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A B S T R A C T   

Objective: This study employs bibliometric and visual analysis to elucidate global research trends 
in Autism Spectrum Disorder (ASD) biomarkers, identify critical research focal points, and discuss 
the potential integration of diverse biomarker modalities for precise ASD assessment. 
Methods: A comprehensive bibliometric analysis was conducted using data from the Web of 
Science Core Collection database until December 31, 2022. Visualization tools, including R, 
VOSviewer, CiteSpace, and gCLUTO, were utilized to examine collaborative networks, co-citation 
patterns, and keyword associations among countries, institutions, authors, journals, documents, 
and keywords. 
Results: ASD biomarker research emerged in 2004, accumulating a corpus of 4348 documents by 
December 31, 2022. The United States, with 1574 publications and an H-index of 213, emerged as 
the most prolific and influential country. The University of California, Davis, contributed 
significantly with 346 publications and an H-index of 69, making it the leading institution. 
Concerning journals, the Journal of Autism and Developmental Disorders, Autism Research, and 
PLOS ONE were the top three publishers of ASD biomarker-related articles among a total of 1140 
academic journals. Co-citation and keyword analyses revealed research hotspots in genetics, 
imaging, oxidative stress, neuroinflammation, gut microbiota, and eye tracking. Emerging topics 
included "DNA methylation," "eye tracking," "metabolomics," and "resting-state fMRI." 
Conclusion: The field of ASD biomarker research is dynamically evolving. Future endeavors should 
prioritize individual stratification, methodological standardization, the harmonious integration of 
biomarker modalities, and longitudinal studies to advance the precision of ASD diagnosis and 
treatment.   

1. Introduction 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a range of symptoms that 
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encompass social interaction, communication, and behavior [1]. Notably, in the United States, the prevalence of ASD among 8-year--
old children has risen from 1 in 68 in 2010 to 1 in 36 in 2020, highlighting the increasing global impact of ASD [2,3]. With 
approximately 78 million individuals worldwide affected by ASD, there is a growing urgency for innovative research and intervention 
efforts [4] since traditional diagnostic methods, primarily relying on clinical data and laboratory tests, have proven insufficient [5,6]. 
On average, ASD diagnoses occur after the age of 4 years of age, with 79 % of children receiving their diagnosis after starting school, 
thus missing crucial early intervention opportunities [7–9]. Consequently, there is a pressing need for innovative and precise diag-
nostic, monitoring, and intervention methods. 

Recent advancements in ASD biomarker research have significantly enhanced our understanding of this complex condition. Various 
pivotal breakthroughs have emerged in key domains. Genetic biomarkers, identified through meticulous investigations, have unveiled 
critical genetic underpinnings contributing to the etiology of ASD [10,11]. Additionally, advanced neuroimaging techniques, including 
functional Magnetic Resonance Imaging(fMRI) and Diffusion Tensor Imaging (DTI), have elucidated intricate neural deviations and 
connectivity patterns specific to ASD, emerging as prospective diagnostic biomarkers of paramount significance [12–14]. Concur-
rently, behavioral biomarkers, pinpointed through precise eye tracking technologies, have revealed distinctive gaze patterns and 
socially relevant attentional behaviors exhibited by individuals with ASD [15,16]. Moreover, machine learning algorithms, adept at 
amalgamating diverse biomarker data, have demonstrated significant potential in enhancing the precision of ASD diagnosis and its 
predictive accuracy [17–19]. These collective research endeavors signify a noteworthy advancement toward early ASD detection, the 
customization of personalized treatment modalities, and a deeper understanding of the intricate biological underpinnings of the 
disorder, all aimed at improving the overall quality of life for individuals with ASD and their families. 

However, ASD biomarker research faces challenges characterized by fragmented research efforts, difficulties in tracking research 
hotspots, and the complexity of integrating diverse research findings [20]. These limitations hinder the identification of robust bio-
markers for clinical diagnosis and therapeutic interventions. In this context, the potential of bibliometrics and visual analysis stands 
out as remarkable. By systematically analyzing scientific literature, these methods can unveil collaboration networks and research 

Fig. 1. The data collection and retrieval strategy.  

X. Xie et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e30420

3

hotspots within the field [21]. Bibliometrics and visual analysis are widely employed in the medical field, providing valuable insights 
for research endeavors [22,23]. 

In this paper, we employed bibliometric analysis and visualization software, including R, VOSviewer, CiteSpace, and gCLUTO, to 
explore collaboration patterns, research hotspots, and trends in ASD biomarker research. Furthermore, based on these analyses, we 
discussed the integration of data from multiple biomarker modalities to assess the distinct and unique characteristics of ASD more 
accurately. Finally, we have highlighted the current challenges in biomarker approaches and provided recommendations for 
enhancing ASD biomarker research. 

2. Methods 

2.1. Data collection 

The Web of Science Core Collection (WOSCC) is widely recognized as a comprehensive academic literature retrieval tool, intro-
duced by Clarivate Analytics and regarded globally as one of the most significant and influential scholarly citation databases [24]. To 
ensure the integrity and representativeness of our data, we opted to employ this database for our literature search. Within the WOSCC, 
we formulated a series of effective literature search strategies: TS = ("autism" OR "autistic" OR "autism spectrum disorder" OR "Kanner 
syndrome" OR "Asperger syndrome" OR "pervasive developmental disorders" OR "child disintegrative disorder" NOT "Rett’s disorder") 
AND TS = (biomarker OR biomarkers OR marker OR markers). To mitigate any potential bias arising from the database’s daily up-
dates, we specifically chose the search date as February 27, 2023. 

Following the search, we retrieved a total of 4752 articles. Subsequently, we excluded articles from the year 2023, resulting in the 
removal of 38 articles from the analysis. Thereafter, we subjected these articles to meticulous screening. We began by excluding items 
such as letters, revised versions, book chapters, conference papers, editorial materials, news articles, and publications, ensuring the 
accuracy and representativeness of our screening results. Post-screening, we were left with a final set of 4348 articles, comprising 3632 
articles of the "Article" type and 716 articles categorized as "Review". The data collection and retrieval strategy process is shown in 
Fig. 1. These selected articles will serve as a rich source of data and valuable references for our ASD biomarker research. 

2.2. Data analysis 

This study employed a variety of widely recognized bibliometric analysis tools, including R, VOSviewer, CiteSpace, and gCLUTO. 
These software applications are esteemed in the academic community and offer distinct capabilities in the field of literature analysis 
and visualization. R, an open-source programming language and environment, was used to conduct comprehensive bibliometric 
analysis. Through the utilization of the Bibliometrix package integrated within R, researchers were able to perform robust statistical 
analysis and visualization of key data parameters [25], such as publication trends, affiliations, authors, citations, and keywords. This 
comprehensive analytical suite provided researchers with a thorough understanding of the research landscape. VOSviewer, a potent 
visual analysis software developed by vaneck and Waltman (2010) at Leiden University’s Centre for Science and Technology Studies, 
excels in revealing collaboration networks among countries, institutions, and authors based on co-occurrence relationships [26]. By 

Fig. 2. Global publication output and citation trend on biomarker research in ASD from 2004 to 2022.  
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leveraging co-occurrence, VOSviewer facilitated the identification of collaboration patterns, research focal points, and the evolving 
scholarly landscape. CiteSpace, another indispensable tool, offers detailed insights into literature evolution and key research path-
ways. Renowned for its ability to identify pivotal turning points and emerging research frontiers, CiteSpace generates visualizations 
such as co-citation networks and temporal evolution graphs. This aids in gaining a nuanced understanding of the chronological 
progression within a specific field [27]. gCLUTO proved invaluable in refining keyword selection and enabling keyword matrix 
biclustering analysis, optimizing the process of information retrieval. 

