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A B S T R A C T   

Background: We previously showed that metabolomics predicts relapse in early breast cancer (eBC) patients, 
unselected by age. This study aims to identify a “metabolic signature” that differentiates eBC from advanced 
breast cancer (aBC) patients, and to investigate its potential prognostic role in an elderly population. 
Methods: Serum samples from elderly breast cancer (BC) patients enrolled in 3 onco-geriatric trials, were 
retrospectively analyzed via proton nuclear magnetic resonance (1H NMR) spectroscopy. Three nuclear magnetic 
resonance (NMR) spectra were acquired for each serum sample: NOESY1D, CPMG, Diffusion-edited. Random 
Forest (RF) models to predict BC relapse were built on NMR spectra, and resulting RF risk scores were evaluated 
by Kaplan–Meier curves. 
Results: Serum samples from 140 eBC patients and 27 aBC were retrieved. In the eBC cohort, median age was 76 
years; 77% of patients had luminal, 10% HER2-positive and 13% triple negative (TN) BC. Forty-two percent of 
patients had tumors >2 cm, 43% had positive axillary nodes. Using NOESY1D spectra, the RF classifier 
discriminated free-from-recurrence eBC from aBC with sensitivity, specificity and accuracy of 81%, 67% and 
70% respectively. We tested the NOESY1D spectra of each eBC patient on the RF models already calculated. We 
found that patients classified as "high risk" had higher risk of disease recurrence (hazard ratio (HR) 3.42, 95% 
confidence interval (CI) 1.58–7.37) than patients at low-risk. 
Conclusions: This analysis suggests that a “metabolic signature”, identified employing NMR fingerprinting, is able 
to predict the risk of disease recurrence in elderly patients with eBC independently from standard clinicopath-
ological features.   

Introduction 

Over 40% of patients with BC are aged ≥65 years at diagnosis, while 
approximately 20% are older than 75 years [1]. BC correlation with age 
could be linked to the continuous endocrine proliferative stimulus that 
the mammary epithelium undergoes over the years, as well as to the 

progressive damage of DNA and the accumulation of epigenetic muta-
tions that alter the balance of expression between oncogenes and tumor 
suppressor genes [2]. More favorable breast cancer subtypes are prev-
alent in older women with around 80% of BC occurring in the elderly 
being hormone dependent and weakly aggressive [3]. Despite the 
apparent favorable biological characteristics, BC-specific mortality rates 
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increase with age [4]. This is mostly related to undertreatment, as well 
as to the heterogeneity of the elderly population [5]. Management of 
older cancer patients is challenging due to limited level I evidence to 
guide treatment decisions. Older patients are generally underrepre-
sented in clinical trials, therefore treatment recommendations are 
largely based on retrospective subgroup analysis and extrapolation of 
study results from younger individuals [6,7]. However, it is not always 
possible to translate evidence derived in the younger to the older pop-
ulation, mainly because of a different “habitus” that can condition 
treatments’ response, tolerability and compliance. Moreover, older pa-
tients enrolled in clinical trials, are not representative of the “real” 
population because of selection process. Selection bias is common also in 
elderly-focused clinical trials, in which unfit patients are scarcely 
represented. 

Aging is associated with decreased physiological reserves and altered 
pharmacokinetics, influencing cancer treatment toxicity, response, and 
overall prognosis [8,9]. Therefore, it is important to evaluate the 
cost/benefit ratio of an anticancer treatment in each older cancer pa-
tient. Prognostic factors that consider not only the tumor but also the 
host, and a better definition of patient health status, could help in 
identifying the patients that will benefit most from the treatment and 
those who may need a personalized approach. 

In the treatment of eBC, risk stratification based on prognostic fea-
tures is critical to decisions about the appropriate adjuvant strategies. In 
the past years, molecular profiling of the primary tumor has led to an 
improvement of the traditional pathological risk stratification [10–12]. 
However, a significant proportion of patients classified as “high risk” by 
clinicopathological factors and/or by genomic analysis, do not relapse 
and may receive chemotherapy unnecessarily. In addition to primary 
cancer characterization, the detection of micrometastatic disease should 
contribute to a more precise definition of the risk of relapse. 

