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Purpose: To automate the segmentation of retinal layers, we propose DeepRetina, a
method based on deep neural networks.

Methods:DeepRetina uses the improvedXception65 to extract and learn the character-
istics of retinal layers. The Xception65-extracted feature maps are inputted to an atrous
spatial pyramid pooling module to obtain multiscale feature information. This informa-
tion is then recovered to capture clearer retinal layer boundaries in the encoder-decoder
module, thus completing retinal layer auto-segmentation of the retinal optical coher-
ence tomography (OCT) images.

Results:We validated this method using a retinal OCT image database containing 280
volumes (40 B-scans per volume) to demonstrate its effectiveness. The results showed
that the method exhibits excellent performance in terms of the mean intersection over
union and sensitivity (Se), which are as high as 90.41 and 92.15%, respectively. The inter-
section over union and Se values of the nerve fiber layer, ganglion cell layer, inner plexi-
form layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, outer limiting
membrane, photoreceptor inner segment, photoreceptor outer segment, and pigment
epithelium layer were found to be above 88%.

Conclusions:DeepRetina can automate the segmentationof retinal layers andhasgreat
potential for the early diagnosis of fundus retinal diseases. In addition, our approachwill
provide a segmentation model framework for other types of tissues and cells in clinical
practice.

Translational Relevance:Automating the segmentation of retinal layers can help effec-
tively diagnose and monitor clinical retinal diseases. In addition, it requires only a small
amount of manual segmentation, significantly improving work efficiency.

Introduction

Fundus retinal diseases are very commonly
diagnosed by ophthalmologists, and most fundus
diseases are caused by retinopathy.1,2 It is estimated
that more than 300 million people worldwide have
fundus diseases such as age-related macular degener-

ation (AMD), diabetic retinopathy (DR), and central
serous chorioretinopathy.3,4 Studies have shown that
in most fundus diseases, retinal morphologic changes
are observed earlier than visual field changes, and
the analysis of retinal morphologic structure using
specific and sensitive methods will contribute to the
early detection of fundus retinal diseases. Therefore,
performing a retinal layer analysis is essential for the
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Figure 1. Interlaminar structure diagram of the retinal OCT cross section of the macular area.

early diagnosis and timely treatment of retinal diseases.
In recent years, retinal fundus images have been widely
used in the diagnosis, screening, and treatment of
retinal diseases.5 Automating the segmentation of
retinal layers in retinal optical coherence tomogra-
phy (OCT) images can help effectively diagnose and
monitor retinal diseases. In this study, the 10-layer
structure of the retina, including the nerve fiber layer
(NFL), ganglion cell layer (GCL), inner plexiform
layer (IPL), inner nuclear layer (INL), outer plexiform
layer (OPL), outer nuclear layer (ONL), outer limit-
ing membrane (OLM), photoreceptor inner segment
(IS), photoreceptor outer segment (OS), and pigment
epithelium layer (PEL), is analyzed.6 Figure 1 shows
the retinal OCT cross section of the macula region,
including the different layers of the retina.

OCT is a noninvasive, real-time, micro-resolution
medical imaging tool for micro-resolution volumetric
scanning of biological tissues and is ideal for examining
fundus nerve tissue.7 A quantitative analysis of retinal
OCT images is critical for the diagnosis and treatment
of retinal diseases; however, retinal OCT images are
susceptible to speckle noise, and the contrast between
adjacent faults is small, making it difficult to accurately
segment the images. Therefore, automatic segmenta-
tion of the retinal layers in retinal OCT images is of
great significance for the diagnosis and treatment of
fundus retinal diseases.

In recent decades, computer-aided analysis methods
for the segmentation of retinal OCT images have
become increasingly popular, including automatic
segmentation methods. In the development of
computer-aided diagnostic systems for ophthalmic
diseases, automatic segmentation of the retina has
been considered a critical and challenging step.8 First,
it is difficult to accurately segment the retinal layers
because of the complexity of retinal OCT images and
the limited resolution of the OCT scanning system.9
Second, affected by retinal diseases, the retinal layer
may deteriorate and cause severe deformation.10,11
Although many algorithms for segmenting the retinal

layer have been developed,12–22 these algorithms have a
problem in that some layers are not segmented, which
remains a daunting task. Existing retinal OCT image
segmentation methods are mainly based on the active
contour, classifiers, three-dimensional map search, and
deep learning.