3. Results 

3.1. Global trend in publication outputs and citations 

From 2004 to 2022, as depicted in Fig. 2, the trajectory of global publications and cumulative citations in ASD biomarker research 
unfolds. Notably, the advancement of biomarkers in the ASD field has been remarkable, with a pronounced surge in the last five years, 
comprising 53.9 % (2346 out of 4348) of the total publications. The annual global publication count has surged from 43 in 2004 to 557 
in 2022, exhibiting an annual growth rate of 12.26 %. As of the search date (February 27, 2023), the collective articles have garnered 
274,368 citations, translating to an annual average of 14,440.42 citations since their publication, equating to an average of 63.10 
citations per document. It is noteworthy that the current research endeavors continue to thrive in a phase of continuous expansion. 

3.2. Distribution of countries/regions 

The exploration of biomarkers in ASD has garnered widespread global attention, with research contributions originating from 92 
countries/regions, primarily concentrated in North America, Western Europe, East Asia, and other regions. Table 1 presents a ranking 
of the top ten countries/regions by publication output. Leading in terms of research activity, the United States (1574 publications, 
36.201 %) emerged as the most prolific producer, followed by China (392 publications, 9.016 %) and the United Kingdom (278 
publications, 6.394 %). The distribution of citations across these countries is depicted in Fig. 3A, while the global collaboration dy-
namics are portrayed in Fig. 3B and C. The United States outshines others in terms of citation count (71,385 times) and the highest H- 
index (213), outpacing the United Kingdom (12,100 times). 

The landscape of international collaboration can be assessed through the Total Link Strength (TLS), a metric used in the VOSviewer 
software to evaluate the strength of inter-country collaboration, accounting for the volume of cross-border articles. The network co- 
occurrence map (Fig. 3C) highlights the leading countries in TLS, namely the United States (TLS = 1181), United Kingdom (TLS =
780), and Germany (TLS = 550). The SCP/MCP indices, derived from R, represent the count of publications co-authored by authors of 
the same/different nationalities. The MCP-Ratio signifies the proportion of transnational cooperation, which effectively identifies 
countries with lower publication numbers but a focus on global engagement. Among these, the United Kingdom (MCP-Ratio = 0.493), 
Germany (MCP-Ratio = 0.449), and Canada (MCP-Ratio = 0.396) stand out (Fig. 3B), highlighting their proclivity to transcend 
geographical boundaries and embrace worldwide collaboration. 

3.3. Contributions of institutions 

A total of 4757 institutions have made substantial contributions to the realm of ASD biomarker research. This profound collabo-
ration is delineated in Table 2, showcasing the top ten prolific establishments, with seven domiciled in the United States. Notably, the 
University of California, Davis (346 publications), spearheaded the list in terms of productivity, closely trailed closely by King’s 
College London (267 publications) and King Saud University (226 publications). By establishing a threshold of a minimum of 30 
articles published by institutions, 52 such institutions emerged, as illustrated in Fig. 4. While varying degrees of collaboration exist 
among these institutions, a stable bidirectional or multi-directional cross-cooperation nexus is yet to be fully established. Within these 
52 institutions, the University of Toronto stands out with the most significant number of collaborative partners (n = 41), closely 
followed by the University of California, Davis (n = 39), and Harvard Medical School (n = 38). 

Table 1 
The top 10 productive countries/regions.  

Rank Country Counts Percentage H-index SCP MCP MCP-Ratio TLS Total citations Average citation per paper 

1. USA 1574 36.201 213 1268 306 0.194 1181 71,385 45.35 
2. China 392 9.016 58 280 112 0.286 326 5504 14.04 
3. UK 278 6.394 89 141 137 0.493 780 12,100 45.53 
4. Italy 248 5.704 78 158 90 0.363 526 6668 26.89 
5. Canada 149 3.427 75 90 59 0.396 410 5754 36.82 
6. Japan 140 3.220 63 119 21 0.15 97 3054 21.81 
7. Australia 131 3.013 59 95 36 0.275 331 5386 5.18 
8. France 120 2.760 67 76 44 0.367 414 2597 21.64 
9. Germany 107 2.461 49 59 48 0.449 550 2336 21.83 
10. India 103 2.369 27 90 13 0.126 101 1033 10.03  
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Fig. 3. The co-authorship network of countries/regions.  

Table 2 
The top 10 productive institutions.  

Rank Institution Country Counts Percentage H-index TLS 

1. University of California, Davis USA 346 7.958 69 287 
2. King’s College London UK 267 6.141 56 709 
3. King Saud University Saudi Arabia 226 5.198 35 108 
4. Vanderbilt University USA 186 4.278 43 230 
5. university of california los angeles USA 175 4.025 43 377 
6. Harvard Medical School USA 165 3.795 43 565 
7. University of Toronto Canada 149 3.427 55 493 
8. Johns Hopkins University USA 141 3.242 37 275 
9. University of Pennsylvania USA 138 3.174 40 301 
10. Harvard University USA 134 3.082 56 303  
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3.4. Distribution and co-authorship of authors 

The comprehensive covered encompassed a total of 19,192 authors, with an average collaborative effort comprising approximately 
seven authors per paper. Table 3 meticulously outlines the top 10 authors in terms of productivity. Evidently, El-Ansary, Afaf (47 
publications, 343 citations) emerged as the most prolific, closely trailed by Charman, Tony (42 publications, 368 citations) and Hertz- 
Picciotto, Irva (36 publications, 218 citations). Delving into the co-authorship analysis employing VOSviewer, a stringent criterion of a 
minimum of 10 articles published by the author was applied, leading to the identification of 109 authors who meet this criterion. This 

Fig. 4. The co-authorship network of institutions. 
Note: The curved segments outside the circle represent institutions, with the size of the curved segments indicating the volume of publications. The 
connecting lines between curved segments represent collaborative relationships between institutions, with wider lines indicating more frequent 
collaborations. 

Table 3 
The top 10 productive authors.  

Rank Author Counts Percentage Institutions H-index TLS Total citations 

1. El-Ansary, Afaf 47 1.081 King Saud University 16 90 343 
2. Charman, Tony 42 0.966 King’s College London 22 293 368 
3. Hertz-Picciotto, Irva 36 0.828 University of California Davis 17 127 218 
4. Al-Ayadhi, Laila Y. 35 0.805 King Saud University 14 64 356 
5. Frye, Richard 35 0.805 University of Arizona 21 57 727 
6. Baron-Cohen, Simon 34 0.782 University of Cambridge 22 214 211 
7. Bolte, Sven 33 0.759 Curtin University 18 216 204 
8. Dawson, Geraldine 33 0.759 Duke University 16 243 200 
9. Johnson, Mark H. 30 0.690 University of London 19 161 329 
10. Croen, Lisa A. 28 0.640 University of California Davis 14 124 368  
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insightful co-authored analysis is visually represented in Fig. 5, wherein 90 authors are distinctively clustered into seven color-coded 
cohorts. Impressively, the author group centering on Dawson, Geraldine stood as the largest cluster. Remarkably, Bourgeron, Thomas 
holds the distinction of having the most co-authoring partners (n = 27), followed by Bolte, Sven (n = 23) and Charman, Tony (n = 22). 

3.5. Distribution of source journals and top 10 high-cited articles 

In comprehensive analysis, we identified a corpus of 4348 articles hailing from 1140 distinct journals. Table 4 meticulously cat-
alogues the top ten journals in terms of publication volume, collectively amassing a noteworthy 921 articles—constituting approxi-
mately 21.18 % of the overarching publication count. Among these, the Journal of Autism and Developmental Disorders (n = 158), 
Autism Research (n = 137), and PLOS ONE (n = 106) distinctly emerge as prolific contributors. Noteworthy are Molecular Autism (H- 
index = 37, Impact Factor = 6.476) and Molecular Psychiatry (H-index = 35, Impact Factor = 13.437), which have achieved 
commendable H-indices and Impact Factors, unequivocally propelling the field’s advancement. Fig. 6A chronicles the publication 
trends of the top ten journals from 2004 to 2022, with Autism Research and Frontiers in Psychiatry displaying increased publication 
activity in recent years—a telltale sign of heightened interest in this domain. 