Metabolomics is the omics science that deals with the characteriza-
tion of the metabolome, that is a highly complex and organized 
biochemical network in which small molecules such as lipids, peptides, 
vitamins and other cofactors, are released in biological specimens (i.e. 
blood, urine, tissue) and interact between them and with other biolog-
ical macromolecules [13]. Metabolomics offers a major opportunity in 
identifying individual susceptibility to drugs and environmental factors, 
as well as in characterizing a disease for diagnostic and prognostic 
purposes; metabolomics can also be useful for understanding the 
biochemical causes underlying different pathophysiological conditions 
[14]. Given that cancer cells can significantly alter metabolism, the 
pattern of metabolites produced can yield a “signature” that may indi-
cate the cancer’s presence or behavior [15]. In contrast to gene 
expression profiling, metabolomics identifies a signal that originates not 
only from the primary tumor tissue, but also potentially from the 
micrometastatic disease [16,17]. Furthermore, factors derived from the 
interaction between the cancer and the individual (i.e. tumor 
micro-environment, inflammatory and immune responses), may 
contribute to the metabolomic profile, offering combined information 
on residual tumor and host response. Previously published data from our 
group have shown that metabolomic spectra derived using NMR to 
analyze the metabolites in serum samples, can discriminate patients 
with eBC from those with aBC, and that patients with eBC who have 
metabolomic spectra more resembling the metastatic profile are more 
likely to relapse [18–20]. Due to the heterogeneity of the older popu-
lation we cannot speculate that the findings observed in a younger 
population can be translated to the elderly. 

The aim of the present study is to compare the NMR spectra of serum 
samples from elderly eBC patients with elderly aBC patients, to identify 
a “metabolic signature” that could differentiate these two groups. In 
addition, we would investigate the prognostic role of this metabolic 
model in terms of disease recurrence and survival. 

Methods 

This retrospective study was a collaborative project between the 
Sandro Pitigliani Medical Oncology Department, Hospital of Prato 
(Prato, Italy) and the Magnetic Resonance centre of the University of 
Florence (Sesto Fiorentino, Italy). Trials included in these analyses 
received approval from the local institutional ethics committee and were 
conducted in accordance with good clinical practice (GCP) and the 
principles of the Declaration of Helsinki. Written informed consent was 
prospectively obtained from all patients participating in these trials. 

Patient selection 

Serum samples of elderly BC patients enrolled in three onco-geriatric 
trials coordinated by the Medical Oncology Division of the Hospital of 
Prato were retrospectively analyzed. 

The “MetaboGER” study [21] is a prospective trial that has evaluated 
the performance of different geriatric assessments in identifying frailty, 
in elderly patients with solid tumors. The “GIVE” trial [22] 
[NCT02785887], is a randomized multicentric trial that aims to deter-
mine the impact of Comprehensive Geriatric Assessment (CGA)-based 
interventions on chemotherapy delivery, in patients aged 70 years or 
older, who present at least one deficit identified at a CGA. “CAFFE” is a 
complementary study to GIVE and aims to evaluate chemotherapy 
compliance in “fit” older patients. 

All three trials targeted patients with early stage or advanced solid 
malignancies (including breast cancer), who underwent a CGA at study 
entry. In GIVE and CAFFE, enrolled patients received chemotherapy as 
adjuvant treatment, or first/second line therapy for advanced disease. 

For the present analysis, the inclusion criteria for the “eBC cohort” 
were: age ≥70 years, diagnosis of early-stage BC (stage I-III according to 
American Joint Committee on Cancer (AJCC) 2017 classification [23]), 
radical surgical treatment of primary BC, availability of a fasting pe-
ripheral blood sampling performed within a maximum of 3 months from 
the date of breast surgery and before starting any type of medical cancer 
treatment in the adjuvant setting. Likewise, the inclusion criteria for the 
“aBC cohort” were: age ≥70 years, diagnosis of advanced BC (stage IV 
according to AJCC 2017 classification [23]), availability of a fasting 
peripheral blood sampling performed before starting medical cancer 
treatment for advanced disease. 

Serum sample collection and storage 

For each patient, an overnight fasting peripheral blood sample (10 
mL) was collected after surgery, and prior to commencement of the 
systemic treatment. Blood was centrifuged at room temperature for ten 
minutes at 1500 g, then serum was collected, and 1 mL aliquots trans-
ferred into pre-labelled cryovials. Within one hour of collection, samples 
were frozen and then stored at − 80 ◦C pending NMR analysis. 

