:0043491 GO biological processes Protein kinase B signaling
GO:0007169 GO biological processes Transmembrane receptor protein tyrosine kinase
GO:0045596 GO biological processes Negative regulation of cell differentiation
GO:0070848 GO biological processes Response to growth factor
GO:0071396 GO biological processes Cellular response to lipid
GO:0031329 GO biological processes Regulation of cellular catabolic process
GO:0001944 GO biological processes Vasculature development
GO:0016055 GO biological processes Wnt signaling pathway
hsa04211 KEGG pathway Longevity regulating pathway
GO:0060341 GO biological processes Regulation of cellular localization
GO:1901699 GO biological processes Cellular response to nitrogen compound
GO:0051347 GO biological processes Positive regulation of transferase activity
GO:1902532 GO biological processes Negative regulation of intracellular signal transd
GO:0061061 GO biological processes Muscle structure development
GO:0051656 GO biological processes Establishment of organelle localization
hsa05166 KEGG pathway HTLV-I infection
GO:0043065 GO biological processes Positive regulation of apoptotic process
hsa05200 KEGG pathway Pathways in cancer
GO:0048608 GO biological processes Reproductive structure development
GO:0048732 GO biological processes Gland development

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%”
genes with at least one ontology term annotation are included in the calculation). “Log10(P)” is the P-v
DE=differentially expressed.
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lung cancer, breast cancer, astrocytoma, multiple myeloma,
glioma, and colorectal cancer.[55] Meeta’s team reported that
GRIK3 gene was found to be methylated across all stages of lung
adenocarcinoma, indicating that GRIK3 might be an epigenetic
marker for diagnosis.[56] hsa-miR-144–3pwas demonstrated that
markedly elevated in serum of patients with hepatocellular
carcinoma.[57] There is little literature on the relationship
between hsa-miR-1–3p and cancer, and we believe this deserves
more in-depth research.
ts genes of upregulated DE-miRNAs (one per cluster).

Count % Log10(P) Log10(q)

21 7.394366197 �11.31600882 �7.381474527
signaling pathway 35 12.32394366 �11.2673441 �7.381474527

35 12.32394366 �11.21572563 �7.381474527
35 12.32394366 �10.99533278 �7.286020409
31 10.91549296 �10.70062695 �7.088224591
35 12.32394366 �10.56995274 �7.074923026
36 12.67605634 �10.54119735 �7.074923026
27 9.507042254 �10.39303954 �7.03904561
13 4.577464789 �10.02705107 �6.86180674
35 12.32394366 �9.834504643 �6.699223541
31 10.91549296 �9.714369432 �6.607117053
31 10.91549296 �9.453233039 �6.372309599

uction 27 9.507042254 �9.35571678 �6.345374413
30 10.56338028 �8.872635094 �5.955583669
24 8.450704225 �8.443887011 �5.637664627
18 6.338028169 �8.304231947 �5.511373525
28 9.85915493 �8.189721466 �5.446550828
22 7.746478873 �8.138486493 �5.406897728
22 7.746478873 �7.567524128 �4.954117607
22 7.746478873 �7.424052382 �4.828683364

is the percentage of all of the user-provided genes that are found in the given ontology term (only input
alue in log base 10. “Log10(q)” is the multi-test adjusted P-value in log base 10.



Table 7

Top 20 clusters with their representative enriched terms of the targets genes of downregulated DE-miRNAs (one per cluster).