Gawish et al.23 proposed the use of active contours
for the stratification of fundus retinal OCT images.
They used continuous curves and energy function
to transform the process of segmentation into a
process of solving the minimum value of the energy
function. The position of the curve corresponding to
minimum energy is the contour of the layer. Although
this method improves the antinoise performance and
accuracy to some extent, the time complexity of this
algorithm is high and sensitive to the initial position of
the contour.

Abràmoff et al.24 proposed a classifier-based
method based on support vector machine (SVM)25 and
fuzzy c-means clustering.26 The SVM-based segmen-
tation classifies image pixels in the feature space of the
image, thus realizing image segmentation. The fuzzy
c-means clustering-based segmentation determines the
region to which the image pixels belong, thus realizing
automatic segmentation of the fundus OCT image.
With the gradual optimization of algorithms,27 the
segmentation accuracy of such methods has been
improved to within 2 pixels.

Hussain et al.28 used the graph theory method
to divide a fundus OCT image into nine layers.
This method involves dividing the graph into several
subgraphs by continuously removing specific edges in
the graph for an accurate image segmentation. Graph-
based methods include GraphCut,29 GrabCut,30 and
RandomWalk.31 Although the accuracy of this type of
method can reach 1 pixel, it takes pixels as nodes and
is easily affected by noise and image degradation.32–37

The segmentation algorithms have certain limita-
tions in automatically segmenting the retinal layers in
retinal OCT images. In the field of deep learning–
based segmentation, Fang et al.38 proposed a
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convolutional neural network (CNN) and graph
search–based method. They used a CNN to extract
effective features of specific retinal layer boundaries
and applied graph search methods on the probabil-
ity maps generated by the CNN to obtain the final
boundaries. Although this method can automate the
segmentation of nine-layer boundaries of retina to
some extent, the computational burden of this method
is high and sensitive to the position of the boundaries.
Roy et al.39 proposed the ReLayNet with fully convolu-
tional deep architecture, for end-to-end segmentation
of retinal layers. They used encoders to learn a hierar-
chy of contextual features, followed by decoders for
semantic segmentation. Although ReLayNet exhibits
well performance in segmentation of retina, it is
easily affected by image degradation and poor spatial
resolution. Apostolopoulos et al.40 proposed the fully
convolutional neural network architecture, which
combines dilated residual blocks in an asymmetric
U-shape configuration. Overall, it demonstrates low
computational costs and high performance, but it faces
difficulties in segmenting all retinal layers accurately.
Pekala et al.41 proposed automated approach segment
images using fully convolutional networks (FCNs)
together with Gaussian process–based regression. In
aggregate, the proposed methods perform favorably,
but its segmentation accuracy is not high. He et al.42
proposed a cascadedFCN framework and transformed
the layer segmentation problem from pixel labeling into
a boundary position regression problem. Although this
method takes the topologically unconstrained results,
there is some deviation in the segmentation of retina
layer. Sedai et al.43 proposed a method for retinal layer
segmentation and quantification of uncertainty based
on Bayesian deep learning, and its average execution
time for the retinal layer segmentation per image is
somewhat slow. In addition, Shah et al.44 proposed a
CNN-based framework to segment multiple surfaces
simultaneously. Guo et al.45 proposed an automated
method to segment seven retinal layer boundaries
and two retinal plexuses in wide-field OCTA images.
Hamwood et al.46 proposed a convolutional neural
network approach for automatic segmentation of
OCT retinal layers; the method is applied to detect
the probability of retinal boundary locations in OCT
images, which are subsequently used to segment the
OCT image using a graph-search approach.

Chen et al.47 proposed an encoder-decoder model
with separable convolution for image semantic segmen-
tation. Based on this model, we carried out exper-
iments and proposed a new DeepRetina method
for the automatic segmentation of retinal layers in
retinal OCT images. DeepRetina is based on a deep
neural network; we improved Xception48 and used

the improved Xception65 as the backbone network to
extract and learn the characteristics of retinal layers.
Xception65-extracted feature maps are inputted to
an atrous spatial pyramid pooling (ASPP) module,49
and multiscale feature information is obtained. The
encoder-decoder module47,50 is then used to recover
the retinal information to capture a clearer retinal layer
boundary. The segmentation result is optimized, and
the automatic segmentation of the retinal OCT image
is completed. This study is expected to promote the
application of deep learning–based retinal segmenta-
tion methods for ophthalmic imaging. The research
results have important practical significance for the
early diagnosis and therapeutic monitoring of retinal
diseases.

