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ABSTRACT Alamethicin, a peptide antibiotic, partitions into artificial lipid
bilayer membranes and into frog myelinated nerve membranes, inducing a
voltage-dependent conductance. Discrete changes in conductance representing
single-channel events with multiple open states can be detected in either frog
node or lipid bilayer membranes. In 120 mM salt solution, the average con-
ductance of a single channel is approximately 600 pS. The channel lifetimes are
roughly two times longer in the node membrane than in a phosphatidyletha-
nolamine bilayer at the same membrane potential. With 2 or 20 mM external
Ca and internal CsCl, the alamethicin-induced conductance of frog nodal
membrane inactivates. Inactivation is abolished by internal EGTA, suggesting
that internal accumulation of calcium ions is responsible for the inactivation,
through binding of Ca to negative internal surface charges. As a probe for both
external and internal surface charges, alamethicin indicates a surface potential
difference of approximately —20 to —30 mV, with the inner surface more
negative. This surface charge asymmetry is opposite to the surface potential
distribution near sodium channels.

INTRODUCTION

It is generally assumed that the ionic channels of excitable membranes are
proteins embedded in a matrix of fluid lipid bilayer. However, virtually
nothing is known about the composition and properties of lipid regions
surrounding channels or about the possible influence of lipid regions on the
channel mechanism. For example, lipids may influence the local environment
near channels by altering the local fluidity or surface charge density. For this
reason, probes of the lipid region of the membrane are needed.

Alamethicin consists of several polypeptide components with molecular
weights of ~2,000 that form voltage-dependent pores across membranes. The
properties of alamethicin in artificial lipid bilayer membranes of varying
composition have been well characterized (Eisenberg et al., 1973; Boheim,
1974; Hall, 1975). The pores most likely consist of aggregates of alamethicin

J- Gen. PaysioL. © The Rockefeller University Press - 0022-1295/82/03/0411/26 $1.00 411
Volume 79 March 1982 411-436



412 THE JOURNAL OF GENERAL PHYSIOLOGY : VOLUME 79 - 1982

monomers spanning the membrane. Pores form when the electric field across
the membrane is increased. As a probe, alamethicin can be used to detect
surface charges and, in a general way, different types of lipid content.

Alamethicin can be incorporated into frog myelinated nerve membranes at
the node of Ranvier (Cahalan and Hall, 1979) or into frog skeletal muscle
fibers (Sakmann and Boheim, 1979). In this paper we report on the properties
of alamethicin in frog nodes of Ranvier. To a first approximation, alamethicin
behaves similarly in frog node or artificial lipid bilayers. The effectiveness and
time-course of channel formation are similar in node or bilayer as is the single
channel conductance. In the nodal membrane with calcium ions in the
external solution and chloride as the internal anion, the alamethicin conduct-
ance turns on exponentially, reaches a peak, and then inactivates. Calcium-
dependent inactivation and the observed asymmetry of the alamethicin
current-voltage relationship both suggest that the membrane region probed
by alamethicin has internal negative surface charges. A quantitative model
for calcium entry and diffusion, presented in detail in the preceding paper
(Hall and Cahalan, 1982), is applied to the node results and provides an
explanation for the observed calcium-induced inactivation.

METHODS

Voltage-Clamped Node of Ranvier

Single bullfrog (Rana catesbiana) myelinated nerve fibers from the sciatic nerve were
dissected and voltage-clamped by a triple vaseline gap technique (Frankenhaeuser,
1957; Dodge and Frankenhaeuser, 1958; Hille, 1971). Sintered Ag/AgCl electrodes,
2 mm in diameter X 4 mm in length, were used to record from the four fluid-filled
pools by way of 1 M KCl agar bridges. A digital computer (Nova 3; Data General
Corp., Westboro, Mass.) delivered voltage steps to the preparation through a 12-bit
digital-to-analog converter (MN563; Analogic Corp., Wakefield, Mass.) and stored
records of the ionic current on disk using a high speed data channel. Current could be
sampled up to 250 kHz using a 12-bit analog-to-digital converter with sample and
hold amplifier (DAS 250B; Datel, Mansfield, Mass.). Data were sampled at a four
times faster rate for the first half of the trace than the second half, normally at 10-us
intervals for recording sodium currents and at 5-ms intervals for recording the slower
alamethicin-induced currents. Fortran computer programs were used to control the
data collection and to analyze and display stored records. The membrane current was
recorded through the axoplasmic voltage drop from the node in pool A to pool E. The
E pool voltage, Vg, was amplified 10- to 100-fold and low pass filtered. For records of
single alamethicin channels, the current signal was filtered with a four-pole Butter-
worth lowpass filter (Datel FLT-U2, corner frequency 500 Hz), and tape recorded
(Tandberg 115 FM instrumentation recorder, Tandberg Radiofabrikk, Oslo, Norway)
with high and low gain channels. Current was calibrated with geometrical measure-
ments of the fiber to determine the axoplasmic access resistance, Rgp, from the fiber
diameter, 4, and the fiber length, /, from the node to pool E, according to Rep = 4p!/
7d®, assuming an axoplasmic resistivity, p, of 110 € cm (Stampfli, 1952; Nonner et al.,
1975; Conti et al., 1976). The resistance Rgp averaged 7.5 M for the 20-pm-Diam
fibers used. All experiments were done at 22°C. The initial resting potential was
assumed to be —80 mV. The membrane potentials were calibrated by checking that
the sodium channel steady-state inactivation (h.) had a value near 0.6 at —80 mV at
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the beginning of the experiment, and that the final membrane potential at the end of
the experiment was near 0 mV afier breaking the membrane with large voltage
pulses.

