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Immunotherapy emerged as a promising therapeutic approach to highly incurable malignant gliomas due to tumor-specific
cytotoxicity, minimal side effect, and a durable antitumor effect by memory T cells. But, antitumor activities of endogenously
activatedT cells induced by immunotherapy such as vaccination are not sufficient to control tumors because tumor-specific antigens
may be self-antigens and tumors have immune evasion mechanisms to avoid immune surveillance system of host. Although
recent clinical results from vaccine strategy for malignant gliomas are encouraging, these trials have some limitations, particularly
their failure to expand tumor antigen-specific T cells reproducibly and effectively. An alternative strategy to overcome these
limitations is adoptive T cell transfer therapy, in which tumor-specific T cells are expanded ex vivo rapidly and then transferred
to patients. Moreover, enhanced biologic functions of T cells generated by genetic engineering and modified immunosuppressive
microenvironment of host by homeostatic T cell expansion and/or elimination of immunosuppressive cells and molecules can
induce more potent antitumor T cell responses and make this strategy hold promise in promoting a patient response for malignant
glioma treatment. Here we will review the past and current progresses and discuss a new hope in adoptive T cell therapy for
malignant gliomas.

1. Introduction

The prognosis of malignant glioma patients is grim despite
the advanced multimodality therapies including surgery,
radiotherapy, and chemotherapy. Immunotherapy emerged
as a potential therapeutic approach to the highly incurable
malignant gliomas, for which, however, either encouraging
results or disappointing limitations were revealed as an
alternative strategy [1, 2].

Tumor-specific CD8+cytotoxic T lymphocytes (CTLs)
are generated by repetitive stimulation of peripheral blood
mononuclear cells (PBMCs) with tumor-associated anti-
gen (TAA) expressing antigen-presenting cells (APC) such
as dendritic cells (DCs) and certain cytokines including
interleukin- (IL-) 2, IL-7, IL-12, IL-15, and IL-21 [3, 4]. These
cells can be expanded rapidly ex vivo to use them for adoptive

cell therapy (ACT). Antigen sources for this procedure
include major histocompatibility complex- (MHC-) restrict-
ed peptides, recombinant proteins, tumor lysates, and genet-
ically introduced tumor antigen genes. CD4+ T cells may
also exert antitumor effector functions mainly through the
secretion of interferon- (IFN-) 𝛾 [5].

Theoretically, tumor-specific CTLs can move to TAA-
overexpressed tumor cells specifically and kill them without
adverse effects on normal cells. But, immune system may
recognize these TAAs as self-antigens, leading to decreased T
cell response to tumor cells because TAAs are also somewhat
expressed in normal tissues [6, 7]. T cells with high affinity
to self-antigen may be physiologically removed through the
mechanisms of immune tolerance, so the endogenously acti-
vated tumor-specific T cells have low affinity to self-antigen,
inducing limited T cell response [8]. Furthermore, tumors
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Figure 1: Adoptive T cell transfer therapy. (a) Enhancement of tumor-specific T cell function. (b) Modification of the host environment.

have evolved numerous mechanisms to evade both innate
and adaptive immunity. These include modulation of MHC
antigens and costimulatory molecules, expression of Fas
ligand and other apoptotic molecules on the cell surface, pro-
duction of inhibitory molecules such as transforming growth
factor- (TGF-) 𝛽 and IL-10, constitutive expression of the
tryptophan-depleting enzyme, indoleamine 2,3-dioxygenase
(IDO), and recruitment of regulatory T cells (Tregs) [9].

Results from recent immunotherapeutic clinical trials
with tumor cell or DC vaccines for malignant glioma patients
were encouraging [10–13]. These trials, however, have shown
some limitations, particularly their failure to expand tumor
antigen-specific T cells reproducibly and effectively, suggest-
ing that endogenous activation of T cells is insufficient to
control tumors. A strategy to overcome these limitations is
adoptive T cell transfer, in which tumor-specific T cells are
expanded ex vivo rapidly and then transferred to patients.
Moreover, a recent advance in delivering therapeutic genes
into somatic cells has been applicable to T cell therapy for
tumors. T cells used in ACT can be modified to increase
their specificity and survival for the tumor or to make them
resistant to immune evasion mechanisms [14–25] (Figure 1).
T cell response for malignant gliomas also can be improved
by combination with other therapeutic modalities [26, 27].

Here we will review past experiences and discuss current
promising strategies of adoptive T cell therapy for malignant
gliomas.

2. Immune Environment of Malignant Glioma

The brain has long been considered to be immunologically
privileged due to immediate inability to reject intracranial
xenograft in early report [28], physical isolation from the
systemic immune system by the blood-brain-barrier (BBB),
and lack of connections to the lymphatic system. Subsequent
studies, however, have described the efficient rejection of
intracranial xenografts and allografts in immunocompetent
hosts abundantly [29], capability of activated T cells to cross
the BBB [30, 31], and the drainage of cerebrospinal fluid

Table 1: Glioma-associated antigens.