The rest of this article is organized as follows. The
research method is described in the second section,
including the details of DeepRetina and its applica-
tion to the automatic segmentation of retinal OCT
images. In the third section, the segmentation results
of the retinal OCT image are given. The fourth and
fifth sections present the discussions and conclusions,
respectively.

Materials and Methods

Database Experiment

The database used in this study was a retinal OCT
image database jointly maintained by the Shenzhen
Eye Hospital affiliated with Jinan University and the
Shenzhen University School of Medicine. The image
database was scanned using a standard Cirrus HD-
OCT (Carl Zeiss AG, Jena, Germany) device at 564
× 375 pixels and contained 280 volumes for a total
of 11,200 images (40 B-scans per volume). The 40 B-
scans per volume were scan centered at the fovea and
20 frames on either side of the fovea (fovea slice and
scans laterally acquired at ±1, ±2, ±3,…, ±20 from
the fovea slice). Figure 2a shows an example of the
obtained retinal OCT image, which is an RGB image
of 564 × 375 pixels.

We randomly selected 7840 images from
196 volumes as the training set and the remaining
84 volumes, for a total of 3360 images, as the testing
set (280 volumes were divided into 196 volumes and
84 volumes; each volume was different, and the
randomization was performed at the patient level).
The ratio of the training set to the testing set was 7:3.
Our data set included control subjects and patients
with age-related macular degeneration and diabetic
retinopathy, and the ratio of controls to patients
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Figure 2. (a) Retinal OCT image and its annotation example. (b) The green line indicates the retinal layer, which forms a closed curve. Each
closed curve represents a layer of retina containing 10 closed curves whose estimates do not cover the entire image.

Figure 3. Example of the original image of the retina and its corresponding label. (a) Original image of the retina with 564 × 375 pixels.
(b) Label diagram labeled and converted using Labelme, with 10 different colors representing the 10 layers of the retinal structure.

was 9:1. We invited a clinical expert (Shenzhen Insti-
tute of Ophthalmology Prevention, Shenzhen Key
Laboratory of Ophthalmology, deputy chief physician
of the Medical Imaging Department of Shenzhen
Eye Hospital Affiliated to Jinan University) who has
performed retinal segmentation for more than 10 years
to label the data using the deep learning annotation
tool Labelme (for manually drawing boundaries on
the target to generate network-trainable JSON files,
including the target location area and tag name), as
shown in Figure 2b. Each layer of the retina after
labeling had its own unique regional color (i.e., pixel
value) and label name. The pixel values and label names
of the same type of retinal layers were the same but
different for the different retinal layers. Each image
calibrated by the expert was marked with 10 layers of
the retinal structure. Figure 3 shows the original image
of the retina and its corresponding label. A complete
retinal OCT image database was obtained after the
data labeling was completed.

For further performance validation on diseased
retinas, we used the publicly available Duke data set.51

The data set includes 110OCTB-scan images spanning
10 different patients with diabetic macular edema, with
11 B-scans per patient, and each image consisted of
740 × 512 pixels.

Method Overview

DeepRetina uses the expert-labeled retinal OCT
image database as the training sample. Before
inputting to the depth network model, the train-
ing data are preprocessed to overcome the low
resolution of the retinal OCT images, low contrast
between the layers, and effect of speckle noise. The
overall network model of DeepRetina comprises
the following operations: extracting and learning
the retinal layer characteristics using the improved
Xception65 as the backbone network, combining
ASPP for reinforcement learning and generating
retinal multiscale feature information, and using the
encoder-decoder module to recover retinal informa-
tion to capture clearer retinal layer boundaries and
further optimize the segmentation results. Finally, the
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Figure 4. Overall neural network structure diagram of DeepRetina. The original retina image passes through Xception65, ASPP, and
encoder-decoder; the predicted image is then outputted.

automatic segmentation of the retinal OCT image
is completed using the TensorFlow deep learning
framework.