An examination of the citation patterns that research disseminated in journals associated with "MOLECULAR, BIOLOGY, IMMU-
NOLOGY" and "PSYCHOLOGY, EDUCATION, HEALTH" demonstrates a propensity to reference works from the "MOLECULAR, 
BIOLOGY, GENETICS" and "PSYCHOLOGY, EDUCATION, SOCIAL" domains. This suggests a robust and relatively steady knowledge 
framework within the purview of the study(Fig. 6B). Furthermore, it is discernible that publications in the "MEDICINE, MEDICAL, 
CLINICAL" realm are notably influenced by contributions from the "MOLECULAR, BIOLOGY, GENETICS" sphere. 

The cumulative authoritative citations derived from the amalgamation of 4348 articles amount to 16,484, wielding a global 
citation count of 138,592. Intriguingly, the top ten cited articles exhibit individual authority citations ranging from 76 to 182, with 
global citations spanning 137 to 1196. Foremost among them is the article titled "Metabolic biomarkers of increased oxidative stress 
and impaired methylation capacity in children with autism," featured in The American Journal of Clinical Nutrition. The study is 

Fig. 5. The co-authorship network of authors.  

X. Xie et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e30420

8

predominantly anchored in the metabolic profiles of autistic children, unveiling a diminution in methylation capacity and an elevation 
in oxidative stress relative to control subjects. Remarkably, a successful nutritional intervention trial involving folinic acid, betaine, 
and methylcobalamin rectified these imbalances, thereby underscoring the potential contribution of reduced methylation and 
heightened susceptibility to oxidative stress in the genesis of autism [28]. 

3.6. Analysis of top co-cited references 

In our study, a total of 162,721 references have been meticulously cited, underscoring the robust scholarly support underpinning 
our investigation. Fig. 7a presents a schematic representation of the co-citation network analysis in the referenced study. The analytical 
outcomes reveal a Modularity Q value of 0.7339 and a Weighted Mean Silhouette score of 0.8842, demonstrating a robust clustering 
effect and superior clustering quality. Employing 162,721 co-cited references across a timeframe spanning from 2004 to 2022, with 
each year serving as a discrete time slice, CiteSpace selects the top 10 % of the most frequently cited references for group represen-
tation in co-citation analyses (as depicted in Fig. 7b). These co-cited references are further illustrated in the timeline map of Fig. 7b, 
which delineates the temporal development and progression of research within each cluster. The clustering analysis segregates the 
research into fifteen distinct clusters. Notably, “Metabolomics” (#0) emerges as the most substantial cluster, with “Haplotype Anal-
ysis” (#7) reflecting the foundational research themes within this domain. Presently, the research focal points have shifted towards 
"DNA Methylation" (#8), "Eye Tracking" (#2), "Metabolomics" (#0), and "Resting State fMRI" (#6). This transition underscores the 
growing scientific endeavor towards uncovering biomarkers for ASD, reflecting a broader engagement with the biological un-
derpinnings of the disorder. 

3.7. Keywords analysis of research hotspots 

The selected keywords effectively encapsulate the primary themes of the publications, providing a solid foundation for conducting 
a cluster analysis based on their frequency of appearance. Following the exclusion of search-related terms, noteworthy keywords such 
as "EEG" (144 occurrences), "Schizophrenia" (142 occurrences), "Oxidative Stress" (135 occurrences), "ADHD" (130 occurrences), and 
"fMRI" (116 occurrences) emerge as the top five most frequently occurring keywords. Employing Bicomb and gCLUTO, we undertook 
the extraction and clustering of the top 100 keywords in our study, resulting in the emergence of eight distinct clusters, as depicted in 
Fig. 8A. This figure offers insights into the similarity among keywords within each cluster. Fig. 8B showcases a biclustering heatmap, 
generated from a binary matrix created for the top 100 keywords. This heatmap not only provides multifaceted clustering insights but 
also reflects the significance of individual keywords as well as those within the same clusters. Cluster 0, characterized by minimal 
internal variability, signifies optimal keyword clustering performance and primarily encompasses biomarkers within the realms of 
neuroimaging and machine learning. Cluster 1 predominantly addresses comorbidities linked with ASD. Cluster 2 centers around 
biomarkers associated with inflammation, immunity, and cytokines. Cluster 3 sheds light on the applications and target subjects of 
ASD biomarker research. Cluster 4 encompasses biomarkers related to metabolism, oxidative stress, and mitochondrial functionality. 
Cluster 5 delves into genetic and molecular biomarkers. Clusters 6 and 7 demonstrate heightened internal variability, encompassing 
ASD core symptoms, proteomics, electroencephalogram (EEG), and eye tracking biomarkers, contributing to a diverse exploration of 
ASD research dimensions. 

4. Discussion 

4.1. Global trends in ASD biomarker research 

The surge in publications within the realm of ASD biomarker research over recent years constitutes a noteworthy and substantial 
phenomenon. This surge is emblematic of the increasingly acknowledged significance of early diagnosis and intervention for in-
dividuals affected by ASD, unwavering the unwavering commitment of researchers on a global scale as they grapple with the 
multifaceted challenges inherent to ASD. The extraordinary surge witnessed in ASD biomarker research, particularly in the last five 
years, representing more than half of the total publications, serves as an unequivocal indicator of the burgeoning worldwide influence 

Table 4 
The top 10 productive journals.  

Rank Journal Countries Count IF (2023) JCR (2023) H-index Total citations Percentage 

1. Journal of Autism and Developmental Disorders USA 158 3.9 Q1 35 1368 3.634 
2. Autism Research USA 137 4.7 Q1 29 2613 3.151 
3. PLOS ONE USA 106 3.7 Q2 35 3653 2.438 
4. Molecular Autism UK 92 6.2 Q1 37 3680 2.116 
5. Scientific Reports UK 84 4.6 Q2 22 1542 1.932 
6. Translational Psychiatry USA 79 6.8 Q1 31 3222 1.817 
7. Frontiers in Psychiatry Switzerland 78 4.7 Q2 16 908 1.794 
8. Frontiers in Neuroscience Switzerland 66 4.3 Q2 18 2111 1.518 
9. Molecular Psychiatry UK 66 11.0 Q1 35 1138 1.518 
10. Journal of Neurodevelopmental Disorders Scotland 55 4.9 Q1 19 1368 1.265  
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of this research field. This surge undeniably underscores the compelling need for pioneering research and interventions aimed at 
enhancing the quality of life for individuals living with ASD. 

The emergent trend of global collaboration within this field is a highly encouraging and promising trajectory. Collaborative ini-
tiatives facilitate the amalgamation of diverse expertise and resources, ultimately expediting the pace of advancements in ASD 
biomarker research. Of particular note is the influential role occupied by the United States, both in terms of productivity and citations, 
signifying the global leadership it has assumed in advancing our collective understanding of ASD. Diverse institutions and authors have 
made commendable and substantial contributions to this research landscape, with specific institutions and authors gaining promi-
nence due to their exceptional productivity and extensive engagement in collaborative endeavors. The identification of these prolific 
institutions and authors underscores the inherently cooperative nature of ASD biomarker research, an indispensable element for 
comprehensively addressing the multifaceted dimensions of ASD. 

It is worth emphasizing that these collaborative efforts transcend geographical boundaries, accentuating the intrinsically global 
nature of ASD research. Furthermore, the eminence of certain journals, particularly those with high Impact Factors, highlights the 

Fig. 6. Heatmap of annual publication distribution for top 10 journals (A) and overlay of journal pairings (B).  
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pivotal role played by reputable outlets in effectively disseminating research findings. Such high-caliber publications are essential for 
propelling the field forward and garnering recognition within the broader scientific community. This comprehensive discussion un-
derscores the dynamic and evolving landscape of ASD biomarker research while underscoring the paramount importance of inter-
national collaboration and the rigorous dissemination of findings to advance our collective understanding of ASD. 