Solutions

In most of the experiments, the endogenous sodium and potassium conductances were
blocked by cutting the internode in end pools containing isotonic cesium solutions, by
bathing the node in isotonic cesium chloride plus calcium solution with 100 nM
tetrodotoxin, and by holding the membrane potential at —20-0 mV. The composition
of end pool (E and C) and external (pool A) solutions is given in Table 1.

Three forms of alamethicin were used in the experiments: first, a fraction of natural
alamethicin purified by Dr. B. F. Gisin; second, its methyl ester derivative; and third,
a component called fraction 4 purified by Dr. T. M. Balasubramanian. Each of these
alamethicin fractions was active when added to the external solution at 1-5 ug/ml.
The alamethicin conductance is only weakly ion selective, with all cations listed in
Table I being permeant. Cesium is the major current carrier in most of the experi-
ments; in lipid bilayer membranes, cesium and potassium are 1.7 times more permeant
than sodium ions through alamethicin channels.

TABLE 1
SOLUTIONS
Na Cs K Ca Cl EGTA PH
mM
External
Na Ringer 120 — 2 1.8 126 — 14
Cs, 0.2 Ca — 120 _ 0.2 120 — 7.4
Cs, 2 Ca — 120 — 2 124 — 7.4
Cs, 20 Ca — 120 — 20 160 — 7.4
Internal
CsCl — 120 —_ — 120 — 7.2
Cs2 EGTA — 160 — — — 80 7.2

External solutions were buffered with 5 mM MOPS; internal solutions were buffered with 5 mM HEPES.

The magnitude of background “leakage” currents before adding alamethicin was
generally small enough to neglect. However, background currents were subtracted by
comparing pulses before and after adding alamethicin, or by scaling the leakage
current obtained during a pulse too small to turn on alamethicin channels.

Bilayer Experiments

Asymmetric lipid bilayer membranes were formed from monolayers by a modification
of the Mueller-Montal technique as described in the previous paper (Hall and
Cahalan, 1982).

RESULTS
Incorporation of Alamethicin into the Node of Ranvier

Alamethicin partitions into the node membrane from the external solution,
forming conducting pores as detected by an increase in current magnitudes
above background leakage levels in hyperpolarized (i.e., more negative inside)
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potentials. Normally, current-voltage curves in the nearly symmetrical exter-
nal Cs plus 2 mM Ca and internal CsCl solution are linear, with a membrane
resistance of 20-40 M. Fig. 1A illustrates current-voltage curves during a
slow ramp change in potential before and 10 min after adding 5 pg/ml
alamethicin (Ala) to the external solution. Curve 1 is the control I-V, with a
node membrane resistance of 20 MQ. Curve i, with alamethicin present,
deviates from curve i at about —20 mV and also at +70 mV, with increasing
current induced by alamethicin at both hyperpolarized and depolarized
voltages. After subtracting curve i from curve 7, the current component due
to alamethicin is obtained. Hyperpolarizing the membrane turns on conduct-
ing alamethicin pores. For increasingly hyperpolarized voltages, the current
increases exponentially with an approximately e-fold change in conductance
per 10 mV. At depolarized voltages, the current induced by alamethicin is
much more strongly dependent on potential. When examined during step
changes in membrane potential, the alamethicin-induced current has a regen-
erative behavior discussed at the end of Results.

In most artificial lipid bilayer membranes, the alamethicin conductance
varies steeply with voltage with about an e-fold change in conductance for a
4-mV change in potential. Fig. 1B illustrates a typical current-voltage curve
for methylester alamethicin (MeAla) in a symmetrical egg lecithin membrane.
10 min after adding MeAla to one side only, current is observed for both
positive and negative voltages and is nearly symmetrical around 0 mV,
indicating nearly equal partitioning of MeAla at both membrane surfaces.
Although lipid composition is known to alter the steepness of the alamethicin
I-V relation somewhat (Donovan and Latorre, 1979), we attribute most of the
differences between the node I-V curve at hyperpolarized voltages (e-fold per
10 mV) and the bilayer I-V curve (e-fold per 4 mV) to the presence of external
calcium ions in the node experiments and to an internal negative surface
charge, as discussed in the section on calcium-induced inactivation and in the
preceding paper.

The incorporation of alamethicin into the nodal membrane appears to
reach an equilibrium level after ~20 min. Upon washing away the alamethi-
cin, the conductance disappears with a similarly slow time-course. These rates
of equilibration are somewhat slower than in pure lipid bilayer experiments.