NMR analysis 

Serum samples were prepared according to the standard operating 
procedures developed in the CERM laboratory [14,24]. 
One-dimensional 1H NMR spectra were acquired using a Bruker 600 
MHz spectrometer (Bruker BioSpin, Rheinstetten, Germany) operating 
at 600.13 MHz proton Larmor frequency. Before measurement, for 
temperature equilibration at 310 K, samples were kept for at least 5 min 
inside the NMR probe head. 

For each serum sample, three one-dimensional 1H NMR spectra were 
acquired using three different pulse sequences that enable the selective 
detection of different molecular components: a standard nuclear Over-
hauser effect spectroscopy pulse sequence NOESY 1D presat was applied 
to detect both signals of low (metabolites) and high molecular weight 
molecules. A standard spin echo Carr-Purcell-Meiboom-Gill 1D sequence 
(CPMG) and a standard diffusion-edited pulse sequence were used to 

E. Risi et al.                                                                                                                                                                                                                                      



Translational Oncology 27 (2023) 101585

3

selectively detect signals of low molecular weight metabolites and high 
molecular weight macromolecules (e.g. lipoproteins, proteins), 
respectively. 

An extended description of the sample preparation procedures, in-
strument configuration, and setting of the NMR parameters can be found 
in our previous publication [19]. 

NMR spectra processing 

Free induction decays were multiplied by an exponential function 
equivalent to a 1.0 Hz line-broadening factor before applying Fourier 
transform. Transformed spectra were automatically corrected for phase 
and baseline distortions and calibrated (anomeric glucose 1H doublet at 
δ 5.24 ppm) using TopSpin 3.6.2 (Bruker Biospin). 

Statistical analysis 

All data analysis was performed using the open source “R” statistical 
environment (Version Microsoft R Open 4.0.2). Multivariate analysis 
was performed on bucketed spectra. Each 1D spectrum in the range 
between 0.2 and 10.0 ppm was segmented into 0.02 ppm chemical shift 
bins and the corresponding spectral areas were integrated using Assur-
eNMR software (Bruker BioSpin). The spectral region containing resid-
ual water signal (5.10–4.42 ppm) was removed and the dimension of the 
system was reduced to 456 bins. Probabilistic Quotient Normalization 
(PQN) was applied on the data prior to pattern recognition [25]. Since 
spectra were acquired in a timeframe of 10 years (2008–2018) we 
needed to remove from the NMR data differences associated to technical 
variations. To this aim, we used a regression approach already described 
in previous publications [26,27]. 

A RF classifier [28] was built to separate eBC free from disease 
relapse (FFDR) patients, unselected for molecular subtypes, from aBC 
patients, as reported in previous studies [18,19,29]. RF is a classification 
algorithm that uses an ensemble of unpruned decision trees (forest), 
each of which is built on a bootstrap sample of the training data using a 
randomly selected subset of variables (bins in the present model) [30,31, 
32]. We split our cohort in two independent cohorts: a training set 
consisting of 111 eBC patients recurrence-free at follow up plus all aBC 
patients, and a validation set consisting of all relapsed eBC patients (29 
subjects). The initial analysis was restricted to the training set. In our RF 
model each tree is used to predict whether a sample come from an eBC 
patient recurrence-free at follow up or from an aBC patient. For each eBC 
patient, a score was created that expresses the extent to which the serum 
metabolomic fingerprint appeared to be similar (percentage of trees in 
the ensemble that misclassify the sample as belonging to the cohort of 
aBC patients) to the profile of a confirmed metastatic sample, designated 
as the ‘RF risk score’. RF models were built using the R package Random 
Forest with default settings [33]. Separate models were built for NOE-
SY1D, CPMG and Diffusion edited spectra. Receiver Operating Charac-
teristic (ROC) curve analyses were used to evaluate the performance of 
the RF classifier in discriminating early and advanced BC. Using the 
same methodology, we built an RF classifier focused only on luminal 
eBC patients. 