Classification Antigens [references]
Mutated antigens EGFRvIII [35]

Cancer-testis antigens MAGE [36], GAGE [37], and SOX6
[38]

Tissue-specific antigens Gp100 [39], TRP-2 [40]

Others
IL-13R𝛼2 [41], EphA2 [42], EphB6
[43], HER-2[39], AIM-2 [44], SOX11
[45], surviving [46], telomerase [47],
Mart-1 [48], and KIF3C [49]

into systemic lymphatics [32]. In addition, no specific CNS-
associated antigens have been known that are systematically
immunogenic but evade immune surveillance within the
brain unlike testes, other immunologically privileged site
[33]. Microglia, resident APCs in the brain, play a crucial role
in the CNS immune response [34]. Collectively, these results
clearly indicate that the brain is not an immunologically
privileged site, butmay be an organ that has immunologically
particular environment although not fully understood.

A critical step for an efficient stimulation of adaptive
immune response even in the brain is the identification of
suitable tumor-specific or tumor-associated antigens that can
be recognized and eliminated by the immune system. Malig-
nant glioma is known to be genetically heterogenous with a
variety of antigen profile [48], so glioma cells are inefficient
for antigen processing. Difficulty in identification of ideal
tumor antigens for immunotherapy as well as the above-
mentioned immune evasion mechanisms and the presence
of immune inhibitory cells may render malignant glioma
resistant to T cell responses. The source of antigen used
in initial immunotherapeutic approaches to the malignant
glioma was tumor lysates derived from autologous irradiated
glioma cells [50]. Numerous glioma-associated antigens have
been identified over the past decades and the antigens most
suitable for activating the host-specific T cell response are still
under investigation (Table 1). The glioma-specific antigens
used in recent preclinical or clinical studies showing potent



Journal of Immunology Research 3

Table 2: Comparison of the effector cells used in adoptive T cell therapy for malignant glioma.

Effector cells Advantages Disadvantages

Lymphokine-activated killer (LAK) cells MHC-independent cytotoxicity
Easy preparation of cells

Nonspecific killing
IL-2 related toxicities

Natural killer (NK) cells

MHC-independent cytotoxicity
Immediate response
Can be modified to target tumor antigens
genetically

Nonspecific killing

𝛾𝛿 T cells MHC-independent cytotoxicity
Immediate response Nonspecific killing

Tumor infiltrating lymphocytes (TILs) Presumably tumor-specific killing Need T cells from tumor tissue
Technical difficulty to expand ex vivo

CD4+ cytotoxic T lymphocytes Tumor-specific killing MHC class II-dependent cytotoxicity

CD8+ cytotoxic T lymphocytes
Tumor-specific killing
Can be modified to target tumor antigens
genetically

MHC class I-dependent cytotoxicity

Genetically modified cytotoxic T
lymphocytes

MHC-independent cytotoxicity
Rapid and elaborate tumor-specific killing

Induction of antigen loss variants at
tumor recurrence
Possible overreactivity on same target
antigens expressed in normal tissue

antiglioma effect include IL-13R𝛼2, human epidermal growth
factor receptor 2 (HER2), epidermal growth factor receptor
variant III (EGFRvIII), and erythropoietin-producing hepa-
tocellular carcinoma A2 (EphA2) [19–22, 51].

Recruitment of lymphocytes is a key of immune response.
Immune cells can infiltrate to malignant glioma at later
stage of tumor growth with destruction of the BBB [52] and
peripherally infused CTLs can enter the CNS in patients with
malignant glioma [53]. Glioma-derived chemokines such as
CCL2, CCL7, or CCL20 can mediate the recruitment of
immune cells [54, 55].

3. Antitumor Immune Responses of
Effector Cells

Effector cells used in ACT for the malignant glioma have
developed from lymphokine-activated killer (LAK) cells with
nonspecific cytotoxicity to more tumor-specific genetically
engineered CTLs over time. The advantages and the dis-
advantages of the effector cells used in ACT for malignant
glioma are summarized in Table 2.

3.1. LAK Cells. Autologous LAK cells are a mixture of IL-
2 activated T cells and natural killer (NK) cells and are
generally obtained by culture of PBMCs in the presence of IL-
2.Major therapeutic limitation of these cells against tumors is
that their lytic properties are not specifically directed against
tumor cells. Autologous tumor cells were usually used as
antigen source in ACT using LAK cells formalignant gliomas
[56–59].

Although several clinical trials by intratumoral injection
of LAK cells combinedwith IL-2 for the glioblastoma patients
have been carried out, most of their therapeutic effects have
not shown a significant survival benefit [60–70]. In addition,
the use of LAK cells in combination with IL-2 was not

superior to the use of IL-2 alone in the phase III trial for other
tumors [71]. Moreover, IL-2 related toxicities that emerged
in some studies such as brain edema and aseptic meningitis
have disturbed widespread use of this strategy for malignant
gliomas [63, 65, 70].