Single-Channel Properties

For low doses of alamethicin, a strong hyperpolarizing potential is required to
activate the conductance. With 1-2 pg/ml alamethicin near the normal
resting potential of =80 mV, fluctuations in current due to small numbers of
conducting alamethicin channels can be clearly seen, and current through
individual channels can be resolved. Fig. 2 A illustrates traces recorded at —90
mV after the addition of 1.5 ug/ml fraction 4 alamethicin. Step changes in
current are observed corresponding to at least three conductance levels of
approximately 90, 240, and 390 pS. There may well be other states of
conductance below the resolution of these measurements. Thus in the Ranvier
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Ficure 1. Alamethicin current-voltage relationships in node (A) and lipid
bilayer (B) membranes. (A) The holding potential was —10 mV for a node
bathed in CsCl plus 2 mM CaCl; with 120 mM CaCl internally. The membrane
potential was varied at5 mV/s first in the hyperpolarizing direction, then
depolarizing. The records were taken with and without 5 pg/ml alamethicin in
the external solution. (B) 0.2 pg/ml methylester alamethicin was added to the
front compartment of a symmetrical egg lecithin membrane in 0.1 M KCl
buffered to pH 7.0 with 5 mM HEPES.
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node, as in artificial bilayer membranes and in rat skeletal muscle (Sakmann
and Boheim, 1979), alamethicin forms multi-state pores of large dimension
through discrete transitions. Alamethicin in bilayers expresses several charac-
teristic conductance levels, each with a particular average lifetime. In the
node, three conductance levels are easily observed, though the smallest level
seen in bilayer membranes and in skeletal muscle with a patch electrode
would probably be below the level of background noise. Thus, in the node, we
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Figure 2. Alamethicin single channel records in node (A) and lipid bilayer
(B) membranes. All records were taken at —90 mV membrane potential. (A)
Node with 1.5 pg/ml fraction 4 alamethicin in CsCl plus 2 mM CaCl; and 80
mM Cs; EGTA internally. (B) PE bilayer with 0.087 ug/ml fraction 4 alameth-
icin. The solutions were internal and external node solutions described in the
legend of Fig. 1. The alamethicin was added to the “external” solution side. (C)
“Noisy” channels in node, same conditions and scales as in A.
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may be observing levels 2, 3, and 4, or even 3, 4, and 5. By dividing the
variance of alamethicin-induced conductance by the mean for higher levels of
current, an estimate of the average single-channel conductance of ~0.6 nS
was obtained.

Alamethicin channels have a longer open lifetime in the node than in lipid
bilayer membranes. The average lifetime for the middle conductance level
observed in the node is ~30 ms at —90 mV using fraction 4 alamethicin. Fig.
2B illustrates records at —90 mV in a PE membrane with fraction 4 alameth-
icin. In bilayer membranes formed from PE at —90 mV, the average lifetime
is 15 ms. Thus in frog node, as well as in frog and rat skeletal muscle (Sakmann
and Boheim, 1979), the open alamethicin channels last longer than in PE
lipid bilayer membranes.

In the node membrane, as in lipid bilayer membranes, alamethicin some-
times behaves in a “noisy” manner, lacking clean open channel transitions.
The channel conductance levels seem to be destabilized later in the experi-
ment. Records of “noisy” alamethicin channels are shown in Fig. 2 C.

Kinetics and Dose-dependence of Channel Formation

Fig. 3 illustrates a family of voltage clamp steps for alamethicin in node and
lipid bilayer membranes. In the node, hyperpolarization induces channel

Bilayer Node
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Ficure 3. A comparison of alamethicin-induced current in a PE lipid bilayer
and in a node. Membrane potentials ranged from —70 to +50 mV in 10-mV
increments from a holding potential of 0 mV in the node with 2 pg/ml externally
applied alamethicin. The node was bathed in 120 mM CsCI with 20 mM Ca
and the internodal segment was cut in 120 mM CsCl. In the bilayer experiment,
voltage pulses of 54, 60, 65, 72, and 76 mV were applied, with 0.89 ug/ml
alamethicin in 120 mM CsCl plus 20 Ca.

formation with similar kinetics to the opening of channels in bilayer mem-
branes. The voltage dependence is less steep in the node, and current-voltage
properties will be discussed in the next section.

A detailed study of the concentration dependence of alamethicin in the
node has not been attempted, although there is clearly a steep dependence of
conductance on alamethicin concentration, as there is in bilayer membranes.
The conductance induced by 2 pg/ml alamethicin in the node in similar in
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magnitude to that in PE lipid bilayer membranes at the same membrane
potential.

The general conclusion thus far is that alamethicin acts qualitatively the
same in both node and artificial lipid bilayer membranes, forming a voltage-
dependent conductance through discrete pores of large diameter. Two differ-
ences have been noted. In the node with internal chloride solutions, the
conductance varies less steeply with membrane potential and the channel
open lifetimes are several times longer than alamethicin channels in lipid
bilayer membranes. The next section considers “inactivation” of the alameth-
icin conductance in the node, due to the entry and internal accumulation of
calcium ions.

Ca-induced Inactivation of Alamethicin: Nodes with Internal Cl

During a hyperpolarizing pulse lasting several seconds, the alamethicin-in-
duced current initially rises along an exponential time-course as channels
form. In nodes with CsCl inside and Cs plus 0.2 mM Ca outside, the time
constant for forming channels is ~0.3 s at =70 mV. Fig. 4 illustrates currents
at —70 mV for three different external calcium concentrations. At 0.2 mM

0.2 Ca

2 nA

2 Ca

20 Ca

Ficure 4. Alamethicin kinetics with 0.2, 2, and 20 mM Ca externally, each
with 120 mM CsCl outside, and 120 mM CsCl inside three separate nodes.
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Ca, the current rises and reaches a steady level. For 2 and 20 mM Ca, the
current reaches a peak and then declines or inactivates. The degree of
inactivation is sensitive to the external calcium concentration. Kinetic inacti-
vation is never observed in 0.2 mM Ca, always observed with 2 mM Ca, and
often, though not always, observed with 20 mM Ca. Fig. 5 illustrates currents
during hyperpolarizing pulses to —60 and —70 mV. At —60 mV, the current
levels out at roughly —2 nA. When the membrane is hyperpolarized to =70,
the current reaches a peak and then inactivates. Thus, the degree of inacti-
vation depends on the magnitude of the inward current, as well as the external
calcium concentration.

nA

Ficure 5. Alamethicin kinetics at two potentials. Node holding potential = 0
mV. Pulses are to —60 and =70 mV. 2 ug/ml methylester alamethicin in 20
mM Ca external solution, 120 mM CsCl inside.