Overall Network Model Structure

Figure 4 shows the overall neural network structure
of DeepRetina, including Xception65 as the backbone
network and ASPP for strengthening the learning of
the feature map generated by Xception65 and generat-
ing retinal multiscale feature information. There is no
strict limit on the size of the input image to obtain
multiscale feature information. The encoder-decoder
module is used to recover the retinal information and
capture clearer retinal layer boundaries while further
optimizing the retinal segmentation results.

Backbone Network
Figure 5 shows the network structure of the

improved Xception65. To optimize the network model,
a deep separable convolution48 was introduced in
Xception65, which allows extracting feature maps at
any resolution, so there is no strict requirement on
the size of the input image to obtain deep semantic
information and shallow image detail. The improved
Xception65 network has more layers and a deeper
network depth. Moreover, all the pooling layers are
replaced with convolution layers and merged into the
existing convolution layer. In addition, batch normal-
ization and ReLU layers are added after each 3 × 3
depth-wise convolution.

Improved Atrous Spatial Pyramid Pooling
ASPP is based on a spatial pyramid pool,52,53 with

the introduction of an atrous convolution47 for captur-
ing retinal multirange feature information. Figure 6
shows the network structure. In the experiment, we
found that ASPP with different atrous rates can effec-
tively capture retinal multiscale feature information.
With the increase in the rate, the 3 × 3 convolu-
tion degenerates into a 1 × 1 convolution; there-
fore, we used four atrous convolutions with an atrous
rate = {2,6,12,18} and added a 1 × 1 convolution.
In addition, to obtain global information, an image
pooling branch was added for the global pooling of
the previously outputted feature map. Bilinear interpo-
lation was employed to ensure that its resolution was
the same as those of other branches. Finally, all the
branches were connected, and a 1 × 1 convolution was
performed.

Encoder-Decoder Module
In general, an encoder-decoder module consists

of an encoder with rich multiscale feature informa-
tion and a valid decoder that restores the bound-
ary of the object. The encoder obtains higher retinal
feature information by reducing the feature map, and
the decoder gradually recovers the retinal information
to obtain a clearer retinal layer boundary. Figure 7
shows the network structure of the encoder-decoder.
The encoder enhances the ASPP module, which uses
atrous convolution with different rates to detect multi-
scale convolution features and extract features at any
resolution. The decoder performs a fourfold bilinear
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Figure 5. Improved Xception network structure diagram. More network layers are added, depth separable convolutions are introduced,
and BN (Batch Normalization) and ReLU layers are added after each 3 × 3 depth convolution.

upsampling of the feature outputted from the encoder
to obtain a 256-dimensional feature A and then
concatenates the 256-dimensional feature B obtained
using the 1 × 1 convolution in the encoder with
feature A and passes through a 3 × 3 convolu-
tion to refine the feature. Finally, a fourfold bilin-
ear upsampling is performed to obtain the prediction
results.

Focal-Loss Function
The focal-loss function is used to solve the imbal-

ance problem of training samples. To better solve the
imbalance problem of training samples, we introduce a
weighting factor, α, α ∈ [0,1]. As α increases, the influ-
ence of the background category on training is greatly
reduced. In addition, to better control the weights of
positive and negative samples, a modulation factor,

(1 – Pt)γ , is introduced, where γ ≥ 0, thereby obtaining
the focal-loss function:

FL (Pt) = −α(1 − Pt)γ log (Pt) (1)

Pt is defined as

Pt =
{

p if y = 1
1 − p otherwise. (2)

where p is the probability of y = 1, p ∈ [0,1].
We found that (α, γ )= (0.25, 2) works best in exper-

iments. In this way, the focal-loss function solves both
the imbalance problem of training samples and the
weight assignment problemof the positive and negative
samples. This improves greatly the precision and speed
of segmentation.
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Figure 6. Improved ASPP network structure diagram. Atrous convolution is introduced, and the image pooling branches are combined.

Figure 7. Encoder-decoder block diagram. The encoder obtains richmultiscale feature information of the retina, and thedecoder gradually
recovers the retinal information to obtain a clearer retinal layer boundary.