3.2. NK Cells. In contrast to adaptive immune responses,
innate lymphocytes such as NK cells and 𝛾𝛿 T cells broadly
recognize and immediately respond to a certain range of
antigens in a MHC-independent fashion [72]. NK cells,
CD3−CD56+ lymphocytes, play potential role in cancer
immunosurveillance as innate immune cells. They initially
recognize the tumor cells via cellular stress or danger signals.
Activated NK cells can directly kill tumor cells without MHC
restriction, interact with DCs to facilitate the generation of
antigen-specific CTL response by enhancing their antigen
uptake and presentation, and induce CD8+ T cells to become
CTLs by producing cytokines such as IFN-𝛾. Cytokines
produced by NK cells can also regulate antitumor antibodies
produced by B cells [73–75]. Both allogeneic and autologous
IL-2 activated NK cells, furthermore, recognize and kill
human glioblastoma cells with stem cell-like properties [76].

Although clinical trials with ACT using LAK cells did not
show a significant clinical benefit for malignant gliomas as
discussed above, recent advances in NK cell immunobiology
and results in animal studies showing favorable antitumor
effect in glioma-bearing mice treated with activated NK cells
take a growing interest in ACT using activated NK cells
again. NK cells can do traffic to the brain directly [77], so
both peripheral and intratumoral route of administration
are available in the treatment of malignant gliomas. In a rat
glioma model, no therapeutic effect was observed in animals
treated with intradermally injected paraformaldehyde-fixed
tumor vaccine alone, but intratumoral injection of IL-2-
activated rat NK cells strongly enhanced antitumor effect
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of the vaccine [78]. Also, intracranial injection of cytokine-
induced killer cells markedly inhibited intracranial xeno-
transplanted glioma growth in mice [79].

Safe antitumor response was shown in a clinical trial that
exclusively used ex vivo expanded autologousNK cells to treat
recurrent malignant glioma patients [80]. In this study, two
(22%) of the nine patients injected focally and intravenously
showed partial response. Additionally, prolonged survival of
the patients with malignant glioma treated by tumor-loaded
DCs vaccine may be associated with NK cell response such
as high level of circulating IFN-𝛾 and increased NK cell
vaccine/baseline (V/B) ratio that was inversely correlated
with TGF-𝛽2 V/B ratio [81]. These results suggest that a
strategy of ACT using ex vivo activated NK cells following
tumor-loaded vaccine can have a potent antiglioma effect as
in animal studies.

Tumor cells, however, have various mechanisms to avoid
NK cell recognition including the expression of MHC class
I and ligands for inhibitory receptors on NK cells [82, 83].
In order to overcome this resistance of tumor cells to NK-
mediated cytotoxicity and enhance tumor recognition of NK
cells, gene modification can be utilized. Antitumor activity of
NK cells can be enhanced by genetic modification to highly
express cytokines, Fc receptors, and/or chimeric antigen
receptors (CARs) [84–86]. CAR directly recognizes tumor
cell surface antigens and provides specificity of engineered
cells regardless of antigen processing or MHC-restricted
presentation. Cytokine gene transfer such as IL-2 [87–89],
IL-12 [88, 90], IL-15 [91–93], and stem cell factor (SCF) [94]
induces NK cell proliferation and survival, and gene transfer
of CARs against HERs/neu [95], carcinoembryonic antigen
(CEA) [96], and CD33 [97] shows increased specificity [85]
in vitro and in vivo studies. These results suggest ACT using
genetically modified NK cells can be a challenge to patients
with cancer including malignant gliomas.

NK cell-based immunotherapy has several potential limi-
tations including the immunosuppressivemicroenvironment
of the tumors. Activation of myeloid derived suppressor
cells (MDSCs) and Tregs, especially, are known to be major
barriers. MDSCs, a heterogeneous population of CD11b+,
Gr-1+ cells of immature myeloid origin, consist of myeloid
progenitors and precursors of macrophages, granulocytes,
and DCs and have a strong ability to suppress a variety
of T cell and NK cell functions [98–100]. MDSCs can also
modulate the induction of Tregs [101, 102]. MDSCs increase
in malignant glioma-bearing mice [77] and effectively inhibit
NK cell-mediated tumor suppression. Circulating number of
these tumor suppressor cells also increases in the patients
with malignant gliomas [103, 104]. Although there have been
no published studies on human glioma-infiltratingMDSCs to
date, many preclinical studies to improve antitumor effect by
reducingMDSCs in tumor-bearing animal models have been
carried out [105, 106].

Tregs are potential inhibitors of NK cell activity in
malignant gliomas [107]. Tregs directly inhibit NKG2D-
mediated NK cell cytotoxicity, effectively suppressing NK
cell-mediated tumor rejection by a TGF-𝛽 dependent mech-
anism and independent of IL-10 and depletion of Tregs via
NKG2D before NK cell activation markedly enhances NK

cell-mediated suppression of tumor growth andmetastases in
animal studies [108]. Tregs also decrease NK cell cytotoxicity
and downregulate the IFN-𝛾 secretion of NK cell responding
to IL-12 activation in a TGF-𝛽 dependent manner [109].
Elimination or inhibition of these immunosuppressive cells,
therefore, can improve the antitumor effect of ACT using NK
cells.