GO Category Description Count % Log10(P) Log10(q)

GO:0061061 GO biological processes Muscle structure development 32 13.44537815 �12.21476634 �7.982366481
GO:0070848 GO biological processes Response to growth factor 33 13.86554622 �11.81661759 �7.982366481
R-HSA-9006934 Reactome gene sets Signaling by receptor tyrosine kinases 25 10.50420168 �10.70177324 �7.159946151
GO:0010631 GO biological processes Epithelial cell migration 21 8.823529412 �10.05615035 �6.622401245
GO:0071407 GO biological processes Cellular response to organic cyclic compound 26 10.92436975 �9.253602913 �6.197000324
hsa05205 KEGG pathway Proteoglycans in cancer 16 6.722689076 �9.253100181 �6.197000324
GO:0045859 GO biological processes Regulation of protein kinase activity 30 12.60504202 �8.959658578 �5.949316212
GO:0007389 GO biological processes Pattern specification process 22 9.243697479 �8.685090472 �5.716140791
GO:1901699 GO biological processes Cellular response to nitrogen compound 26 10.92436975 �8.254682169 �5.323521048
hsa05202 KEGG pathway Transcriptional misregulation in cancer 14 5.882352941 �8.090158333 �5.205976183
hsa04933 KEGG pathway AGE-RAGE signaling pathway in diabetic

complications
11 4.62184874 �8.08598478 �5.205976183

GO:0030029 GO biological processes Actin filament-based process 27 11.34453782 �7.817279964 �4.953065633
M92 Canonical Pathways PID ANGIOPOIETIN RECEPTOR PATHWAY 8 3.361344538 �7.291770152 �4.548599515
R-HSA-170834 Reactome gene sets Signaling by TGF-beta receptor complex 9 3.781512605 �7.113877031 �4.415288526
GO:0035690 GO biological processes Cellular response to drug 17 7.142857143 �6.820460879 �4.233364387
GO:0048729 GO biological processes Tissue morphogenesis 23 9.663865546 �6.693580631 �4.153060281
GO:0048863 GO biological processes Stem cell differentiation 13 5.462184874 �6.611637406 �4.098249158
GO:0045596 GO biological processes Negative regulation of cell differentiation 24 10.08403361 �6.232370437 �3.829483094
R-HSA-109582 Reactome gene sets Hemostasis 22 9.243697479 �6.053374697 �3.688864304
R-HSA-1280215 Reactome gene sets Cytokine signaling in immune system 23 9.663865546 �5.910224604 �3.590078318

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%” is the percentage of all of the user-provided genes that are found in the given ontology term (only input
genes with at least one ontology term annotation are included in the calculation). “Log10(P)” is the P-value in log base 10. “Log10(q)” is the multi-test adjusted P-value in log base 10.
DE=differentially expressed.
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Most of the six differential genes and four differential miRNAs
we have derived from the study have been confirmed by previous
studies to be associated with lung cancer or cancer. But there are
still some differential genes and miRs have not been explored,
which may be the innovation of future research. Our study may
provide potentially likely regulators of SCLC invasion and
Table 8

Top 20 clusters with their representative enriched terms of the upre

GO Category Description

R-HSA-69278 Reactome gene sets Cell cycle, mitotic
GO:0071103 GO biological processes DNA conformation change
GO:0051301 GO biological processes Cell division
GO:0006260 GO biological processes DNA replication
GO:0044770 GO biological processes Cell cycle phase transition
GO:0006281 GO biological processes DNA repair
hsa04110 KEGG pathway Cell cycle
M129 Canonical pathways PID PLK1 pathway
GO:0051640 GO biological processes Organelle localization
GO:1903046 GO biological processes Meiotic cell cycle process
M1 Canonical pathways PID fanconi pathway
M14 Canonical pathways PID aurora B pathway
GO:0032200 GO biological processes Telomere organization
GO:0008608 GO biological processes Attachment of spindle microtubules to ki
GO:0006271 GO biological processes DNA strand elongation involved in DNA r
M40 Canonical pathways PID E2F PATHWAY
R-HSA-983231 Reactome gene sets Factors involved in megakaryocyte devel

and platelet production
R-HSA-5685942 Reactome gene sets HDR through Homologous Recombination
GO:0034508 GO biological processes Centromere complex assembly
GO:0070507 GO biological processes Regulation of microtubule cytoskeleton o

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%”
genes with at least one ontology term annotation are included in the calculation). “Log10(P)” is the P-v
DE=differentially expressed.
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metastasis can serve as biomarkers in SCLC, also can give future
researchers a broader perspective andmore inspiration. But it still
has limitations:
1.
gul

neto
epli

opm

(HR

rgan

is th
alue
target gene prediction was performed only on the top 10 DE-
miRNAs;
ated DE-genes (one per cluster).