Overall Experiment

Data Preprocessing
To complete the layer segmentation of the retinal

OCT image, we first preprocessed the training set

images. To meet the requirements of deep learning
neural network training and enhance the generaliza-
tion ability of the network model, we carried out
data augmentation processing on the images and
their labels. Data augmentation methods include
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geometric transformation (translation, scaling,
rotation, and flipping), sharpening, contrast change,
brightness change, and HSV (Hue, Saturation, Value)
color space change. The images of the training set are
used for network training, and the images of the test
set are used for performance evaluation. In our data
set, there is no overlap between the training and test
data to ensure the accuracy of network training.

Network Training
We trained the network in the experiment, and

the database images used are given in Database
Experiment. For the training parameters, we set
the learning rate to 1e-4, the learning rate decay
to 0.1, the momentum to 0.9, and the weight
attenuation to 0.00004, and the input image was
clipped to 512 × 512 pixels each time during
network training. Based on the TensorFlow deep
learning framework, the training was performed on
a server with 4 NVIDIA GP102 TITAN Xp graph-
ics cards and Intel Xeon Gold 6148 CPU (AMAX
Information Technologies Inc, Suzhou China) @
2.40 GHz × 51. The batch size was set to 32, and
130,000 iterations were performed. The entire training
process took approximately 72 hours.

Performance Evaluation
To further assess the accuracy of the method,

the following criteria were employed to evaluate the
network model trained in the experiment: mean inter-
section over union (MIoU), sensitivity (Se), and CPU
and GPU average calculation times. If bothMIoU and
Se remained high and the average computation time of
the CPU or GPU was low, the network model was said
to have excellent performance.

All the targets in the test set image already
contained specific pixel values and tag names (i.e.,
ground truth; see Database Experiment for details),
and a new predicted segmentation would be gener-
ated during the network test. MIoU is a standard
measure for image semantic segmentation. It can be
used to calculate the intersection and union ratio
of the ground truth and predicted segmentation,
thus determining the accuracy of the segmentation
prediction. k + 1 categories (including background
category) are assumed, and intersection over union
(IoU) is calculated in each category separately, refer-
ring to Equation (3). The calculation method of MIoU
is shown in Equation (4). For simplicity, Equation
(3) is transformed into Equation (5). Pii repre-
sents the number of pixels correctly predicted as
category i, Pij represents the number of pixels belong-
ing to category i but predicted as category j, and
Pji represents the number of pixels belonging to

category j but predicted as category i.

IoU = Pii
Pi j + P ji − Pii

. (3)

MIoU = 1
k + 1

k∑
i = 0

Pii∑k
j = 0 Pi j + ∑k

j = 0 P ji − Pii
.

(4)

IoU = TP
TP + FN + FP

. (5)

Here, the true positive (TP) indicates correctly
segmented retinal pixels, false positive (FP) indicates
correctly segmented nonretinal pixels, and false
negative (FN) indicates incorrectly segmented retinal
pixels. The Se is calculated using Equation (6).

Se = TP
TP + FN

. (6)

For further performance evaluation, besides the IoU
and sensitivity, we calculated the mean thickness differ-
ence (in pixels) between the automated and manual
segmentations. First, for each B-scan in the test set,
we calculated the mean thickness difference of each
layer between automated segmentations and manual
segmentations. Next, after taking the absolute value
of these differences, the mean and standard deviation
across all B-scans of the test set were calculated. The
smaller the mean and standard deviation, the better the
retinal layer segmentation.

Results

Retinal Segmentation Results

The MIoU of the DeepRetina segmentation model
was up to 90.41%, and its Se was up to 92.15% for
the testing set. The IoU and Se of values of the NFL,
GCL, IPL, INL, OPL, ONL, OLM, IS, OS, and PEL
were 91.82 and 95.02%, 92.79 and 94.36%, 90.71 and
92.31%, 90.95 and 92.76%, 89.90 and 91.74%, 93.23
and 95.57%, 88.52 and 89.12%, 89.23 and 90.49%,
88.93 and 90.51%, and 88.02 and 89.64%, respec-
tively. The GPU average time required to automati-
cally segment a retinal OCT image was approximately
0.52 seconds, and the average CPU average time was
approximately 1.43 seconds, which met the clinical
requirements for retinal segmentation. For the retinal
OCT images in the testing set, we used the segmen-
tation model to perform a 10-layer segmentation and
obtained the predictions (see Fig. 8). Table 1 lists
the segmentation performance results for the retinal
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Figure 8. Retinal 10-layer segmentation prediction results. (a, c, e, g, i, k) Original images. (b, d, f, h, j, l) Corresponding segmentation results.
In the segmentation result graph, the pixel values of the different retinal layers are different, thereby showing the 10 layers of the retinal
interlayer structure.