3.3. 𝛾𝛿 T Cells. 𝛾𝛿 T cells are a subpopulation of T lym-
phocytes, which express T-cell receptors (TCRs) consisting
of one 𝛾 chain and one 𝛿 chain. Unlike the conventional 𝛼𝛽
T cells that recognize only MHC-related antigens, 𝛾𝛿 T cells
can broadly recognize and immediately respond to a range of
antigens in a MHC-independent manner.
𝛾𝛿T cells have potent cytotoxic activity againstmalignant

glioma cells [110, 111]. Antiglioma effect of human 𝛾𝛿 T
cells can be increased by the addition of IL-12 [112, 113].
Intracranial infusion of expanded and activated 𝛾𝛿T cells can
mediate killing of new or established glioblastoma xenografts
and reduce tumor progression [114]. Ex vivo expanded and
activated 𝛾𝛿T cells from both patients and healthy volunteers
can recognize and kill glioblastoma cell lines and primary
glioblastoma culture cells, but 𝛾𝛿 T cell counts and mitogen-
stimulated proliferative response of 𝛾𝛿 T cells are markedly
decreased in glioblastoma patients prior to treatment, sug-
gesting that allogeneic therapy could be a reasonable option
in adoptive 𝛾𝛿 T cell immunotherapy [115].

Despite of the theoretical basis of 𝛾𝛿 T cell-based
immunotherapy, there have been no clinical studies designed
to assess the immunotherapeutic potential of 𝛾𝛿 cell therapy
against malignant gliomas to date. A recent report that gene
modified 𝛾𝛿T cells have greater cytotoxicity to temozolomide
(TMZ) resistant glioblastoma cell lines in the presence of
TMZ than unmodified cells [116] suggests combined TMZ
resistant 𝛾𝛿 T cell immunotherapy and high dose TMZ
chemotherapy could be a new therapeutic challenge to the
glioblastoma patients.

3.4. TILs. Tumor infiltrating lymphocytes (TILs) are effector
cells presumably thought to be able to recognize and respond
to the specific tumor antigens because they are already
present in the tumor. Although antitumor activity of endoge-
nous TILs may not be sufficient to conquer tumor-induced
immunosuppressive environment, ex vivo expansion of these
cells may overcome this immunologic barrier and be a tool of
ACT for tumors. Ex vivo expanded TILs have the properties
to proliferate in vivo and display functional activity and
trafficking to tumor [117]. Significantly increased antitumor
activities of ex vivo expanded TILs therapy have been shown
in clinical trials for melanoma especially in combination of
lymphodepletion with intensive chemoradiation [118, 119].

It is difficult, however, to expand TILs from tumor
tissues in most cancers including malignant glioma except
melanomas [120]. In a pilot study exclusively performed to
date against patients with recurrent malignant gliomas that
were treated with intratumoral infusion of ex vivo expanded
autologous TILs with IL-2, one of six patients showed com-
plete remission, two had partial responses, and three died of
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tumor progression [56].The cytotoxic activity of TILs against
autologous tumors in vitro was variously dependent on the
patients and was not correlated with the clinical outcome in
this study.These results suggest that clinical benefit fromACT
for malignant gliomas using ex vivo expanded TILs may be
limited.

3.5. Antigen-Specific CTLs. Antigen-specific CTLs com-
monly generated by ex vivo antigen stimulation of PBMCs
with autologous inactivated tumor cells have potent antitu-
mor immune response compared with T cell response to
endogenous stimulation.These CTLs are also able to migrate
to antigen-expressed tumor cells following administration
and have durable antitumor effect by memory T cells. Ex vivo
expansion of CTLs for strong priming of T cells with antigens
and for rapid increase of effector T cell numbers makes these
cells feasible to be used in ACT for cancers.

To date, 4 phase I trials to evaluate CTLs generated
from PBMCs [57–59, 121] and 3 phase I and 2 pilot stud-
ies examining CTLs obtained by lymphocytes from tumor
draining lymph nodes or PBMCs after vaccination with irra-
diated autologous tumor cells [53, 122–125] against malignant
gliomas have been described. Total 9 clinical trials of ACT
using antigen-specific CTLs showed 2 complete response
(CR), 26 partial response (PR), and 16 stable disease (SD) in
87 patients with malignant gliomas (65 glioblastoma). Data
from 49 patients with glioblastoma exclusively in 8 trials
except a study that did not describe the results from the
distinguished tumor grade [125] demonstrated a result of
no CR, 11 PR, and 6 SD. A pilot study for 19 patients with
recurrent malignant gliomas (16 glioblastoma) that did not
distinguish tumor grade in treatment outcome displayed a
favorable result of 1 CR, 7 PR, and 9 SD [125]. More improved
median survival of 12 months after tumor recurrence com-
pared with 6 months for controls and a positive correlation
between increased survival and delayed-type hypersensitivity
response were described in this study [125]. Similarly, a pos-
itive correlation between CD4/CD8 composition of infused
cells and clinical response was reported [124]. Most other
trials, however, did not show survival benefit and a clear
association between the concentration of injected T cells and
clinical outcome.