Count % Log10(P) Log10(q)

85 25.07374631 �62.56476004 �58.25338768
46 13.56932153 �34.56578594 �30.95338358
60 17.69911504 �32.50620884 �28.97298773
39 11.50442478 �26.98023889 �23.92413904
50 14.74926254 �24.31130804 �21.32215498
46 13.56932153 �20.97913394 �18.18627551
22 6.489675516 �17.13334146 �14.58539709
15 4.424778761 �16.14594534 �13.7210637
39 11.50442478 �13.22502945 �10.97811508
22 6.489675516 �13.16991865 �10.92673215
13 3.83480826 �13.01593186 �10.78010646
12 3.539823009 �12.679937 �10.45846975
20 5.899705015 �12.10954371 �9.89854189

chore 10 2.949852507 �10.58244466 �8.41095138
cation 8 2.359882006 �10.38938766 �8.230303643

13 3.83480826 �10.2979287 �8.150909197
ent 18 5.309734513 �10.26787369 �8.123818665

R) 12 3.539823009 �9.652991053 �7.540275778
11 3.244837758 �9.349920498 �7.26071991

ization 17 5.014749263 �9.100980948 �7.014917868

e percentage of all of the user-provided genes that are found in the given ontology term (only input
in log base 10. “Log10(q)” is the multi-test adjusted P-value in log base 10.
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Table 9

Top 20 clusters with their representative enriched terms of the downregulated DE-genes (one per cluster).

GO Category Description Count % Log10(P) Log10(q)

GO:0001568 GO biological processes Blood vessel development 81 16.46341463 �33.38812498 �29.07675262
GO:0006954 GO biological processes Inflammatory response 79 16.05691057 �31.61788189 �27.95877493
hsa05150 KEGG pathway Staphylococcus aureus infection 28 5.691056911 �31.57117728 �27.95877493
GO:0050900 GO biological processes Leukocyte migration 56 11.38211382 �25.13495122 �21.72666884
GO:0002274 GO biological processes Myeloid leukocyte activation 64 13.00813008 �25.0467172 �21.68958735
GO:0030155 GO biological processes Regulation of cell adhesion 64 13.00813008 �24.29051149 �20.97913913
GO:0019221 GO biological processes Cytokine-mediated signaling pathway 67 13.61788618 �23.58604751 �20.35385639
GO:0043062 GO biological processes Extracellular structure organization 50 10.16260163 �23.47154154 �20.30629721
GO:0006897 GO biological processes Endocytosis 63 12.80487805 �19.78923779 �16.9111801
hsa04610 KEGG pathway Complement and coagulation cascades 23 4.674796748 �19.52264915 �16.68839804
GO:0031589 GO biological processes Cell-substrate adhesion 40 8.130081301 �18.43456264 �15.64170422
GO:0009611 GO biological processes Response to wounding 56 11.38211382 �18.18920228 �15.40930883
GO:0040017 GO biological processes Positive regulation of locomotion 50 10.16260163 �17.71214516 �14.94484084
GO:0070371 GO biological processes ERK1 and ERK2 cascade 39 7.926829268 �17.09502995 �14.36344119
GO:0070848 GO biological processes Response to growth factor 57 11.58536585 �16.97593537 �14.266623
GO:0002237 GO biological processes Response to molecule of bacterial origin 37 7.520325203 �16.00188304 �13.41478655
GO:0003013 GO biological processes Circulatory system process 44 8.943089431 �14.58708333 �12.04656298
GO:0097529 GO biological processes Myeloid leukocyte migration 27 5.487804878 �14.08224736 �11.55620483
M5885 Canonical pathways NABA matrisome associated 53 10.77235772 �13.72744284 �11.22225045
GO:0001816 GO biological processes Cytokine production 50 10.16260163 �13.23170035 �10.75917708

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%” is the percentage of all of the user-provided genes that are found in the given ontology term (only input
genes with at least one ontology term annotation are included in the calculation). “Log10(P)” is the P-value in log base 10. “Log10(q)” is the multi-test adjusted P-value in log base 10.
DE=differentially expressed.
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Only target genes of the top 10 DE-miRNAs are selected for
further enrichment analysis;
3.
 A lack of experimental verification, more studies should be
performed.