4.2. Hotspots and future directions in ASD biomarker research 

The co-citation analysis of references is a potent tool for uncovering the research background, shifts, and trends in ASD biomarker 
studies. As illustrated in Fig. 7, references concerning DNA methylation, eye tracking, metabolomics, and resting-state fMRI have 

Fig. 7. Cluster View of Co-cited References from 2004 to 2022 
Note: Image A depicts the cluster view of co-cited references, where temporal evolution is illustrated through lines of distinct colors. Nodes along 
these lines represent the cited references, with the node size reflecting the citation frequency of the literature. Nodes in deep red indicate strong 
citation bursts, highlighting periods where related research has been extensively cited. Image B shows a timeline map of co-cited literature clusters, 
with cluster numbers on the Y-axis and the years of citation publication on the X-axis. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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garnered substantial citations over the last five years, signifying their significance as scholarly reference points. Highly cited articles 
and keywords offer a means of categorizing research focal points and knowledge frameworks within the domain. Table 5 presents the 
top 10 most cited articles, that encompass biomarkers linked to physiological anomalies, behavioral manifestations, and the nutritional 
and metabolic status of ASD. Notably, five of these articles delve into aspects of oxidative stress. Fig. 8 depicts the cluster analysis of the 
foremost 100 keywords, accentuating the salient areas and themes of ASD biomarker research. In this context, it can be observed that 

Fig. 8. Visualization of Bi-clustering Analysis for the Top 100 Keywords 
Note: Panel A illustrates the bi-clustering analysis of keywords using a landscape representation with peaks and hills. Each hill corresponds to a 
cluster of keywords, with the size of the hill proportional to the number of keywords within the cluster. The color at the crest of each hill correlates 
with the intra-cluster deviation, where red signifies low variability and blue indicates high variability of keywords within the cluster. In Panel B, the 
bi-clustering analysis is presented as a heatmap. The columns represent the sequence of article appearances for keywords, while the rows indicate 
the keywords and their respective clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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the hotspots of ASD biomarkers primarily revolve around the following six areas: genetics, imaging, oxidative stress, neuro-
inflammation, gut microbiota, and eye movement.As observed in Fig. 9, we have provided a rough depiction of the prominent areas of 
biomarkers in the field of ASD. 

4.2.1. Genetic biomarkers 
ASD tends to aggregate within families, indicating a strong genetic component in its pathogenesis [38]. However, due to the diverse 

nature of the ASD population, pinpointing relevant gene mutations or variations remains a challenge. Over the past four decades, 
population-based twin and family studies have supplied compelling evidence that ASD constitutes a complex range of neuro-
developmental disorders. Its etiological model likely arises from specific genes and environments, with an added consideration of 
gene-environment interactions [39–41]. A meta-analysis of genome-wide associations has highlighted five significant loci influencing 
ASD risk [42]. Furthermore, this analysis revealed that candidate genes associated with ASD exhibit their highest expression levels 
during fetal corticogenesis. This observation reinforces the notion that both rare and common genetic variations linked to ASD impact 
gene expression during the development of the cerebral cortex [43]. Intriguingly, findings from Martin’s research have indicated a 
hierarchical structure among layer 5 pyramidal neurons in the developmental stages of cerebral cortex. Risk gene mutations associated 
with ASD can disrupt the developmental traits of these neurons [44]. However, the question of whether ASD-related genetic variations 
primarily affect cortical development by interfering with the hierarchical and active characteristics of cortical neurons warrants 
further exploration. 

Single-cell sequencing analysis has verified extensive transcriptomic changes throughout the cerebral cortex in individuals with 
ASD. This suggests that the brain alterations associated with autism are comprehensive across the entire cerebral cortex, extending 
beyond specific regions previously believed to impact social behavior and language [45]. Therefore, future analyses across multiple 
tissues should prioritize the representation of the broadest possible range of cortical regions. 

It is equally important to assessing the regulatory role of epigenetics in the pathophysiology of ASD. Studies have quantified 
patterns of DNA methylation in ASD and identified several differentially methylated regions (DMRs) [46]. These DMRs tend to cluster 
in regions related to gene promoters, gene bodies, and the 3′ untranslated regions of a spectrum of ASD-related genes [47–49]. This 
underscores the association between aberrant DNA methylation and ASD. However, data on the specific number and location of DMRs 
in ASD remain limited. A meta-analysis has revealed abnormalities in core indices of cellular methylation capacity in the blood of ASD 
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patients. This includes significantly reduced methionine and S-adenosylmethionine (SAM) levels, elevated 
SAM/S-adenosylhomocysteine (SAH) ratios, and increased SAH levels [50]. Further research of these aberrant indicators is essential 
due to their potential research value in developing biomarkers for early ASD diagnosis and treatment targets. Epigenetic dysregulation 
in ASD also involves posttranslational histone modification. An extensive histone acetylome-wide association study has identified a 
common acetylome signature shared by more than 68 % of syndromic and idiopathic ASD cases in the prefrontal and temporal cortex. 
This suggests a link between epigenetic modification processes and ASD, implying that epigenetics plays a role in regulating the ASD 
phenotype [51]. 

"Dark matter" regions of the genome, which do not directly encode proteins, have been proven invaluable in advancing biomarker 
research in ASD studies. They have also shed light on the role of non-coding RNAs (ncRNAs) in ASD pathophysiology. An analysis of 
whole-genome microRNA (miRNA) expression profiles has delineated the targets of several prime candidate miRNAs and perturbed co- 
regulatory modules in ASD [52]. This examination has unveiled the upregulation of hsa-miR-21-3p, which may lead to downregulation 
of neuronal and synaptic genes, correlating with neuronal and synaptic defects in ASD. Another primate-specific miRNA, 
has-can-1002-m, is downregulated in ASD; it regulates signaling pathways linked to neural stem cell proliferation, such as EGFR and 

Fig. 9. Distribution of key biomarkers in hotspot areas of ASD biomarker research.  
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FGFR pathways. These mechanisms may reflect the neural development process of early postnatal brain overgrowth in ASD [52,53]. It 
is important to note, however, that this study primarily focused on brain tissue samples from adults, potentially missing early genetic 
perturbations that play a causal role. 

4.2.1.1. Challenges and future perspective. Most studies attempting to identify genetic mutations and variations underlying ASD have 
struggled to replicate earlier findings or reproduce them in different cohorts [54]. The primary reason for this lack of replication is the 
considerable heterogeneity within ASD populations. To address this, researchers suggest categorizing ASD individuals into subgroups 
based on behavioral symptoms, comorbidities, or variations in metabolic and immune functions. This approach aims to reduce the 
heterogeneity within hereditary ASD cases [10,11]. Consequently, it is crucial to incorporate phenotypic identification into genetic 
and other biological analyses of ASD [55]. A cohort study has affirmed that incorporating phenotypic subgroups enhances the 
sensitivity and specificity of gene-related biomarker predictions [56]. Based on these insights, future ASD research should prioritize 
examining specific phenotypes to uncover ASD subgroup-specific genes, signalling pathways, and signaling pathways. This approach 
will mitigate the heterogeneity observed in genetic analyses and offer new prospects for diagnosis and treatment. 

In addition to the substantial genetic heterogeneity, the extent to which the genetic risk for ASD is distinct from other neuro-
developmental disorders remains a subject of debate. Studies investigating copy number variations (CNVs) have revealed that the same 
genetic variation structure can lead to differing diagnostic outcomes, including but not limited to schizophrenia, attention deficit 
hyperactivity disorder, and epilepsy [57,58]. Despite the significant genetic heterogeneity in ASD, there is an overlap with certain 
neuropsychiatric disorders. However, it’s undeniable that advancements in gene capture techniques and methodologies over the past 
decade, along with the resulting wealth of genetic discoveries, have played a pivotal role in unraveling the pathophysiology of ASD and 
contributing to enhanced clinical management. Future efforts should concentrate on further expanding foundational omics databases, 
spanning diverse age groups, genders, and species, with a focus on capturing individual ASD developmental trajectories. 