OCT image test set obtained using our segmentation
model. Table 2 lists the segmentation performance
results of each of the specific categories (control,
AMD, and DR).

“Total layers” is the total number of images contain-
ing those layers. “Complete segmentation” means that
the retinal layer is exactly segmented. “Incomplete
segmentation” means that the retinal layer is not
completely segmented. Please note that, because of
the low resolution of the retinal OCT image and
noise-induced interference, this led to the retinal layer
not being completely segmented, and it is difficult to
achieve accurate segmentation of the retinal layer.

The MIoU of the DeepRetina segmentation model
was up to 90.55%, and its Se was up to 92.29% for
the Duke data set. The IoU and Se of values of the
NFL, GCL+IPL, INL, OPL, ONL+OLM, IS, and
OS+PEL are listed in Table 3. Figure 9 shows the
prediction results obtained on the Duke data set.

Results of Optimization Experiments

We used ResNet101, Inception-v3, and Xception65
as the backbone networks of the segmentation model
for comparison. Table 4 lists their effects on the
performance of the segmentation model under the
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Table 1. Test Performance Results for 10 Layers of Retina Segmentation

Automated Versus
Manual Segmentation

Retinal
Layers

Total
Layers

Complete
Segmentation

Incomplete
Segmentation IoU (%) Se (%)

Mean
Deviation

Standard
Deviation

NFL 3360 3087 273 91.82 95.02 0.26 0.37
GCL 3360 3119 241 92.79 94.36 0.20 0.29
IPL 3360 3050 310 90.71 92.31 0.41 0.50
INL 3360 3058 302 90.95 92.76 0.21 0.33
OPL 3360 2998 362 89.90 91.74 0.62 0.74
ONL 3360 3135 225 93.23 95.57 0.12 0.26
OLM 3360 2979 381 88.52 89.12 0.82 0.84
IS 3360 2996 364 89.23 90.49 0.59 0.63
OS 3360 2988 372 88.93 90.51 0.78 0.76
PEL 3360 2962 398 88.02 89.64 0.88 0.87

Table 2. Segmentation Performance Results of Control, AMD, and DR

Control AMD DR

Retinal Layers IoU (%) Se (%) IoU (%) Se (%) IoU (%) Se (%)

NFL 91.82 95.02 90.29 92.98 90.06 91.99
GCL 92.79 94.36 91.46 92.68 90.57 92.26
IPL 90.71 92.31 89.87 91.22 89.31 90.66
INL 90.95 92.76 89.96 91.58 89.28 90.79
OPL 89.90 91.74 89.07 91.23 88.64 89.97
ONL 93.23 95.57 92.11 93.37 91.61 92.73
OLM 88.52 89.12 87.36 89.06 86.79 89.00
IS 89.23 90.49 88.79 89.79 88.49 89.34
OS 88.93 90.51 87.89 90.00 87.43 90.11
PEL 88.02 89.64 87.65 88.94 86.92 88.35

Table 3. Test Results for Seven Layers of Retina Segmentation on the Duke Data Set

Characteristic NFL GCL+IPL INL OPL ONL+OLM IS OS+PEL

IoU (%) 90.64 92.36 90.79 89.22 92.54 89.47 88.81
Se (%) 93.77 93.89 92.31 90.71 94.10 91.02 90.21

same network parameters. The MIoU and Se of
Xception65 were the highest, while those of ResNet101
and Inception-v3 were lower. Figure 10 shows their
prediction results on retinal segmentation. Therefore,
we chose Xception65 as the backbone network.