6. Conclusion

In conclusion, we have successfully identified differential
expression of genes (RBMS3, NEDD9, CRIM1, TGFBR2,
MYO1C, KLF4, EMP2, TMEM2, CTGF, TNFAIP3, THBS1,
able 10

otein–protein interaction enrichment analysis.

ODE GO

ODE U1 R-HSA-2500257 Resolution of sister chro
ODE U1 R-HSA-68877 Mitotic prometaphase
ODE U1 R-HSA-141424 Amplification of signal f
ODE U2 hsa05322 Systemic lupus erythem
ODE U2 R-HSA-3214815 HDACs deacetylate histo
ODE U2 GO:0071103 DNA conformation chan
ODE U3 R-HSA-5685942 HDR through Homologo
ODE U3 R-HSA-5693567 HDR through Homologo
ODE U3 R-HSA-5693538 Homology directed repa
ODE U4 R-HSA-6783310 Fanconi anemia pathwa
ODE U4 M1 PID Fanconi pathway
ODE U4 GO:0036297 interstrand cross-link re
ODE U5 GO:0006261 DNA-dependent DNA re
ODE U5 GO:0006260 DNA replication
ODE U5 R-HSA-69239 Synthesis of DNA
ODE U6 GO:0000070 Mitotic sister chromatid
ODE U6 GO:0000819 Sister chromatid segreg
ODE U6 GO:0098813 Nuclear chromosome se

ein–protein interaction enrichment analysis has been applied to each Molecular Complex Detection (MC
e been retained as the functional description of the corresponding components, all MCODEs are ran
differentially expressed.
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KPNA2, GPR137C, GRIK3, and MTHFD2) and upstream
miRNAs (hsa-miR-7–5p, hsa-miR-18a-5p, hsa-miR-18a-5p,
hsa-miR-9–5p, hsa-miR-9–5p, hsa-miR-7–5p, hsa-miR-1290,
hsa-miR-18a-5p, hsa-miR-18a-5p, hsa-miR-18a-5p, hsa-miR-
182–5p, hsa-miR-144–3p, hsa-miR-1–3p, hsa-miR-144–3p, and
hsa-miR-30a-3p) in SCLC based on bioinformatic analysis. At
the same time, we found that the DE-genes (RBMS3, NEDD9,
CRIM1, KPNA2, GPR137C, and GRIK3), hsa-miR-7–5p, hsa-
miR-18a-5p, hsa-miR-144–3p, hsa-miR-1–3p, and the protein
kinase B signaling, muscle structure development, Cell Cycle
Description Log10(P)

matid cohesion �53
�48.1

rom the kinetochores �45.4
atosus �18.3
nes �17.3
ge �17.3
us Recombination (HRR) �19.4
us Recombination (HRR) or Single Strand Annealing (SSA) �19.1
ir �18.9
y �18

�17.5
pair �17.3
plication �8.8

�7.8
�6.3

segregation �6.6
ation �6.3
gregation �5.9

ODE) component of upregulated DE-genes independently, and the three best-scoring terms by P-value
ked by their jLog10(P)j.



Table 11

Protein-protein interaction enrichment analysis.