3.6. CD4+ T Cells. CD4+ T cells contribute to the immuno-
logic antitumor activity through their ability to mediate
tumor cell destruction independent of CD8+ T cells as
well as help activate CD8+ T cells classically [126–128].
Identification of MHC class II-restricted isotopes derived
from several TAAs including melanoma differentiation anti-
gens and several cancer-testis antigens becomes feasible to
generate antigen-specific CD4+ T cells which can be used
in ACT [129–131]. Several preclinical studies have described
antitumor effect of ACT using CD4+ T cell population, and
CD4+ T cells have cytolytic activity dependent on class
II-restricted recognition of tumors [132–134]. In a recent
early-phase dose escalation study of ACT for patient with
metastatic melanoma using CD4+ T cell clones, the patients
experienced partial responses including a case of a complete
durable response [128, 135].

Table 3: Genetic modification of T cells to improve the efficacy of
ACT for cancers.

References
Enhanced specificity

Expression of 𝛼𝛽 TCR [16, 17, 136]
Expression of CARs [18–22]
Coexpression of costimulatory molecules [23–25, 137]

Increased survival and proliferation
Expression of proliferative cytokines [138–141]
Expression of antiapoptotic genes [142–144]
Ectopic expression of gene for telomere
elongation (hTERT) [145–148]

Enhanced trafficking
Expression of chemokine receptors [149–152]

Enhanced trafficking
Expression of negative TGF-𝛽 receptor [153–156]
Downregulation of Fas [157]

Integration with conventional therapy
Expression of chemoresistant genes [116]

4. Enhancement of Tumor-Specific
T Cell Function

4.1. Genetically Modified T Cells. Recently, gene modification
of T cells has been developed for enhancing the efficacy of
ACT. Gene engineering of T cells by a variety of gene transfer
techniques is able to allowT cells tomake themmore resistant
to immune evasion mechanisms of tumor cells or modify
the tumor environment to make it less inhibitory to T cell
activation and effector function [9] (Table 3). Retroviral or
lentiviral vectors are usually used for gene delivery [14, 15].

Two most common approaches can be used for enhance-
ment of T cell specificity: (a) gene modification with TCR
variable 𝛼 and 𝛽 chains cloned from high affinity TAA-
specific T cells and (b) insertion of chimeric antigen receptors
(CARs) that recognize tumors through single-chain variable
fragment (scFv) isolated from TAA-specific Abs.

Genes encoding TCRs of T cells isolated from patients
showing an excellent response toACT can be cloned into viral
vectors and then be used to alter T cells from other patients
with matching HLA restriction elements to be treated [17].
These genes can also be isolated from humanized mice that
have been primed to recognize TAAs. Humanized mice that
have been cloned human MHC class I or class II molecules
can express human MHC molecules and can be immunized
with human TAAs of interest. Mouse T cells specific for
certain MHC-restricted epitope can then be isolated, and
their TCR genes are cloned into viral vectors that can be used
to genetically modify T cells from the patient [17, 158].

Some clinical studies for patients with metastatic
melanoma using T cells genetically modified with tumor
antigen-specific T cell receptors for patient with melanoma
have been conducted [16, 17]. In a recent clinical study
assessing ACT using a high-avidity TCR recognizedMART-1
and gp 100 for patients with metastatic melanoma, cancer
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regression was seen in 30% and 19% of patients who
received the human or mouse TCR, but patients exhibited
destruction of normal melanocytes throughout the body
including skin, eye, and ear as the result of CTL responses to
cognate antigen-containing cells [17]. No clinical study for
malignant gliomas, however, has been performed to date.
This procedure allows the rapid production of TAA-specific
T cells but has a basic limitation that T cells engineered
by this procedure can mainly recognize antigens that have
processed and presented in MHC-restricted patterns.

An alternative approach to overcome this limitation is
the use of CARs, genes encoding monoclonal antibody
chains specific for TAAs [18]. T cells modified with CARs
can be directed toward any antigen expressed on the cell
surface because CARs provide T cell activation regardless of
MHC-restricted presentation. CARs are synthetic molecules
that consist of an extracellular antigen binding domain that
usually contains the heavy and light chain variable regions
of a monoclonal antibody, referred to as a single chain Fc
(scFv) molecule, joined to transmembrane and cytoplasmic
signaling domains derived fromCD3-𝜁 chain or Fc receptor 𝛾
chains (FcR𝛾) and from costimulatorymolecules. Engineered
T cells activated by both tumor-specific TCR and costimu-
latory molecules such as CD28, 4-1BB, OX40, and inducible
costimulator (ICOS) have enhanced antitumor activity to
tumors [23–25, 159, 160].