External calcium alters the steepness of the current-voltage relationship for
alamethicin, as well as modifying the kinetics during a voltage-clamp pulse.
A family of voltage clamp pulses in 20 mM calcium is illustrated in Fig. 6A.
Alamethicin-induced current is just barely visible for hyperpolarizing pulses
to —30 mV in both 20 mM and 2 mM Ca solutions in this node; calcium ions
seem not to alter the potential for activating conductance for a low density of
channels. The fact that a 10-fold change in calcium concentration produces
no shift in the potential to activate alamethicin conductance may be explained
by postulating that the external surface potential is near zero. Although the
currents do not appear to inactivate during the pulse, the current-voltage
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Ficure 6. Current-voltage characteristics with chloride inside. (A) Voltage-
clamp pulses were given from a holding potential of 0 mV to the potentials
indicated, with 10-mV increments of potential. 2 ug/ml methylester alamethicin
was present externally in 20 mM Ca solution, with 120 mM CsCl inside. At +60
mV, a regenerative current response occurred as described in Results. (B) I-V
curve determined at the end of a 3-s pulse, with 2 pg/ml methylester alamethicin
in 2 and 20 mM Ca external solution; 120 mM CsCl inside.
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curve is less steep than in lower calcium media, which indicates that inacti-
vation has occurred. Fig. 6 B illustrates the /-V curves determined at the end
of 3-s pulses to varying potentials with 2 and 20 mM external calcium. In 20
mM Ca, the I-V curve is less steep. In this node, calcium ions appear to reach
the site for inactivation (at the inner membrane surface) before the current
reaches a peak value, resulting in a decrease in steepness of the current voltage
curve. Recovery from calcium-induced inactivation is quite variable from
node to node with half-times ranging from ~2 to 30 s, perhaps because
diffusion of calcium is expected to be dependent on metabolically active
processes, which could vary from fiber to fiber.

Internal EGTA Prevents Inactivation

In fibers with end pools containing 80 mM EGTA, a calcium chelating agent,
inactivation of the alamethicin conductance is never observed, regardless of
the external calcium concentration or current magnitude. A family of voltage-
clamp current records is shown in Fig. 7 A. The current activates more slowly
and is much more voltage-dependent than the records of Fig. 6 A with chloride
inside the fiber. The current-voltage relation is illustrated in Fig. 7 B.

These results are consistent with the idea that calcium entry through the
alamethicin pores and internal accumulation result in inactivation of the
current in nodes with low calcium-buffering capacity. If the inner surface of
the nodal membrane has negatively charged groups, the field within the
membrane during a hyperpolarizing pulse will initially bias the channels
toward pore formation, resulting in an inward current carried by Cs and Ca.
Later on, as calcium enters through alamethicin channels and accumulates,
the field sensed by alamethicin will decrease, tending to bias the channels to
the closed position. Internal EGTA will bind calcium ions as soon as they
enter, thereby preventing kinetic inactivation and steepening the voltage
dependence.

Alamethicin as a Probe of Surface Potentials at the Node

The alamethicin conductance is extremely sensitive to membrane potential in
both node and bilayer membranes. Alamethicin behaves as a dipole that
senses the field within the membrane, and is therefore a sensitive probe for
alterations in surface charge density. In lipid bilayer experiments, calcium
ions resulted in a substantial shift in the alamethicin current-voltage curve in
membranes containing negatively charged PS, but no shift in membranes
formed from neutral PE (Hall and Cahalan, 1982). Because of shape changes
in the I-V curve resulting from Ca-induced inactivation, the shift is most
accurately measured for very low current densities to determine the “switching
voltage,” the potential that is just barely adequate to turn on a detectable
number of channels. In the node of Ranvier, the switching voltage changed
by less than 10 mV in six experimental determinations for a calcium concen-
tration change of 0.2 to 2 mM in one experiment, and from 2 to 20 mM in
five other experiments. When external calcium is varied, the I-V relationship
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changes in steepness if chloride is the internal anion, but the switching voltage
does not change, as illustrated in Fig. 6 B. Thus, alamethicin is not influenced
by adjacent external negative surface charges in the node. The sodium channel
has quite a different local surface potential than the region of membrane
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Ficure 7. Current-voltage characteristics with EGTA inside. (A) Voltage-
clamp pulses delivered from 0 mV holding potential in 10-mV increments. 2
pg/ml methylester alamethicin added to 20 mM Ca external solution, with 80
mM Cs; EGTA inside. A regenerative current response occurred at +80 mV.
(B) I-V curve determined at the end of a 3-s pulse, same conditions as in A.

probed by alamethicin. The external surface charge density near sodium
channels is about 1 e per 100-200 A? (Hille et al., 1975); a 10-fold change in
Ca concentration from 2 to 20 mM results in a 20-25 mV shift of the
permeability-voltage relation.
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Although the external surface seems to lack negative charges near alameth-
icin, two experimental findings argue for an internal negative surface charge.
First, the inactivation induced by internal calcium accumulation can be
accounted for by a negative surface potential. Qualitatively, the inactivation
observed agrees with our model for alamethicin-induced calcium entry and
binding to the inner surface charges (see Discussion) and can be mimicked in
asymmetric lipid bilayer membranes with calcium ions on the side opposite to
negatively charged PS (Hall and Cahalan, 1982). Second, the current-voltage
curve with the methylester derivative is markedly asymmetric in the node, as
shown in Fig. 7 B. The switching voltage in this node was +80 mV for turning
on conductance with depolarizing pulses, but only —10 to —20 mV for turning
on conductance with hyperpolarizing pulses. A similar asymmetry of the
current-voltage relation was illustrated in Fig. 6 B for a node with internal
chloride. In lipid bilayer membranes with methylester alamethicin added to
one side, the current voltage curve is within 5 mV of being symmetrical (see
Fig. 1 B), indicating that this derivative partitions nearly uniformly across the
membrane. The observed asymmetry in the node I-V relation would indicate
an excess of negative charge on the inner surface compared with external
surface. The asymmetry of the methylester alamethicin current-voltage curve
is 40-60 mV and allows us to estimate a difference in surface potential of 20-
30 mV at the inner and outer membrane surface. Taken with the Ca-induced
inactivation and the minimal effect of external calcium concentration on
switching voltage, a negative surface potential of roughly 20-30 mV is
indicated at the inner membrane surface, with very little external negative
surface charge.