Unlike genomics, the epigenome is modifiable. First, it remains uncertain whether altered epigenetic patterns actively drive ASD or 
whether it results from other pathogenic factors. Establishing a causal relationship is of paramount importance. Second, the use of 
numerous psychotropic drugs may influence the study of epigenetic genomes, potentially leading to biased results [59]. In epide-
miological studies, controlling for the use of medications, individual developmental trajectories, age, and other covariates is necessary 
to establish a reliable causal connection between environmental exposures, maternal prenatal exposures, and the uterine epigenome. 
Exploring these aspects alongside genetic factors, including through methodologies such as Haplotype Analysis, will provide a more 
comprehensive understanding of ASD etiology and contribute to improved diagnosis and treatment strategies. 

4.2.2. Imaging biomarkers 
In studies on biomarkers for ASD, MRI has emerged as invaluable technology for identifying neurodevelopmental variations in 

brain anatomy, funtional, and connectivity underlying ASD. Alterations in functional connectivity have been garnered support as a link 
between regional brain activation and phenotypic presentation [53]. 

4.2.2.1. Structural imaging. Multiple longitudinal MRI studies have evaluated differences in cortical column metrics (such as volume, 
surface area, thickness, and folding) and white matter tract integrity throughout the lifespan. For instance, a prospective neuroimaging 
study involving infants at risk of ASD has demonstrated that children who later develop ASD exhibit an excessive expansion of cortical 
surface at 6–12 months, with a greater involvement of areas associated with auditory and visual processing [60]. Moreover, certain 
regions of the brain, including anomalies in Broca’s area and Wernicke’s area, have been linked to social communication and language 
deficits in ASD individuals [13,61]. Abnormalities in the frontal-temporal regions and the amygdala have been associated with im-
pairments in social-emotional processing [62,63], while the frontal lobe cortex and the caudate nucleus (part of the fronto-striatal 
system) may mediate repetitive and stereotyped behaviors [14,64].A cohort study further identified structural alterations in the 
mesolimbic reward pathway, providing support for the hypothesis that compromised reward processing circuitry could contribute to 
social impairment in ASD individuals [65]. Notably, certain studies have discerned differences in brain structure when comparing 
patients with ASD with other patients having neurodevelopmental disorders such as schizophrenia and attention-deficit/hyperactivity 
disorder [66,67]. The significance of these structural imaging findings lies in their potential to aid in the diagnosis of patients with ASD 
who are challenging to classify solely based on clinical symptoms. 

In summary, these longitudinal MRI study outcomes underscore the connection between ASD and brain structural variations, along 
with the potential association of specific brain regions’ anomalies with distinct ASD symptomatology. These revelations contribute to a 
deeper comprehension of ASD’s neurobiological underpinnings and offer prospective imaging groundwork for its early diagnosis. 

4.2.2.2. Functional imaging. When discussing the research progress in ASD, resting-state fMRI plays a pivotal role in unraveling the 
neural characteristics of the ASD brain. This research methodology allows us to capture the functional connectivity and activity within 
the brain in the absence of specific tasks, thereby providing an in-depth insight into the neural mechanisms of ASD [68]. Within this 
domain, an increasing number of studies using resting-state fMRI have been focused on exploring the connectivity alterations within 
the brains of individuals with ASD. These studies have focused on various functional networks, such as the default mode [69–71], 
salience [72,73], central executive [73–75], and dorsal attention network [68,74,75]. In these networks, connectivity changes may 
manifest as either enhanced or attenuated, closely associated with core ASD symptoms such as social interaction deficits and impaired 
cognitive flexibility [68]. Furthermore, resting-state fMRI investigations have also examined connectivity changes between different 
brain regions, encompassing both homotopic and heterotopic interhemispheric connections [76,77]. In ASD patients, distorted 
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connectivity patterns within and between hemispheres have been observed, possibly linked to clinical features of autism and social 
communication impairments [77]. 

During the early developmental stages, certain studies have specifically delved into the resting-state functional connectivity of 
children and infants with ASD, revealing that even at an early age, atypical brain connectivity may exist [72,78]. Notably, some studies 
have discovered a correlation between the functional connectivity patterns in infancy and subsequent ASD diagnoses, particularly in 
high-risk populations [79]. Encouragingly, research has demonstrated that the analysis of resting-state fMRI data can be employed to 
predict the diagnosis of ASD during infancy. Utilizing machine learning algorithms, these studies successfully predicted ASD diagnoses 
with 100 % accuracy at 6 months of age by analyzing brain connectivity patterns associated with ASD [17]. This suggests that the 
patterns of brain connectivity may pre-exist before the manifestation of symptoms, potentially aiding in early-stage diagnosis and 
intervention for ASD. 

4.2.2.3. Challenges and future perspective. In the context of ASD, the journey towards identifying imaging biomarkers has been marked 
by significant progress, while concurrently encountering specific challenges that are shaping the future trajectory of this field. 

These challenges encompass the intrinsic heterogeneity of ASD, presenting a formidable hurdle in pinpointing universal biomarkers 
due to the diverse spectrum of clinical and cognitive features exhibited by individuals. Additionally, the requirement for substantial 
sample sizes, coupled with the need for sample diversity, poses difficulties in recruitment and data collection standardization, affecting 
the reliability of findings.Future endeavors in ASD imaging biomarker research should pivot around several focal points to propel its 
advancement. 

Progress in ASD imaging biomarker research has unfolded critical trajectories. Firstly, rigorous scrutiny of cerebral structure and 
functional attributes patients with ASD becomes paramount to unearth refined imaging biomarkers. This endeavor mandates the 
strategic assimilation of contemporary data analytical methodologies, such as machine learning and artificial intelligence, to unveil 
latent malady-specific biomarkers. Secondly, in light of the burgeoned stride in precision medicine, forthcoming inquiries should 
judiciously explore the potential utility of these imaging biomarkers to prognosticate the responsiveness of patients with ASD to 
diverse therapeutic modalities. Through analysis of patient imaging data allows for the identification of salient features that correlate 
with treatment responses. Consequently, the application of personalized therapeutic strategies holds promise to optimize treatment 
efficacy and align interventions with the bespoke exigencies of individual patients’ needs. Furthermore, the synergistic combination of 
distinct imaging modalities, including Structural Magnetic Resonance Imaging(sMRI), fMRI, and EEG, holds substantive promise in 
providing a comprehensive depiction of the intricate neurobiological underpinnings of ASD. By harmoniously integrating these 
multimodal datasets, a more comprehensive insight into the structural and functional dynamics of the ASD brain can be gleaned, 
thereby fostering a more precise delineation of imaging biomarkers. 

In anticipation of forthcoming research, longitudinal studies assume an indispensable facet. The longitudinal documentation and 
observation of the evolving structural and functional metamorphoses within the brains of patients with ASD facilitate a nuanced 
comprehension of the developmental trajectory of the disorder. This longitudinal perspective augments our comprehension of the 
disease’s evolution and expedites the dynamic refinement and validation of imaging biomarkers over temporal continuums. 

4.2.3. Oxidative stress biomarkers 
Oxidative stress results from an imbalance between the production of reactive oxygen species (ROS) and the body’s defense 

mechanisms orchestrated by antioxidants [80]. This equilibrium disruption leads to inadequately controlled excessive ROS, which can 
potentially trigger various pathological changes, including damage to lipid membranes, proteins, DNA, and disruptions in mito-
chondrial function [81]. In the context of ASD, children appear to be more vulnerable to oxidative stress, evidenced by escalated lipid 
peroxidation due to increased free radical generation and insufficient antioxidant protection [82–84], especially during critical stages 
of brain development [85]. Individuals diagnosed with ASD display physiological abnormalities linked to oxidative stress, such as 
heightened lipid peroxidation products [86,87] and reduced glutathione reserve capacity [88,89], particularly in brain tissue. These 
anomalies tend to localize within brain regions associated with speech and auditory processing, social behavior, memory, and 
sensory-motor coordination [84,90]. 