T cells and expressing CARs for the glioma-specific
antigens including IL-13R𝛼2, HER2, EGFRvIII, and EphA2
show potent antiglioma activity in preclinical animal studies
[19–22, 51]. In a study, T cells from glioblastoma patients
could be modified with HER2-specific chimeric antigen
receptors to produce effector cells and killed autologous
HER2-postive glioblastoma cells including CD133-positive
glioblastoma stem cells. These HER2-specific T cells also had
a potent antitumor activity against autologous tumors in an
orthotopic xenogeneic SCID mouse model [20]. Recently,
cytomegalovirus has emerged as a target for the treat-
ment of malignant gliomas. Expression of genes unique to
cytomegalovirus (CMV) in malignant gliomas has raised the
possibility of CMV-specific T cells as a therapeutic tool [161–
164]. Data from a recent clinical study to evaluate antiglioma
response of ACT using CMV-specific T cells in combination
with TMZ into a patient with recurrent glioblastoma showing
a long-term disease free survival [164] suggest CMV can be a
challenging target of ACT for malignant gliomas and provide
an important clue for further evaluation of combined ACT
and TMZ chemotherapy.

Although clinical experience of ACT using T cells
expressing TAA-specific CARs is limited, therapeutic limita-
tions of these cells have emerged. In a clinical study targeting
three glioblastoma patients treated by intracranial adoptive
transfer of autologous IL-13R𝛼2-specific CTL clones, safe
antiglioma responses against antigen positive CD133+glioma
stem cells as well as antigen positive glioma cells were
documented, but IL-13R𝛼2 antigen was not expressed in
the eventually recurred tumor [165]. Immune escape like
these antigen loss variants also can be presented in peptide
vaccination targeting EGFRvIII in patients with glioblastoma

[166], so antigen loss variants may be a major mechanism
responsible for tumor progression.

In addition, there are safety concerns with regard to
HER2-targeted T cell therapy. A patient administered T
cells with a CAR recognizing ERBB2 died of respiratory
distress probably due to cytokine storm by massive release
from ERBB2 expressing T cells localized to the lung with
recognition of low levels of ERBB2 on lung epithelial cells
[167].

Genetic engineering can increase effector function of
T cells by modification of tumor environment as well as
enhanced T cell specificity to malignant gliomas. Other
strategies for cancers to increase T cell effector function
through genetic modification are described (Table 3).

4.2. Prolongation of T Cell Survival. Identification of T
cell populations that can reproducibly survive in vivo for
increased antitumor effect in ACT is also important. CD8+
T cells have been described as naive cells and four antigen-
experienced subtypes according to the differentiation status:
T memory stem cell (TSCM), central memory (TCM), effector
memory (TEM), and differentiated effector T cells [168]. T cell
differentiation is inversely correlated with antitumor effect
in ACT for cancer [158, 169]. Preclinical studies in human
T cells suggest that arrested differentiation via reducing IL-2
concentration in culture condition [170–172] and inhibitors of
theWNT signaling pathway [173, 174] can lead to enrichment
of less differentiated memory T cells with high replicative
potential.

Recently isolated TSCM cells in mouse model, the least
differentiated memory subset, have a preferential intrinsic
capacity for long-term in vivo persistence and for self-
renewal, and a multipotent ability to derive TCM, TEM, and
effector T cells in response to antigen reexposure [168, 175].
TSCM cells have been shown to be more effective than TCM
cells which were more effective than TEM cells in terms
of ACT against tumors in various preclinical studies [135,
158, 169, 176]. TSCM cells consistently express a surface
marker typically found on naive T cells and also express
stem cell antigen-1 (Sca-1), B cell lymphoma 2 (Bcl-2), the
𝛽 chain of the IL-2 (IL-2R𝛽), and the chemokine (C-X-C
motif) receptor CXCR3 [168, 177]. The identification and ex
vivo expansion to minimize corruption of a similar human
stem cell-like memory T cells may be important in the
development of ACT, and these cells may play a greater role
in human future ACT strategies for patients with cancer.

5. Modification of the Host Environment

5.1. Lymphodepletion. Lymphoid cells have an independent
homeostatic regulation of resting and memory cell compart-
ments, so a rapid proliferation of remaining or infused lym-
phocytes happens to recover normal lymphocyte numbers
after periods of lymphopenia [178, 179]. During homeostasis-
induced T cell proliferation, naive T cells stably acquire the
cell surface markers and functional properties of memory
T cells capable of rapid and intense response to antigen,
and these homeostasis-stimulated memory CD8+ T cells
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respond to lower doses of antigen than naive cells [180].
Considering that this recovery is mediated by MHC depen-
dent recognition, that memory CD8+ T cells respond in the
reduced activation threshold of tumor-specific cells, and that
proliferated T cells have effector functions, administration of
tumor specific antigens in the form of a vaccine or ex vivo
expanded adoptive T cell transfer during this recovery period
can induce disproportionate enhancement of effector cell
populations that have autoimmune responses against tumor-
associated self-antigens, leading to increased antitumor effect
of ACT [180–184].