Regenerative Girrent Responses

For depolarized voltages, the conductance induced by alamethicin appears to
be regenerative in the node of Ranvier. Fig. 8 illustrates currents during pulses
to +60 and +70. mV in the presence of 2 ug/ml alamethicin. At 60 mV, only
background leakage current is recorded, but when the voltage is increased by
10 mV, the current suddenly activates and rises out of control to a very high
level. A large tail current after the depolarizing pulse is observed if a
regenerative response is elicited. This tail current representing a leaky nodal
membrane is often too large for the voltage clamp to maintain a constant
membrane potential. Occasionally, the node recovers after a regenerative
response and the experiment can continue.

The origin of the regenerative response for depolarizing voltages, also seen
in Figs. 1 A, 6 A, and 7 A, is not certain, but the response is consistent with
the internal negative charge postulated above. As the voltage is made suffi-
ciently positive to turn on a small alamethicin conductance, calcium entry
and subsequent reduction of the internal negative surface potential by calcium
binding would alter the electric field across the membrane. This alteration
would be of the same sense as an additional depolarization and would turn on
additional alamethicin conductance accelerating in turn the rate of calcium
entry. The depolarizing response is thus regenerative.
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Unlike the inactivating hyperpolarizing response, the depolarizing regen-
erative response can occur even if the fiber ends are cut in 80 mM EGTA. Fig.
7A shows a regenerative response at +80 mV with internal EGTA. This makes
qualitative sense because the hyperpolarizing response is self-limited, but the
depolarizing response is inherently unstable and once initiated will continue
until the calcium flux ceases. This instability virtually guarantees that calcium
influx will overwhelm local internal calcium buffering. Additional possible
explanations for the depolarizing regenerative response include incomplete
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Ficure 8. Regenerative current response at +70 mV with 2 ug/ml methylester
alamethicin in 20 Ca external solution and 120 mM CsCl inside. Current at
+60 mV shows no alamethicin activity. At +70 mV, the current becomes
regenerative as soon as alamethicin activity begins.

equilibration of alamethicin at the inner surface of the membrane (see
Schindler, 1979) or perhaps flip-flop of some lipid component induced by
alamethicin leading to an increase in the field across the membrane (Hall,
1981). Regenerative responses are not observed for hyperpolarized voltages
from 0 to about —100 mV. However, at more negative potentials, the current
activated by alamethicin can also rise out of control. This response may
represent membrane breakdown caused by large current magnitudes allowing
calcium entry for several seconds.
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Indirect Effect of Alamethicin on Sodium Channels

With a low concentration of alamethicin that turns on more negative than
=80 or —90 mV, one can study the properties of endogenous sodium or
potassium channels in the presence of nonconducting alamethicin. In this
experiment, the fiber was cut in end pools containing isotonic CsCl and the
node was bathed in normal Ringer solution. Fig. 9 A illustrates the steady-
state voltage dependence of sodium inactivation before (open circles) and
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Ficure 9. (A) Sodium channel steady-state inactivation (hs) curves before
and after adding 1.25 pg/ml alamethicin to normal Ringer solution with 120
mM internal CsCl. The squares and triangles represent the h. curve for the
control and 10 min after adding alamethicin. Immediately after the second h.,
curve was determined, a pulse to 110 mV lasting 3 s turned on an alamethicin
conductance peaking at 10 nA. Then the h,, curve was determined again from
the holding potential of —90 mV resulting in the shifted (s) curve. (B) Use-
dependent block by QX314. 10 mM QX314 was added to normal Ringer
solution with 1.25 ug/ml fraction 4 alamethicin. No effect of either agent on
sodium channel kinetics was observed until a single pulse lasting 3 s to —110
mV activated 9 nA of inward current. The records show decreasing sodium
currents during repetitive pulses to —10 mV at 2 Hz, applied immediately after
the alamethicin-induced current.
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after adding 1 pg/ml alamethicin. At the holding potential of —90 mV,
~3/4 of the sodium channels are available to be opened by brief depolarizing
test pulses. Hyperpolarizing conditioning pulses lasting 50 ms remove inacti-
vation, but do not result in alamethicin-induced influx. The presence of
nonconducting alamethicin does not alter sodium channel properties. How-
ever, after activating alamethicin conductance and therefore calcium entry
with a 3-s pulse to —110 mV, the steady-state inactivation curve is shifted
toward more hyperpolarized potentials. This is consistent with a reduction of
internal negative surface near the sodium channel gates, as a result of calcium
influx induced by alamethicin.

Alamethicin can also be used to deliver normally impermeant drug mole-
cules to the inside of the cell. Externally applied 10 mM QX-314, a charged
lidocaine derivative, normally produces no effect on the sodium currents, but
internal QX-314 results in accumulating “use-dependent” block of sodium
current upon repetitive pulsing (Strichartz, 1973; Cahalan and Almers, 1979).
The addition of external 1 pug/ml alamethicin plus QX-314 results in no
alteration of sodium currents until a hyperpolarizing pulse is delivered to
activate alamethicin conductance. Then, use-dependent block of sodium
current is observed (Fig. 9 B), presumably due to entry of QX-314 through
open alamethicin pores, resulting in axoplasmic accumulation of the drug.