The second step was to test the hypothesis that metabolomic classi-
fication of some eBC patients as metastatic was due to metabolomic 
detection of signals from micrometastatic disease with likelihood for 
tumor relapse. For this aim, the NMR spectra of each relapsed eBC pa-
tient was tested on the RF models already calculated (we assumed that 
higher RF scores correlated with higher risk of developing cancer 
relapse). If a sample was classified as metastatic, the patient was 
considered at high risk of BC recurrence. BC recurrence was defined as 
tumor loco-regional or distant recurrence or development of a contra-
lateral BC. The recurrence-free interval (RFI) was defined as the time 
interval between the date of informed consent and BC recurrence or BC- 
related death. BC recurrence alone, overall survival (OS), and BC- 
specific survival, were also evaluated. We considered a death related 

to BC if the patient had already developed a disease relapse. 
The ability of the RF risk score to predict BC relapse was assessed 

using Kaplan–Meier curves (R packages “survival” and “survminer”) 
with additional calculation of the HR and p-value assessed by Log-Rank 
test. 

The spectral region related to 28 different metabolites was quantified 
by using a R script developed in-house. Multivariable logistic regression 
models were calculated to estimate the association between metabolites 
and BC stage (early free from disease relapse vs. metastatic patients) and 
adjusted for the time of serum sample acquisition [26,27]. Logistic 
regression models were computed using the function “glm” (R package 
“stats”) and each model significance was assessed through a Wald test. 
The p-values were corrected for multiple testing using the false discovery 
rate procedure with Benjamini-Hochberg correction at α = 0.05. 

Results 

Serum samples from 140 women with eBC and 27 with aBC, 
collected between November 2008 and August 2018, were retrieved. 
The median age at study entry was 79 (range 70–88) years in the aBC 
cohort, and 76 (range 72–80) years in the eBC cohort. In the aBC cohort, 
13 patients (48%) had luminal BC, 8 (30%) HER2-positive BC, and 6 
(22%) TN BC. The major clinicopathological characteristics of the eBC 
cohort are reported in Table 1. Eighty-one patients (57%) had pT1 and 
58 (42%) had pT2 tumors; axillary-nodes involvement was present in 60 
patients (43%). The majority of patients (77% n = 108) had luminal 
(hormone receptor positive, HER2-negative) BC; while 10% and 13% 
presented a HER2-positive and TN BC, respectively. Adjuvant systemic 
therapies were so distributed: 15 patients (11%) received only chemo-
therapy, 30 patients (21%) received chemotherapy and endocrine 
therapy, 80 patients (57%) received only endocrine therapy, 15 patients 
(11%) received no adjuvant treatment. At a median follow-up of 9.6 
years (95% CI 9.1–9.8), 29 patients (21%) had disease relapse, 61 pa-
tients (44%) had died, of which 26 patients (43%) were tumor related 
(21 out of 26 patients had a distant recurrence before death). RFI 
probability at 5-years was 81% (95%CI 74%− 88%), while the RFI 
probability at 10-years was 74% (95%CI 67%− 83%). Median-OS was 
9.5 years (95%CI 8.5–10 years). 

Metabolomic discrimination between non-relapsed eBC and aBC patients 

One-dimensional NOESY1D, CPMG and DIFFUSION-edited 
1H–NMR spectra were acquired for all serum samples. Supervised 
analysis, using RF classifier, showed significant differential clustering 
(permutation test p-value = 0.01 for all models) between serum spectra 
of early patients FFDR unselected for molecular subtypes, and metastatic 
patients. Sensitivity, specificity, and accuracy were respectively 81%, 
67% and 70% for the NOESY1D spectra (Fig. 1A), 81%, 59% and 64% 
for the CPMG spectra (Fig. 1B), and 78%, 72% and 72% for the 
DIFFUSION-edited spectra (Fig. 1C). 

Using ROC analyses, an area under the curve (AUC) scores of 0.79, 
0.78, and 0.81 were obtained for NOESY1D, CPMG and DIFFUSION- 
edited spectra, respectively (supplementary figure 1). 

We conducted a subgroup analysis in patients with luminal tumors. 
In this subgroup, the RF model, built using the NOESY spectra, 
discriminated eBC and aBC with 69% sensitivity, 66% specificity, 66% 
accuracy and an AUC of 0.706. The statistical significance was not 
reached, mainly due to the small number of luminal patients (n = 13) 
included in the aBC cohort (data not shown). 