The induction of immunodepleting condition in patients
before T cell-based immunotherapy can be achieved by
use of total body irradiation (TBI) or nonmyeloablative
chemotherapy. Data in clinical trials using these approaches
have been shown to enhance the efficacy ofACT [118, 119, 185–
188] such as melanocyte-directed autoimmunity noted in
some patients with metastatic melanoma treated by these
approaches [118, 189].

Another therapeutic advantage of lymphodeletion prior
to immunotherapy is the elimination of major immunosup-
pressive cellular elements within the tumor microenviron-
ment such as MDSCs and Tregs. As described above, MDSCs
are found in most patients with advanced cancers [103, 190–
192], so elimination or blockade of the immunosuppressive
functions of MDSCs can provoke an enhanced antitumor
effect of immunotherapeutic strategies for tumors [193, 194].
MDSCs can also modulate the induction of Tregs [101,
102]. Tregs that play a two-directional role in controlling
autoimmunity andT cell homeostasis can selectively suppress
spontaneous lymphopenia-induced naive T cell proliferation
[195] and actually enhance immune function by optimization
of the conventional T cell diversity [196]. Tregs are increased
after total body irradiation and inhibit the induction of
effector T cells during recovery period from lymphopenia,
whereas depletion of Tregs strongly inhibits tumor progres-
sion in animal study [197]. In a recent clinical pilot study,
anti-IL-2R𝛼 MAb daclizumab treatment combined with
EGFRvIII-targeted peptide vaccination could deplete Tregs
safely and significantly in patients with glioblastoma treated
with lymphodepleting TMZ correlating with enhanced anti-
tumor immunity [198].

Additionally, ACT can be enhanced by the increased
depletion of endogenous cells that compete for homeostatic
cytokines such as IL-7 and IL-15 [119], by the promotion of the
expansion and function of adoptively transferred antitumor
CD8 T cells through hematopoietic stem cells [199], and by
the increased functionality of adoptively transferred T cells
mediated by TBI-evoked microbial translocation [200].

5.2. Inhibition of Immunosuppressive Environment. Elimina-
tion or blockade of immunosuppressive molecules of human
cancers can enhance the antitumor efficacy of ACT. The
challengeable targets for the treatment of malignant gliomas
can be TGF-𝛽, Tregs, and signal transducer and activator of
transcription 3 (STAT3).

TGF-𝛽 is a potent immunodepressant and blocking of
TGF-𝛽 effects on T cells can improve antitumor efficacy of

T cells after ACT for malignancies [153, 154, 201]. Adminis-
tration of TGF-𝛽 receptor I kinase inhibitor increases tumor
infiltration by NK, T cells and macrophage and increases
survival in glioma-bearing mice [202, 203]. The most clini-
cally advanced strategy to elicit TGF-𝛽 in gliomas is the use
of intratumorally administered TGF-𝛽2 antisense oligonu-
cleotides using convection-enhanced delivery [204]. Phase II
study that evaluated the efficacy and safety of trabedersen
(TGF-𝛽2 antisense oligonucleotides) administered intratu-
morally by convection-enhanced delivery compared with
standard chemotherapy in patients with recurrent malignant
gliomas showed a superior safety and a trend for superiority
in 2-year survival rate of patients with anaplastic astrocytoma
compared to chemotherapy [205]. However, further clinical
study discontinued during the phase III trial unfortunately.
TGF-𝛽 also influences the development, maintenance, and
induction of Tregs, while disruption of TGF-𝛽 signaling
prevents the generation of Tregs [206, 207].

Tregs have an important role in maintaining self-
tolerance and in the prevention of autoimmunity physio-
logically, and increased Tregs fractions with CD4+ T cell
defects inducing decreased T cell responses are seen in
patients with gliomas [208]. Characteristics of Tregs in
both mice and humans are the high expression of surface
markers CD25 (IL-2R-𝛼-chain), constitutive expression of
cytotoxic T-lymphocyte antigen 4 (CTLA-4), overexpression
of glucocorticoid-induced tumor necrosis factor receptor-
related protein (GITR), and the expression of the transcrip-
tional regulator Foxp3 [209, 210]. These molecules can be
therapeutic targets for depleting Tregs to improve ACT for
gliomas.

Strategies such as anti-CD25 antibody and CD25-specific
immunotoxin [211] employed to reduce Treg function target
the constitutively expressed cell surface marker, CD25. IL-
2R𝛼 (CD25) blocking with anti-IL-2𝛼 (anti-CD25 antibody)
daclizumab combining glioma antigen (CMV or EGFRvIII)
specific vaccination during lymphopenia selectively depletes
Tregs in mice and humans [198, 212].

Another possible approach to reduce Tregs in glioma is
via CTLA-4 blockade. CTLA-4 is a transmembrane protein
that binds to ligands B7-1 and B7-2 on APCs and is constitu-
tively expressed onTregs, acting as a potent negative regulator
of T cell activation. Anti-CTLA-4 antibodies have shown
potential therapeutics for gliomas [213], and combining
sequential immunotherapy with GM-CSF expressing irradi-
ated glioma cell vaccine synergistically prolongs survival in
mice-bearing gliomas [214].