DISCUSSION
Alamethicin as a Probe of Nerve Membrane Properties

Myelinated nerve fibers are specialized for rapid propagation of the action
potential, with a high density of sodium channels at the nodes. There are
~10° sodium channels per node, each with a conductance of 7-8 pS, corre-
sponding to an average density of ~2,000 per um® (Conti et al., 1976;
Sigworth, 1977). A similarly high number of potassium channels are present
in frog node, though in mammalian fibers, potassium channels seem to be
mainly present in the paranodal region (Chiu and Ritchie, 1980). There are
very few sodium channels underneath the insulating myelin of the internode
(Ritchie and Rogart, 1977). The mechanism for this uneven distribution of
sodium channels in the membrane is not understood. Protein ionic channels
must occupy a large fraction of the nodal surface. Nevertheless, alamethicin
forms conducting channels presumably by incorporating into lipid bilayer
regions of the node. The effectiveness of channel formation for a given
concentration of alamethicin in either node or bilayer is similar, which suggests
either that the protein does not represent a barrier to incorporation of
conducting alamethicin pores in the node or that negative surface charges aid
in pore formation in the node.

The properties of alamethicin in the node are similar though not identical
to its behavior in artificial lipid bilayer membranes formed with a variety of
lipid components. The conductance varies steeply with membrane voltage. In
nodes with internal EGTA or low external calcium, conditions that avoid Ca-
induced inactivation, the conductance varies e-fold in 4 mV, as it does in lipid
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bilayer membranes. The kinetics of channel formation are similar in node and
bilayer, with an exponential time-course requiring seconds after hyperpolar-
izing for a steady level in nodes with EGTA inside to prevent inactivation.
Three conducting levels of individual alamethicin pores have been resolved in
the node, where in bilayer membranes there are least seven levels, some of
which are too small to resolve with the node voltage clamp. Qualitatively,
then, alamethicin works in the node as it does in lipid bilayer membranes.

Alamethicin reports changes in membrane surface potentials. In asymmetric
lipid bilayer membranes with negatively charged phosphatidyl serine on one
surface and neutral phosphatidyl ethanolamine on the other surface, the
alamethicin current-voltage curve is markedly asymmetric, even using the
methylester derivative of alamethicin which forms nearly symmetrical I-V
curves in symmetrical membranes. The I-V curve for alamethicin in the node
is asymmetric; larger depolaring pulses are required to activate alamethicin
conductance than hyperpolarizing pulses. This asymmetry averaged —50 mV
in five determinations, and tended to be somewhat larger in nodes with
internal EGTA.

The asymmetry of the alamethicin I-V curve could be explained in two
ways. First, the methylester alamethicin may not equilibrate at the inner
surface of the node, and therefore would require a larger field across the
membrane to activate conductance in the depolarizing limb of the I-V curve.
Arguing against this idea, however, is the finding that in symmetrical lipid
bilayer membranes, the methylester derivative of alamethicin induces a
symmetrical I-V curve (see Fig. 1B). Second, the asymmetry may be due to a
difference in surface and/or dipole potentials between the inner and outer
surface of the node membrane. An internal negative surface potential differ-
ence of —20 mV to —30 mV with no external surface potential could account
for the I-V asymmetry. The second hypothesis is favored by our result with
changes in the external calcium concentration. In lipid bilayer membranes,
calcium shifts the alamethicin I-V curve when added to a membrane with PS,
but produces no shift when added to a neutral PE membrane (Hall and
Cahalan, 1982). In the node of Ranvier, the switching voltage to activate a
Jjust-detectable alamethicin conductance does not shift noticeably with a 10-
fold change in external calcium. This would indicate a virtual absence of
negatively charged lipid at the external surface near alamethicin. Further-
more, calcium results in a time-dependent inactivation of alamethicin during
a maintained hyperpolarizing pulse, provided internal Ca chelating agents
are not present. We believe that the inactivation is due to a reduction in the
internal surface potential during a pulse as calcium ions accumulate.

Fig. 10 summarizes our view of the surface potential profile for lipid regions
of the node of Ranvier. The solid line shows the hypothetical potential sensed
by the sodium channel gating mechanism for a membrane potential of —75
mV, with the external surface potential more negative than the inside (Hille
et al,, 1975). The proposed surface potential profile sensed by alamethicin is
represented by the dashed line, with the inner surface more negative. The
field within the membrane is much higher in the lipid region than near the
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sodium channel, due to the asymmetric distribution of negative charges. The
identity of this charged component is not known. Measurements in the node
using the lipophilic anion, dipicrylamine, as a probe also indicate an asym-
metry of surface charges with a zero-field membrane potential of +30 mV
(Benz and Nonner, 1981).

Lipids are known to be distributed asymmetrically in disc membranes of
vertebrate rod outer segments, in red blood cell membranes, and in other
types of membranes. Usually the cytoplasmic surface has a predominance of
phosphatidylserine, which would contribute a bias to the field across the
membrane, similar to the node (Op den Kamp, 1979). Interestingly, the
sodium channel has a surface potential bias in the opposite direction (see Hille
et al., 1975 and Fig. 10). The sodium channel through negatively charged
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Ficure 10. Hypothetical surface potential profile near sodium channel (solid
line) and near alamethicin channels incorporated into the node (dotted line).
The surface potentials that alter sodium channel gating properties were taken
from Hille et al. (1975, Model I, Fig. 8), with the external surface charge density
larger than the inside. The alamethicin surface charge profile is asymmetric
with the inner surface more negative.

protein groups or perhaps specific boundary lipids, has a voltage dependence
for gating shifted to more negative potentials, making it easier for the
membrane potential to reach threshold for the action potential.