Lipid peroxidation plays a pivotal role in oxidative stress, involving the process in which oxidants target lipids containing carbon- 
carbon double bonds, leading to oxidative modifications in cellular membranes [91]. Consequently, byproducts like malondialdehyde 
(MDA), 4-hydroxy-2-nonenal (4-HNE), and F2-isoprostane emerge as potential biomarkers reflecting oxidative stress status and 
associated disorders in vivo [92]. MDA has been implicated in initiating cellular stress and apoptosis under carbonyl stress, thereby 
potentially compromising brain function [93], which could contribute to autistic behaviors in individuals with ASD [94]. Several 
studies utilizing the thiobarbituric acid reactive substances assay consistently reveal significantly elevated plasma MDA levels in 
patients with ASD compared to age-matched healthy counterparts, with a positive correlation to ASD severity [95–97]. This un-
derscores the predictive and evaluative value of plasma MDA in assessing ASD risk and therapeutic efficacy [98]. However, a different 
study suggested that changes in plasma MDA levels were not associated with ASD [99], possibly due to the presence of the blood–brain 
barrier and the low concentration of blood markers. In instances of limited detection method sensitivity, trace MDA levels in peripheral 
blood might not be quantified adequately. Improving detection methodologies, such as using more sensitive and specific chroma-
tography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS) [100–102], could be effective. Further-
more, considering that various neurodevelopmental disorders related to cognitive and behavioral impairments correlate with 
heightened MDA [103,104], combining plasma MDA with other specific indicators for ASD diagnosis is advisable. 

In conjunction with MDA, other significant lipid peroxidation markers, like 4-HNE and F2-isoprostane [105], hold substantial 
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research value. Studies suggest their potential involvement in ASD pathogenesis [106,107]. The effects of 4-HNE might stem from 
endoplasmic reticulum (ER) stress in the human autistic brain [106], while F2-isoprostane could result from platelet and vascular 
activation [107]. Numerous investigations have identified elevated levels of 4-HNE [108] and F2-isoprostane [109–111] in blood 
samples from children with ASD. A surge in gastrointestinal (GI) symptoms in children with ASD, linked to mitochondrial redox 
imbalances in their intestinal environment, has been previously documented [112,113]. In a substantial case-control study, elevated 
plasma F2t-isoprostane levels were found to be strongly correlated with ASD accompanied by GI dysfunction [114]. This supports the 
potential utility of F2t-isoprostane in predicting GI symptom risk and monitoring therapeutic outcomes in ASD patients. 

Glutathione, the brain’s predominant endogenous antioxidant, plays a pivotal role in cell signaling and antioxidant defense [115, 
116]. Disruptions in glutathione metabolism might arise from congenital neuroinflammatory shifts [117] and imbalances in intestinal 
microflora [118], contributing to the pathophysiological understanding of ASD. Genetic variations within glutathione-related meta-
bolic pathways have been substantiated [119–121], correlating with behavior in individuals with autism [122,123]. Children diag-
nosed with ASD exhibit a decrease in reduced glutathione (GSH) concentration and an increase in oxidized glutathione (GSSG) levels 
compared to age-matched controls [124–127]. However, these findings remain contentious across different research groups [128]. 
Notably, consistent results emerge concerning the GSH/GSSG redox ratio. Multiple studies indicate a 2–3 times decrease in GSH/GSSG 
redox ratios in the blood [124,127,129–131], brain tissue [89], and lymphoblastic cells [132] of patients with ASD patients compared 
to controls, reflecting parallel changes between the central and peripheral nervous systems. The study of ASD brain tissue also revealed 
a correlation between a low GSH/GSSG redox ratio and the inhibition of redox-sensitive mitochondrial enzymes [89]. In conclusion, 
the GSH/GSSG redox ratio emerges as a dependable ASD biomarker with high sensitivity and repeatability. 

Furthermore, alterations in the activities of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase 
(GSH-Px), and catalase (CAT), have been observed in individuals with ASD [133]. These observations suggest a potential disruption in 
the balance of the antioxidant defense system of individuals with ASD. Diminished antioxidant enzyme activities are implicated in 
patients with ASD, rendering cells less capable of effectively combating oxidative stress [134]. Nevertheless, by enhancing the 
functionality of the antioxidant enzyme system, it is plausible to mitigate the oxidative stress damage experienced by these patients, 
thereby potentially ameliorating their pathological conditions [84,133]. This theoretical framework advocates for the concept of 
bolstering cellular antioxidant capacity as a strategy for treating ASD, offering promising leads for the development of novel thera-
peutic approaches. It is important to note that these hypotheses necessitate further research to ascertain their practical efficacy and 
applicability in clinical settings. 

4.2.3.1. Challenges and future perspective. While brain tissue or cerebrospinal fluid (CSF) samples can directly detect oxidative stress in 
the brain, the complexity of detection methods and risks associated with the sampling process primarily confine this approach to 
scientific research, with limited application in clinical practice. In contrast, peripheral biofluid samples offer non-invasiveness, ease of 
collection, and repeatability, making them a preferable choice for research. However, the current repertoire of biomarkers in pe-
ripheral biofluids does not allow for an accurate identification of brain or peripheral oxidative stress [135]. Nevertheless, the rapid 
advancement of metabolomics technology holds promise for addressing this challenge. Metabolomics in ASD research seems likely to 
enable the identification of metabolites closely associated with oxidative stress, thereby facilitating a more comprehensive under-
standing of the biological status of patients with ASD [136,137]. Various targeted metabolomics techniques have been developed and 
utilized to measure oxidative stress biomarkers with precision [138,139], such as homocysteine, methionine, and vitamins B6, B12, 
and B9, revealing their correlations with ASD [135]. Furthermore, by integrating metabolomics data with other omics data (such as 
genomics and proteomics), we can discern metabolites linked to oxidative stress, changes in protein expression, and genetic variations, 
thereby achieving a more comprehensive grasp of the molecular mechanisms underpinning ASD pathogenesis [140,141]. Neverthe-
less, future research needs to confront certain challenges. Exploring additional biomarkers in peripheral biofluid samples, like 
brain-derived neurotrophic factor (BDNF) [142] or brain-derived exosomes [143], promises to yield more comprehensive insights. 
Additionally, metabolomics technology faces limitations in sample stability, standardization, and data interpretation, necessitating 
ongoing technological innovation and method refinement. The advancement of tools such as bioinformatics and artificial intelligence 
will elevate the capacity to handle extensive multi-omics data, consequently expediting the discovery and validation of biomarkers 
[144]. 

4.2.4. Neuroinflammation biomarkers 
In recent years, research has indicated that genes associated with the risk of ASD, identified within the cortical tissue organization, 

are enriched in categories related to immunity and inflammation [145]. This lends support to the connection between the immune 
system, neuroinflammatory events, and ASD. Nonetheless, it remains unclear whether neuroinflammation acts as a causative factor of 
ASD or whether it is a downstream reaction to other biological processes, such as oxidative stress. Studies have revealed activation and 
increased density of microglial cells in the ASD brain parenchyma, suggesting a correlation with abnormal functional connectivity 
among regions of the ASD brain [146,147]. 

Animal model research has revealed that maternal inflammation is a risk factor for ASD. Activation of the maternal immune system 
during pregnancy leads to offspring exhibiting behaviors resembling ASD and alterations in immune cell function [148]. The inter-
action between immune cells is often regulated by cytokines, which are used as biomarkers to assess immune dysregulation and 
pro-inflammatory states in ASD. Meta-analyses of pro-inflammatory cytokines in ASD consistently reveal elevated levels of factors such 
as IFN-γ, IL-1β, IL-6, and TNF-α when compared to control groups [149]. 

Chemokines play a crucial role in guiding immune cell chemotaxis and recruitment to sites of inflammation. Elevated 
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concentrations of various chemokines associated with congenital immune activation, including MCP-1, RANTES, eotaxin, IL-8, and 
CXCL1, have been observed in pediatric ASD [150,151]. Furthermore, some studies have suggested a correlation between elevated 
MCP-1 levels in maternal amniotic fluid and an increased risk of ASD in offspring [152]. Concentrations of chemokines like MIP-1α, 
MIP-1β, and IP-10 have also been associated with social behavioral impairments [153], implying the impact of chemokines on the 
chemotaxis and migration of monocytes/macrophages during ASD diagnosis, at birth, and even during pregnancy. 