In the experiment, we found that atrous convolution
with different rates can help effectively capture retinal
multiscale feature information. At higher rates, the
3 × 3 convolution cannot capture the feature infor-
mation of the full image but degenerates into a simple
1× 1 convolution. To this end, we used atrous convolu-
tion rates of {6, 12, 18}, {12, 24, 36}, and {18, 36, 54}

for comparison. Table 4 lists the performance results of
the segmentation model. When the rate is {6, 12, 18},
the segmentation effect is the best, and MIoU and Se
are higher. Figure 11 shows their prediction results on
retinal segmentation. Therefore, we selected the atrous
rate as {6, 12, 18}.

Folded Cross-Validation

To provide a better gauge of the algorithm’s overall
performance, we split our data set (280 volumes for a
total of 11,200 images, 40 B-scans per volume) into
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Figure 9. Retinal seven-layer segmentation prediction results on the Duke data set. (a, c, e, g) Original images. (b, d, f, h) Corresponding
segmentation results. In the segmentation result graph, the pixel values of the different retinal layers are different, thereby showing the
seven layers of the retinal interlayer structure.

Table 4. Experimental Results for Different Optimization Methods

Optimization Method MIoU (%) Se (%) Test Time (s/Image)

backbone ResNet101 85.91 86.63 0.48
Inception-v3 88.03 89.75 0.54
Xception65 90.12 92.06 0.53

Atrous rates {18, 36, 54} 86.45 86.64 0.69
{12, 24, 36} 88.93 89.42 0.58
{6, 12, 18} 90.11 91.79 0.51

The bold values represent the bset result.

five equally sized nonoverlapping subsets, and we
used four subsets for training (224 volumes) and one
subset for testing (56 volumes) and rotated the subset
used for testing. We repeated this process for a fivefold
cross-validation, resulting in testing performed on each
subset. The average results of fivefold cross-validation
on 10 layers of retina segmentation are tabulated
in Table 5.

Comparison with Existing State-of-the-Art
Methods

We compared the proposed methods with exist-
ing advanced methods, as listed in Table 6. For

proper and fair comparison, we implemented these
methods and followed what was described in the origi-
nal publications; all methods were tested on the same
test set. The results show that the proposed method
achieves better performance for retinal segmentation,
with an MIoU and Se obtained for DeepRetina
of 0.9041 and 0.9215, respectively. Our method
achieved satisfactory results compared with existing
methods.

For better evaluating the performance on Duke
data set, we put our results in correspondence with
other methods evaluated on Duke data set, as listed
in Table 7. For fair comparison, we implemented
these methods and followed what was described in the
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Figure 10. Prediction results of different backbone networks on retinal segmentation. (a, b) ResNet101 prediction results. (c, d) Inception-
v3 prediction results. (e, f ) Xception65 prediction results.

Figure 11. Prediction results of different atrous rates on retinal segmentation. (a, b) Atrous rate of {18, 36, 54} prediction results. (c, d) Atrous
rate of {12, 24, 36} prediction results. (e, f ) Atrous rate of {6, 12, 18} prediction results.

original publications, and all methods were trained and
tested on the Duke data set. The results show that the
performance of the proposed method was improved
over the state of the art evaluated on the Duke data
set.

Discussion

The proposed retinal layer automatic segmen-
tation method—namely, DeepRetina—provided
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Table 5. Average Results of Fivefold Cross-Validation on 10 Layers of Retina Segmentation

Characteristic NFL GCL IPL INL OPL ONL OLM IS OS PEL

MIoU (%) 92.08 92.56 90.78 91.16 90.56 92.89 88.78 89.08 89.49 88.69
Se (%) 95.03 94.29 91.93 92.98 91.47 94.77 89.91 90.11 90.53 89.61

Table 6. Results Compared with Existing Methods

Method Year MIoU Se

Fang et al.38 2017 0.8709 0.8691
Roy et al.39 2017 0.8823 0.8911
Apostolopoulos et al.40 2017 0.8629 0.8723
He et al.42 2018 0.8812 0.8924
Sedai et al.43 2018 0.8845 0.9087
Shah et al.44 2018 0.8832 0.8992
Guo et al.45 2018 0.8854 0.9061
Hamwood et al.46 2018 0.8768 0.8829
Gholami et al.54 2018 0.8903 0.9194
Pekala et al.41 2019 0.8915 0.9078
Proposedmethod 2020 0.9041 0.9215

Table 7. Results Comparedwith OtherMethods Evalu-
ated on the Duke Data Set

Method Year MIoU Se

Chiu et al.51 2015 0.8765 0.8809
Roy et al.39 2017 0.8819 0.8954
Kepp et al.55 2019 0.8936 0.9089
Wei and Peng56 2020 0.8976 0.9134
Proposedmethod 2020 0.9005 0.9229

satisfactory segmentation results. The method effec-
tively performed automatic segmentation of the retinal
layer, with the continuous optimization of the network
model through a series of optimization experiments to
improve its performance.