STAT3 is generally overexpressed in cancers including
malignant gliomas and plays an important role in neg-
ative regulation of antitumor immunity. STAT3 regulates
the expression of TGF-𝛽 and IL-10, cytokine related to the
presence of Tregs in tumors, so STAT3 can be a target for
depleting Tregs. Inhibition of STAT3 promotes the activity of
NK and T cells on cancer cells [215, 216]. STAT3 inhibition
was shown to reverse the immunosuppressive environment
in malignant gliomas [217] and to promote the efficacy of
ACT in a murine glioma model [216]. Furthermore, adoptive
transfer of T cells that transfected miRNAs, gene tran-
scriptsmodulating STAT3 signaling, exerts potent antiglioma
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therapeutic effects in genetically engineered murine glioblas-
toma models and enhances effector responses in the local
tumor microenvironment [218]. Additionally, a low dose
metronomic TMZ therapy can induce Treg depletion [219]
and inhibit trafficking of Tregs into the gliomamicroenviron-
ment [220].

IDO is an intracellular enzyme that catalyzes oxidative
catabolism of tryptophan [221, 222]. T cell proliferation is
arrested when exposed to tryptophan shortage evoked by
IDO, and most human tumors including gliomas evade cel-
lular immune response through the constitutively expressed
IDO [223]. Consequently, IDO expressing tumor cells are
able to inhibit tumor specific T cell response [224]. Expres-
sion of IDO in APCs also allows macrophages and DCs
to inhibit T cell proliferation [225] and expand potent
autologous Tregs [226]. Inhibition of IDO can improve T
cell therapy for cancers [227–229]. In addition, molecular
targeted therapy with imatinib can potentiate antitumor cell
responses in gastrointestinal tumor through the inhibition of
IDO [230].

Recently, IDO emerged as therapeutic target for the
treatment of gliomas [231]. IDO expression in glioma is
associated with malignant progression [232] and a significant
decrease of overall survival in patients [233]. IDO expression
in brain tumors also increases the recruitment of Tregs in
mouse model [233, 234].

6. Combining T Cell Therapy

Combining immunotherapy with cytotoxic chemotherapy
or targeted therapy can promote the therapeutic potential
for the treatment of cancers in comparison with the use of
either treatment alone because abundant antigens can be
released from the dying tumor cells and increased effector
cell capacity to recognize and kill tumor cells can be induced
by cytotoxic chemotherapeutic agents [235, 236].This antigen
processing can lead to the priming of adoptively transferred
tumor-specific T cells as well as the activation of endogenous
tumor-specific T cells. Chemotherapy can enhance tumor cell
susceptibility to CTL-mediated cytotoxicity during cancer
immunotherapy, increasing the efficacy of tumor-specific T
cell activation in mice with advanced cancer [237, 238].
Furthermore, chemotherapy (dacarbazine, temozolomide,
and cisplatin) induces intratumoral expression of T cell
attracting chemokines [239]. Combined TMZ chemotherapy
and immunotherapy with DC-based vaccines can lead to
the enhancement of antitumor immunity through increased
tumor-specific immune responses via the cross-priming of
apoptotic tumor cell death as well as suppression of Tregs
in glioma bearing mice [26] and showed to be beneficial for
survival in a phase II trial in patients with newly diagnosed
glioblastoma [27].

Oncogene addiction is a phenomenon in which the
survival of cancer cells depends on an activated oncogene
or inactivation of tumor suppressor gene and is an ideal
potential target for molecular targeted therapy in human
cancers [240, 241]. Tumor cell death after oncogene addiction
may provide antigenic stimulation of T cells, and oncogene

addiction may also reduce the production of immunosup-
pressive molecules by tumor cells, promising increased anti-
tumor efficacy of combining ACT with molecular targeted
therapy for cancers including gliomas [242]. Actually, BRAF
inhibition can induce the enhanced T cell recognition and
subsequent T cell response on melanoma cells [243], and
BRAF inhibitor vemurafenib improves the antitumor activity
of ACT for advanced melanoma in mice [244].

In vivo expansion of T cells by vaccination has limitation
due to the immunosuppressive environment of the tumor,
and clinical trials using vaccine alone do not have signifi-
cant antitumor effect [245]. Combining T cell therapy and
vaccination can also be an alternative approach to facilitate
expansion and maintenance of T cells that survived in poor
immunogenic tumor environment.

7. Future Directions

T cells used in ACT for malignant gliomas have been
developed and will be more advanced to overcome immune
evasion mechanisms and to survive in immunosuppressive
environment employed by the tumor.

Future efforts will need to focus on identification of
patient-specific tumor antigens through highly personalized
approach, development of efficient lymphodepleting regi-
mens prior to T cell transfer, and effective combination
with other therapeutic modalities such as molecular agents
targeting personalized oncogene addiction and potent host
immune modulators.
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