MCODE GO Description Log10(P)

MCODE D1 GO:0030198 Extracellular matrix organization �12.7
MCODE D1 GO:0043062 Extracellular structure organization �12
MCODE D1 GO:0007179 Transforming growth factor beta receptor signaling pathway �11.9
MCODE D2 hsa04612 Antigen processing and presentation �28.2
MCODE D2 GO:0019886 Antigen processing and presentation of exogenous peptide antigen via MHC class II �26.8
MCODE D2 GO:0002495 Antigen processing and presentation of peptide antigen via MHC class II �26.7
MCODE D3 R-HSA-373076 Class A/1 (Rhodopsin-like receptors) �16.8
MCODE D3 R-HSA-418594 G alpha (i) signalling events �16
MCODE D3 R-HSA-375276 Peptide ligand-binding receptors �15.8
MCODE D4 GO:0043408 Regulation of MAPK cascade �4.8
MCODE D4 GO:0070374 Positive regulation of ERK1 and ERK2 cascade �4.7
MCODE D4 GO:0070372 Regulation of ERK1 and ERK2 cascade �4.3
MCODE D5 GO:0007187 G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second messenger �9.9
MCODE D5 GO:0007189 Adenylate cyclase-activating G-protein coupled receptor signaling pathway �8.6
MCODE D5 R-HSA-500792 GPCR ligand binding �8.5
MCODE D6 R-HSA-166663 Initial triggering of complement �15.2
MCODE D6 R-HSA-173623 Classical antibody-mediated complement activation �14.2
MCODE D6 R-HSA-977606 Regulation of complement cascade �13.6
MCODE D7 GO:0007015 Actin filament organization �4.3
MCODE D7 GO:0030036 Actin cytoskeleton organization �3.7
MCODE D7 GO:0097435 Supramolecular fiber organization �3.7
MCODE D8 GO:0051930 Regulation of sensory perception of pain �8.4
MCODE D8 GO:0051931 Regulation of sensory perception �8.3
MCODE D8 GO:0042310 Vasoconstriction �7.3
MCODE D9 GO:0043299 Leukocyte degranulation �4.9
MCODE D9 GO:0045055 Regulated exocytosis �4.5
MCODE D10 R-HSA-5683826 Surfactant metabolism �8.7
MCODE D11 R-HSA-6807878 COPI-mediated anterograde transport �7.1
MCODE D11 R-HSA-199977 ER to Golgi anterograde Transport �6.5
MCODE D11 R-HSA-948021 Transport to the Golgi and subsequent modification �6.3
MCODE D12 R-HSA-211897 Cytochrome P450 - arranged by substrate type �7.7
MCODE D12 R-HSA-211945 Phase I–Functionalization of compounds �7
MCODE D12 R-HSA-211859 Biological oxidations �6.1

Protein-protein interaction enrichment analysis has been applied to each Molecular Complex Detection (MCODE) component of downregulated DE-genes independently, and the three best-scoring terms by p-
value have been retained as the functional description of the corresponding components, all MCODEs are ranked by their jLog10(P)j.
DE=differentially expressed.

Table 12

More convinced downregulated DE- genes and their upstream
miRNAs.

Gene symbol miRNA

RBMS3 hsa-miR-7-5p
NEDD9 hsa-miR-18a-5p
CRIM1 hsa-miR-18a-5p
TGFBR2 hsa-miR-9-5p
MYO1C hsa-miR-9-5p
KLF4 hsa-miR-7-5p
EMP2 hsa-miR-1290
TMEM2 hsa-miR-18a-5p
CTGF hsa-miR-18a-5p
TNFAIP3 hsa-miR-18a-5p
THBS1 hsa-miR-182-5p

DE=differentially expressed.

Table 13

More convinced upregulated DE- genes and their upstream
miRNAs.

Gene symbol miRNA

KPNA2 hsa-miR-144-3p
GPR137C hsa-miR-1-3p
GRIK3 hsa-miR-144-3p
MTHFD2 hsa-miR-30a-3p

DE=differentially expressed.

Li et al. Medicine (2020) 99:11 www.md-journal.com
(Mitotic) and blood vessel development are highly likely to be
related to the SCLC. Undoubtedly, continued efforts to delineate
the mechanism of differential genes and miRNAs will reveal
novel insights into SCLC.
15
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