The setting of the network parameters and the train-
ing parameters during training is critical to improve
the performance of the network model. To improve
the convergence speed of the network model, we froze
the logit layer of the last layer in the network, and
all trained weights were recalled, with weight attenu-
ation set to 0.00004. During the training, the learn-
ing rate was set to 0.007, so that the loss could be
quickly reduced to a lower value, and then the learning
rate was reduced to 0.0001, so that the loss could be
steadily decreased. Figure 12 shows the whole conver-
gence process. In addition, the network model was
trained on a server with 4 NVIDIAGP102 TITANXp
graphics cards and Intel Xeon Gold 6148 CPU@ 2.40
GHz × 51. The batch size was set to 32, and compared

Figure 12. Loss convergence graph. The abscissa indicates the
number of iterations, the ordinate indicates the loss value, and the
orange curve indicates the entire convergence process of the train-
ing.

with the smaller batch size, the larger batch size could
improve the performance of the network model.

In this work, the average time required to segment
a retinal OCT image was approximately 1.43 seconds
with an Intel Xeon Gold 6148 CPU running at
2.40GHzwith 4GB of RAM.Nevertheless, the testing
procedure can be performed offline and accelerated
by GPU programming, with an average time required
to segment a retinal OCT image approximately
0.52 seconds with a GeForce GTX 1080 graphics
card. This method is currently implemented using
TensorFlow, and its computational performance can
be further improved in future research. For example,
using the PyTorch, a deep learning framework supports
dynamic computational graphs and more efficient
memory usage, and this can further improve the speed
of retinal segmentation.

The conventional image segmentation model
requires extracting relevant information from a
manually designed feature extractor. Our DeepRetina
segmentation model relies on the heuristic method
of autonomous learning, does not require artificial
design features, and is more similar to a biological
neural network, thus reducing the complexity of the
network model.52,53 This study is expected to promote
the application of deep learning–based segmentation
methods for the analysis of retinal layers.

As mentioned earlier, the proposed segmentation
model provides excellent performance for retinal layer
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segmentation applications and yields good results.
However, because of the low resolution of the retinal
OCT image and noise-induced interference, it is diffi-
cult to achieve accurate segmentation of the retinal
layer. Our method can be further improved in the
future. First, more retinal OCT images should be
collected to train a better model. In particular, high-
resolution retinalOCT images can be employed, as they
have better pixel contrast and can improve network
model performance. Second, better image enhance-
ment processing can be performed to improve the
generalization ability of the network model. Finally, in
training and testing, attempts should be made to trans-
form the retinal OCT image to a three-dimensional
image, improve the network structure, and adjust
the training parameters to obtain better segmenta-
tion results. To successfully apply our method for
the diagnosis and treatment of retinal diseases, more
retinal layer analyses should be conducted, including
on relevant retinal diseases.

Conclusions

In this article, we proposed a segmentation model
called DeepRetina for the auto-segmentation of retinal
layers in retinal OCT images. Only a small amount
of manual segmentation is required for training the
network, and the trained model can automatically
perform segmentation of retinal layers, significantly
increasing the segmentation rate and improving work
efficiency. The method achieves good results in terms
of the segmentation precision and sensitivity and is
very robust. It has great potential for the diagno-
sis of ophthalmic diseases through existing computer-
aided diagnostic systems. Our research can aid in the
early diagnosis and treatment of clinical retinal diseases
and is expected to promote the application of deep
learning–based segmentation methods for the analysis
of retinal layers. In addition, our method can provide
a segmentation model framework for other types of
tissues and cells in clinical practice, with good appli-
cation prospects.
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