4.2.4.1. Challenges and future perspective. Despite the majority of ASD studies confirming increased levels of inflammatory cytokines 
and chemokines, results are not always consistent. Contradictory findings could stem from differences in patient and control pop-
ulations, sample types and processing, as well as the use of diverse immunological analyses and techniques. Additionally, variability in 
biomarkers is present within the normal population, making it essential to establish reliable criteria for distinguishing patients with 
ASD from healthy individuals. This complexity also makes it challenging for a single biomarker to serve as a specific diagnostic tool for 
ASD. 

Future research directions might involve more multicentre studies to enhance sample representation and further validate the 
stability and reliability of biomarkers. Integrating neuroinflammation-related biomarkers with clinical symptoms, genetic back-
grounds, and environmental factors could aid in establishing more accurate ASD diagnostic tools. Moreover, a comprehensive 
approach integrating information from multiple biomarkers could enhance the understanding of the intricate etiological mechanisms 
of ASD. Delving deeper into the role of the immune system in neural development could unveil more nuanced correlations with ASD, 
offering more precise avenues for early diagnosis and treatment strategies. 

4.2.5. Gut microbiota biomarkers 
In recent years, the relationship between ASD and the gut microbiota has become a prominent area of research. Studies have 

indicated that there exists a dysregulation in the composition of gut microbiota in patients with ASD, primarily manifested by al-
terations in the relative abundances of certain bacterial groups [154]. Specifically, a meta-analysis of the gut microbiota in children 
with ASD revealed a significant increase in the relative abundance of the Bacteroidetes phylum (such as Bacteroides and Para-
bacteroides genera) as well as the Firmicutes phylum (especially Clostridium, Faecalibacterium, and Phascolarctobacterium genera). 
Conversely, the relative abundances of beneficial bacteria such as the Coprococcus and Bifidobacterium genera were found to be lower 
[155]. However, this conclusion is still debated within the academic community. One study has suggested the presence of overgrowth 
of Proteobacteria in the ASD gut, with their relative abundance linked to allergic symptoms [156]. Furthermore, research has iden-
tified specific microbial communities, notably within the Bacteroides family and Lachnospiraceae, where reduced microbial quantities 
correlate with neurodevelopmental levels and behavioural symptoms like social impairment in patients with ASD [157]. This high-
lights the potential role of microbial activity and their metabolic products in the development and severity of ASD. Notably, in-
vestigations have revealed similarities in gut microbiota composition between children with ASD and their mothers, implying that 
maternal influence via microbial transmission could impact the microbiota of children with ASD and consequently influence ASD 
development [158]. However, it is essential to emphasize that while these research findings provide valuable insights into the rela-
tionship between ASD and gut microbiota, further studies are necessary to elucidate the mechanisms and implications of these 
discoveries. 

The activity of the gut microbiota generates various metabolites, including short-chain fatty acids (SCFAs) and amino acids. These 
metabolites play a crucial role in regulating brain function. Research indicates that SCFAs can cross the blood-brain barrier and in-
fluence early brain development by modulating the synthesis of neurotransmitters such as serotonin and dopamine [159].Specifically, 
SCFAs are a group of compounds produced by intestinal bacteria during the fermentation process, with one of the key components 
being propionic acid [160]. Of particular interest, research has revealed a significant reduction in the total amount of SCFAs and a 
corresponding increase in propionic acid concentrations in children with ASD [160,161]. This alteration in SCFA levels may be 
associated with the progression of ASD symptoms, and this notion has been supported by animal model experiments further support 
this notion. Injecting propionate into the lateral ventricle of the brain leads to behaviors and physiological changes resembling those of 
autism [161]. These alterations may involve delays in neural development and the occurrence of epilepsy [162], further underscoring 
the profound impact of gut microbiota metabolites on brain function. 

Furthermore, research has unveiled a close relationship between the gut microbiota and neurotransmitters, a field referred to as the 
"Gu–Brain Axis" [163]. Certain protective bacteria, such as those from the Bifidobacterium and Lactobacillus genera, have the capacity 
to produce the primary inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) [164], which is intimately linked to the brain’s 
excitatory neurotransmitter, glutamate [165]. Building upon the hypothesis of an "Excitation/Inhibition (E/I) Imbalance," it is posited 
that an imbalance between excitatory (primarily mediated by glutamatergic neurons) and inhibitory (primarily mediated by 
gamma-aminobutyric acid-ergic neurons) mechanisms forms the foundation for behavioral characteristics such as anxiety and social 
behavioral disturbances in individuals with ASD [166]. This E/I imbalance is likely to be intricately connected with the composition 
and functionality of the gut microbiota. Studies indicate that specific gut microbiota can influence brain activity by modulating 
neurotransmitter levels, particularly those producing GABA, which could influence inhibitory neural transmission by regulating GABA 
levels [164,167]. Consequently, disruptions in the gut microbiota could lead to disturbances in neurotransmitter levels, potentially 
triggering or exacerbating E/I imbalances in individuals with ASD, thereby affecting behavior and emotions. This underscores the vital 
role of the gut microbiota and neurotransmitters in the pathogenesis of ASD [168]. 

4.2.5.1. Challenges and future perspective. While observed changes in gut microbiota related to ASD have been reported in the 
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literature, the study of mechanisms by which these alterations influence brain function and behavior remain unclear. Moreover, the 
gut microbiota is subject to modulation by various factors such as diet, genetics, medication, and environment, exhibiting a significant 
degree of inter-individual variability. This variability poses a challenge in identifying stable microbial features associated with ASD. To 
address this challenge, several strategies can be employed: Firstly, conducting long-term longitudinal studies that include patients with 
ASD and tracing the development of gut microbiota from childhood to adulthood, would aid in revealing patterns of microbial 
variation and how these changes correlate with the evolution of ASD symptoms. Secondly, integrating multi-omics data layers, 
including metagenomics, metatranscriptomics, and metabolomics, would provide a more comprehensive understanding of the 
interplay between gut microbiota, host physiology, and pathways related to ASD. Additionally, leveraging of microbial compositional 
features would facilitate the development of personalized therapeutic interventions, enabling more precise ASD interventions while 
accounting for individual differences and the diversity of gut microbiota composition. 

4.2.6. Eye tracking biomarkers 
Eye movement biomarkers refers to a method of identifying potential indicators of ASD by observing and analyzing individuals’ eye 

movement patterns while they view, fixate on, and track visual stimuli. Numerous studies have indicated differences in visual attention 
between individuals with ASD and those with TD [16,169], and those differences are closely correlated with the social impairments 
characteristic of ASD [170–172]. In terms of gaze patterns, individuals with ASD tend to focus more on non-facial areas, such as the 
mouth, ears, or background, and less on the eye region [173]. Furthermore, the duration of eye contact is positively correlated with 
social skills and sensitivity to emotion perception. Research has also discovered that reduced visual attention to the eye region is 
associated with more severe social impairments in adults with ASD [174]. This phenomenon may stem from reduced social significance 
perception of the eye region among individuals with ASD, potentially impacting their ability to extract emotional information from 
facial expressions.Additionally, patients with ASD may exhibit distinct gaze patterns when observing different emotional expressions. 
Evidence suggests that when viewing fearful faces, individuals within the autism spectrum may display heightened activity in key 
areas of the social brain, while reduced activity may be observed when observing happy faces [175]. These varying neural response 
patterns could contribute to the integration of theories related to arousal and social motivation in ASD, thereby enhancing our 
comprehension of the neurobiological underpinnings of ASD [176]. Indeed, the fixation patterns of ASD patients may undergo changes 
across different age stages [18] possibly reflecting developmental delays or asynchrony in emotional cognition and social skills. 