In comparing the behavior of the probe in biological membranes and lipid
bilayer membranes, the presence of negative surface charges must be taken
into account. For example, the effective field biasing the alamethicin con-
ductance at a membrane potential of =90 mV would be —120 mV if there is
a negative internal surface potential of —30 mV. The added bias would
lengthen the open time for conducting channels and tend to make alamethicin
more effective for a given aqueous concentration. The unusually long open-
channel time in both skeletal muscle (Sakmann and Boheim, 1979) and nerve
(see Fig. 2) at =90 mV should be compared with bilayer results at a more
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hyperpolarized potential. Then, the discrepancy between the channel lifetimes
in biological and lipid bilayer membranes would be reduced because channels
tend to remain open longer for stronger fields across the membrane. Thus,
surface potentials in the node could account for some of the lengthening of
channel lifetimes in biological membranes compared to lipid bilayer mem-
branes. The presence of cholesterol may also contribute to longer channel
lifetimes (Latorre and Donovan, 1980). If we attempt to correct the dose-
response properties of alamethicin in node for an internal negative surface
potential, we come to the tentative conclusion that a major fraction of the
nodal area is not available for alamethicin to form channels. This conclusion
would agree with the results of Benz and Nonner (1981), who found ~10% of
the expected current carried by the lipophilic anion, dipicrylamine, in the
node of Ranvier.

Ca-induced Inactivation

The decline in alamethicin-induced current during a maintained hyperpolar-
izing pulse (Figs. 4 and 5) is due to calcium entry through open alamethicin
channel and accumulation inside the node. The degree of inactivation is
modulated both by external calcium concentration (Fig. 4) and by the internal
calcium buffering capacity of the axoplasm (Figs. 6 and 7). We can account
for this inactivation of alamethicin-induced conductance by postulating the
presence of negative surface charges on the inside of the membrane to which
calcium ions may adsorb and/or bind. A quantitative model for this mecha-
nism applicable to lipid bilayers is presented in the preceding paper (Hall and
Cahalan, 1982). The model takes into account calcium diffusion within
unstirred layers on either side of the membrane, calcium flux through con-
ducting alamethicin channels and calcium binding to negative surface charges.
Normally the calcium concentration inside the node is probably very low,
perhaps 107-10® M, resulting in near maximal negative surface potential,
When alamethicin channels open in response to a change in membrane
potential, calcium ions enter the node through the open alamethicin channels.
Inside the node, the calcium ions bind to negative surface charges, reducing
the electric field across the membrane and inactivating the alamethicin
conductance induced by hyperpolarizing potentials.

The bilayer model, although qualitatively consistent with our observations
in node, must be modified to give the proper degree of inactivation at nodal
current densities. We have found two plausible modifications of the model
that give adequate quantitative agreement. The diffusion coefficient inside
the node can be reduced by two orders of magnitude in accord with estimates
of calcium diffusion in axoplasm (Baker et al., 1971), or a calcium-reflecting
barrier can be put ~4 um away from the membrane to approximate the nodal
geometry. Both these procedures increase the amount of calcium accumulated
at the surface for a given calcium influx. With the calcium-reflecting barrier,
the degree of inactivation in the model is far less sensitive to changes in
calcium diffusion coefficient than in its absence.

The predictions of the model for a surface charge density of 1 electronic
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charge every 500 A? (corresponding to a surface potential of —30 mV) are
shown in Figs. 11 and 12. Fig. 11 shows the degree of inactivation at three
different calcium concentrations (cf. Fig. 4 for corresponding node results). In
both the model and the node, inactivation is more pronounced at higher
external concentrations, a consequence of more rapid calcium entry.

Fig. 12 shows the degree of inactivation predicted for two different mem-
brane potentials —60 and —70 mV (cf. Fig. 5 for node data). With 20 mM
external calcium, the calcium concentration near the membrane surface (but
far enough away to be unaffected by the negative charge) rises rapidly in the
model, reaching ~0.15 mM at the pak of the alamethicin-induced conductance
and reaching 0.4 mM after 5 s. The calcium concentration at the membrane
surface would be ~10 mM because of the negative surface charge.

Similar inactivation has been demonstrated in lipid bilayers. Alkylammon-
ium derivatives can press through the monazomycin channel, and by binding
to the membrane alter the surface potential (Heyer et al., 1976). Local
anesthetics and pancuronium pass through the alamethicin channel and alter
surface potential again by binding to the surface (Donovan and Latorre,
1979). Our proposed mechanism for inactivation is similar to inactivation by
these hydrophobic compounds, but requires the presence of negative surface
charges that can bind calcium.

It seems possible that this type of internal surface charge-calcium ion
interaction could have important physiological consequences in regulating
membrane excitability, neurosecretion, and other functions where calcium
may have a role in intracellular signalling. Voltage-dependent conductances
at nerve terminals or rod outer segments, for example, would be altered when
the local internal calcium concentration changed as a result of activity. A
requirement for this mechanism to operate is a sufficiently rapid calcium
entry or release from an internal store into a limited volume to allow calcium
to accumulate near a membrane with negative surface charges.