4.2.6.1. Challenges and future perspective. Nevertheless, eye movement biomarker research in ASD still faces numerous challenges. A 
primary challenge is the lack of standardized research methods and experimental protocols, leading to poor comparability between 
different studies and low reproducibility of results, thereby diminishing the reliability and replicability of research outcomes [15]. 
Additionally, factors such as varying experimental setups, ambient lighting, and participant positioning can influence the collection of 
eye movement data, resulting in substantial variability between outcomes and hindering the establishment of consistent patterns. To 
enhance research reproducibility, future studies need to establish unified eye movement research methodologies and experimental 
protocols, alongside the sharing of validated stimulus materials. The formulation of these standards and protocols would help reduce 
methodological discrepancies and enhance result consistency. Furthermore, the integration of eye movement data with other 
neurobiological data sources (i.e. machine learning, electroencephalography, and functional magnetic resonance imaging) can offer a 
more comprehensive perspective, facilitating a deeper understanding of cognitive and perceptual processes in response to stimuli in 
patients with ASD [177]. According to a meta-analysis combining eye tracking technology with machine learning, machine learning 
models based on eye movement data achieved a classification accuracy of 81 % in distinguishing individuals with ASD from those with 
TD, with a sensitivity of 84 % and specificity of 79 %. Subgroup analysis further revealed accuracy rates of 88 %, 79 %, and 71 % for 
preschool children, school-aged children, and adolescents to adults, respectively. These findings underscore the potential value of 
combining eye tracking technology with machine learning for early ASD diagnosis [178]. Finally, ASD often co-occurs with other 
comorbid symptoms such as social anxiety and ADHD. These comorbid symptoms can impact emotion recognition and eye movement 
patterns, intensifying the complexity of research outcomes. Future research needs to better account for these comorbid symptoms to 
more accurately comprehend the differences in emotion recognition and eye movement within ASD. In conclusion, despite the 
challenges, the integration of diverse technical approaches remains a crucial avenue for further exploration and understanding of eye 
movement biomarkers in ASD. 

4.2.7. Integration of biomarker modalities 
The integration of genetics and neuroimaging aims to precisely localize gene effects relevant to the brain, identifying convergences 

between molecular-level impacts, circuit-level structure, and function across multiple risk genes. A systematic review of structural MRI 
findings in monogenic ASD underscores that approximately 51.7 % of individuals harboring significant genetic variations linked to 
ASD manifest brain abnormalities, particularly salient among pediatric patients [179,180]. The affected neuroanatomical domains 
predominantly encompass white matter, gray matter, and ventricles/cerebrospinal fluid regions, with white matter anomalies 
exhibiting particular prominence. This underscores the presence of disruptions in connectivity [181,182]and myelination develop-
ment [182–184] in children with ASD. In the realm of functional imaging, consistent correlations are observed between the depletion 
of ASD risk genes Shank3 [185] and cntnap2 [186] and alterations in prefrontal functional connectivity. Notably, these deletions are 
associated with deficits in social interaction and communication behaviors, thereby contributing to the pathogenesis of ASD [185]. 
These findings illuminate the pivotal role of prefrontal connectivity disruptions within the context of ASD risk gene mutations, offering 
insights into the intricate neurobiological underpinnings of the disorder. 
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Machine learning, situated at the intersection of neuroimaging and genetics within the realm of artificial intelligence, has served as 
a catalyst for pioneering advancements in ASD diagnosis [187]. Recent research underscores the distinct advantages of AI-powered 
medical devices for ASD diagnosis, renowned for their precision, adept data fusion, and optimal resource utilization [19]. Harness-
ing genes such as ARSD, MAGEB16, and MXRA5, deep learning models enhance conventional methods, elevating ASD screening 
accuracy by approximately 13 % [188]. In a separate investigation, employing machine learning techniques, scrutinization of brain 
imaging data from 252 subjects, including typically developing individuals and those with ASD, achieves an impressive 91 % accuracy 
in ASD diagnosis. This research underscores the paramount significance of functional connectivity attributes in ASD studies, revealing 
robust correlations between aberrations in somatosensory, default mode, and visual brain regions, and manifestations of ASD [189]. 
Proposing an alternative approach, another study introduces a multi-site adaptation framework utilizing functional MRI data. 
Employing low-rank representation decomposition to mitigate data heterogeneity, it exhibits remarkable proficiency in ASD recog-
nition [12]. In parallel, an international challenge disseminates MRI data sourced from over 2000 participants, unveiling the pro-
nounced impact of functional MRI on prognosis relative to anatomical MRI. As sample sizes incrementally amplify, prediction accuracy 
stabilizes, albeit a vigilant stance against overfitting risks remains imperative. Notably, the study successfully forecasts external sample 
ASD diagnoses post-challenge, albeit with slightly diminished accuracy, underscoring the intricacies of data transfer [190]. 

When investigating into ASD biomarkers, the amalgamation of EEG and eye tracking data provides comprehensive insights. The 
integration of eye tracking and EEG frequency band power explores cognitive processing demands during text-image learning. Varied 
conditions allowing or restricting text-image integration unveil the interrelation between cognitive processing demands and inte-
gration circumstances. Furthermore, EEG alpha and theta frequency band power data support eye tracking outcomes [191]. 
Leveraging eye tracking and EEG recordings, it’s evident that the ASD group manifests significantly diminished neural responses to 
facial stimuli, accentuating the utility of frequency-tagged EEG as a swift, objective, and dependable approach to monitor the decline 
in social preference [192]. Moreover, by employing a deep fusion approach that combines EEG and eye tracking data, a remarkable 95 
% accuracy rate in distinguishing ASD from typically developing children was achieved, revealing robust correlations between EEG 
and eye tracking signals, particularly in terms of facial-related/joint attention covariance [193]. 

The novelty of this study lies in its utilization of bibliometric methods to gain a fresh perspective on ASD biomarker research. By 
deeply exploring the WOSCC database, the objective is to uncover collaborative research patterns, recognize influential scholars, and 
outline future research directions. This quantitative approach provides profound insights into the substantial progress in the ASD 
biomarker field, accentuates existing challenges, and proposes innovative research recommendations to address these challenges. 
Furthermore, this study delves into the integration of various biomarker modalities for a precise assessment of ASD features, posi-
tioning it at the forefront of the field. 

Despite the study’s merits, certain challenges were encountered during the methodology. Firstly, the data was exclusively extracted 
from the WoSCC database due to limitations in visualization software for merging databases. This limitation suggests that other da-
tabases such as PubMed, Scopus, and EMBASE may contain more comprehensive and influential literature records, thereby offering 
potential enhancements for future research efforts. Secondly, as of 2023, the year had not yet concluded, meaning that complete data 
for that year could not be included, introducing the possibility of research bias. Additionally, it is crucial to note that while the study 
relies on bibliometric data for quantitative analysis, it does not provide qualitative assessments of the clinical or practical significance 
of the research findings. 

5. Conclusion 

This study employs bibliometric methods to comprehensively investigate the field of ASD biomarkers, encompassing international 
collaboration trends, publication outputs, research hotspots, and future directions. Moreover, it underscores the significance of 
integrating diverse biomarker modalities, including genetics, neuroimaging, EEG, and eye tracking, for the precise assessment of ASD 
features. These findings provide a focused roadmap for future ASD biomarker research. Future research endeavors should center 
around the following areas:(1)Stratifying individuals with ASD into distinct subgroups based on behavioral symptoms, comorbidities, 
or metabolic and immune anomalies will aid in discerning unique pathogenic mechanisms within each subgroup.(2)The establishment 
of standardized research methodologies, bolstered by the power of large-scale "omics" technologies, is essential to enhance result 
reproducibility.(3)Through interdisciplinary collaboration and leveraging artificial intelligence and machine learning, amalgamating 
various biomarker modalities will enable a more precise evaluation of ASD.(4)Long-term tracking and longitudinal studies of ASD 
patients will provide deeper insights into the developmental trajectories of ASD and the temporal dynamics of biomarkers. These 
research directions promise to deepen our understanding of ASD, enhance the accuracy of early diagnosis, and offer greater possi-
bilities for precision treatments. By integrating multidisciplinary approaches, harnessing advanced technologies, and leveraging 
extensive data analysis, ASD biomarker research is poised to reach new heights in the pursuit of improved ASD diagnosis and 
management. 
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