Endogenous voltage-dependent calcium channels have been studied using
voltage clamp techniques in squid presynaptic terminals (Llinas et al., 1976),
molluscan neurons (see review by Adams et al., 1980), skate electroreceptors
(Clusin and Bennett, 1977), skeletal (Almers and Palade, 1981) and cardiac

Ficure 11. (opposite) Simulations of calcium-induced inactivation generated
by the model described in the companion paper (Hall and Cahalan, 1982). The
surface charge inside the node is set at 0.0020 electronic charges/A?. The outside
diffusion constant of calcium is 6.2 X 107 cm?/s. The inside diffusion constant
is 6.2 X 10™® cm?/s. The unstirred layer thickness is 50 pm. The calcium-
reflecting barrier is 10 pm from the inside membrane surface. We have used 12
liters/mol as the binding constant, the value for calcium binding to phosphatidyl
serine (McLaughlin et al., 1980). The alamethicin conductance and time
constant were adjusted for best fit, but the voltage dependence of the alamethicin
conductance parameters was determined by measurement and was such that an
e-fold rate of change in initial conductance occurred for a 6.9-mV voltage
change and an e-fold change in time constant occurred for a 10-mV voltage
charge. External calcium varied from 0.2 (A) to 2 (B) to 20 mM (C).



432 THE JOURNAL OF GENERAL PHYSIOLOGY - VOLUME 79 - 1982

muscle (see review by Reuter, 1972), and neuroblastoma cells in culture
(Moolenaar and Spector, 1979). Because of the difficulty in separating the
many components of ionic current sometimes including calcium-activated
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Ficure 12. (A) Simulations of calcium-induced inactivation for voltage pulses
of 60 and 70 mV. The parameters are the same as those of Fig. 11, except that
the alamethicin concentration and time constant were charged to give the best
fit to experimental data. (B) Plot of the dependence of calcium concentration,
several debye lengths from the interior aspect of the membrane as a function of
time for a 70 mV voltage pulse applied at ¢ = 0. The parameters match those in
A. The concentration near the charges would be about 10 mM, taking into
account the 30-mV surface potential due to the surface charge.

potassium currents 'in these preparations, the kinetics of calcium channel
gating remain controversial. Inactivation of calcium current has been de-
scribed in some preparations, but has been found to be slower or incomplete
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in cells that have been injected with calcium chelating agents (see Adams et
al.,, 1980). Indeed, inactivation of calcium channels may depend directly upon
calcium entry and internal accumulation (Tillotson, 1979). The surface charge
mechanism that we propose for the inactivation of alamethicin-induced
conductance in nodes could not account for calcium channel inactivation by
shifting the voltage dependence for the activation gates of calcium channels.
Rather, internal accumulation of calcium would enhance activation, because
calcium binding to an internal negative surface charge would mimic further
depolarization. In this way, the activation curves for calcium channels could
be steepened as a result of calcium entry. However, if there is an endogenous
voltage-dependent inactivation gate that closes the calcium channel during
prolonged depolarization, its action would be enhanced by the surface charge
mechanism we describe. Recovery from inactivation of calcium channels has
a slow component lasting seconds (Adams and Gage, 1979; Tillotson and
Horn, 1978); perhaps this component represents unbinding of calcium and
diffusion away from a charged membrane component that modulates inacti-
vation.

Potential Applications of Alamethicin in Cell Membranes

We have shown that alamethicin provides a useful probe to investigate
membrane surface charges. Charge asymmetries in lipid bilayer regions can
be revealed from the current-voltage characteristics of alamethicin. As more
is understood about the influence of different lipid composition on the
alamethicin channels, alamethicin will be used to determine the nature of
lipid environments surrounding ionic channels. These studies could be of use
in selecting a membrane for reconstitution of isolated channels into lipid
bilayers. Alamethicin channels have a prolonged lifetime in both nerve (see
Fig. 2) and muscle (Sakmann and Boheim, 1979) membranes. In part, this
may be due to negative surface charges on the inside of the membrane, biasing
channels on. The long channel lifetimes may also be due to a particular phase
for lipids surrounding channels or perhaps a requirement for cholesterol or
some other lipid constituent that helps to stabilize conducting channels. The
sodium channel has a bias potential opposite to that which alamethicin senses.
The increased external negative surface charge density near sodium channel
gates could indicate a requirement for particular negatively charged boundary
lipids to surround the sodium channel or it could represent the existence of
numerous acidic groups on the channel protein. Tetrodotoxin binding sites
isolated from eel are highly acidic proteins with a requirement of specific
lipids for stability (Agnew and Raftery, 1979). The chemical nature of surface
charges that influence sodium channel gating is still unknown.

Alamethicin should also be useful as a means of loading cells with interesting
substances under membrane potential control. The open alamethicin channel
is a very large pore through which monovalent cations, divalent cations, local
anesthetics, lipids, and even ATP can permeate. We have shown that calcium
ions and a charged local anesthetic derivative can be introduced inside the
node through alamethicin channels. The ionophore nystatin has been used to
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replace internal potassium with cesium in molluscan nerve cell bodies (Russel
et al., 1977; Tillotson, 1979). Alamethicin could provide certain advantages
over nystatin, because its conductance is voltage-dependent and activates
during long duration hyperpolarizing pulses. With a low dose of alamethicin
(1 pg/ml in frog node) the resting potential would be normal and alamethicin
would be nonconducting over the depolarized range of membrane potentials.
Alamethicin could then be used to deliver calcium, monovalent ions, or
metabolically active compounds to the inside of cells. There has been consid-
erable interest in treating cells with vesicles or lysolecithin to introduce
substances into cells (Baserga et al., 1979). Alamethicin provides an alternative
approach: a voltage-dependent conductance activated by membrane hyper-
polarization.
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