Twenty-eight metabolites were quantified in all serum spectra. From 
the logistic regression analysis emerged that higher serum levels of 3- 
hydroxybutyrate, citrate, N,N-Dimethylglycine and phenylalanine and 
lower serum levels of leucine, isoleucine, valine, acetate and histidine 
were associated with the presence of aBC as compared with eBC FFDR 
(supplementary figure 2). No statistically significant correlation was 
found between the levels of individual metabolites and the risk of 
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recurrence in the whole eBC cohort (supplementary figure 3). Interest-
ingly, we found that all except two (phenylalanine and acetate) me-
tabolites significantly associated with aBC, had the same trend in the 
relapsed eBC. 

Relapse prediction by RF risk score 

We compared metabolomic RF risk scores and actual BC recurrence. 
Using NOESY1D, 19 out of 29 recurred patients were classified as “high 
risk”, meaning that 66% of patients with BC recurrence in the eBC cohort 
were predicted as “metastatic-like” based on the resemblance with the 
profiles of the metastatic samples. Worse ability to predict BC recurrence 
was seen for CPMG (15 out of 29 (51.7%) recurred patients correctly 
predicted), and for DIFFUSION-edited (12 out of 29 (41.3%) recurred 
patients correctly predicted). Therefore, we selected the NOESY1D NMR 
spectra for the subsequent analysis. Respectively 84 and 56 out of 140 
eBC patients (60% and 40%) were classified as “low risk” or “high risk” 
by their metabolomic fingerprint. Major clinicopathological features of 
eBC patients by metabolomic risk score are reported in supplementary 
Table 1. Ten patients (12%) of the “low risk” group presented tumor 
recurrence, versus 19 (34%) of the “high risk” metabolomic group. 

As shown in Fig. 2, patients classified as "high risk" (red – RF 
clas=aBC) had a higher risk of BC recurrence than patients classified as 
"low risk" (light blue – RF clas=FFDR eBC) (HR 3.42, 95% CI 1.58–7.37). 

The same analysis was also repeated excluding patients with second 
metachronous ipsilateral or contralateral BC. Even in this case, patients 
classified by the model as "high risk" had a higher risk of BC recurrence 
than patients classified as "low risk" (HR 2.98, 95% CI 1.33–6.66, p =
0.0044) (data not shown). 

The metabolomic risk score and conventional clinicopathological 
prognostic factors, were examined by univariate and multivariate 
regression analysis. The metabolomic risk score (p = 0.002), tumor (T) 
stage (p = 0.003), lymph nodal (N) stage (p<0.001), TN and luminal 
subtypes defined by IHC (p = 0.004), were significantly associated with 
the risk of recurrence at univariate analysis. The multivariate analysis 
showed that the prognostic effect of the metabolomic classifier was in-
dependent of pathological N stage, pathological T stage, and molecular 
subtypes (Table 2). 

RFI by metabolomic score and lymph node status is reported in 
Fig. 3. A significant difference was observed between high and low 
metabolomic risk in patients with node positive tumors (High risk/N+

vs. Low risk/N+ HR 3.05, 95%CI 1.18–7.88, p = 0.022). No difference 
was found in the node negative group. 

RFI was evaluated also by metabolomic score and molecular 

Table 1 
Baseline characteristics of the eBC cohort.   

Overall population N = 140 (%) 
Study  

CAFFE 23 (16%) 
GIVE 12 (9%) 
METGER 105 (75%) 
Age at study entry  
Median (Q1, Q3) 76 (72, 80) 
Range 70 - 91 
Gender  
F 136 (97%) 
M 4 (3%) 
Pathologic T stage  
pT1 81 (58%) 
pT2 59 (42%) 
Pathologic N stage  
pN0 79 (56%) 
pN1 38 (27%) 
pN2 10 (7%) 
pN3 12 (9%) 
pNx 1 (1%) 
Histological types  
Ductal 122 (87%) 
Lobular 11 (8%) 
Other* 7 (5%) 
Histological grade  
G1 24 (17%) 
G2 76 (54%) 
G3 40 (29%) 
Ki67  
<20 45 (32%) 
>=20 95 (68%) 
Vascular invasion  
No 83 (59%) 
Yes 57 (41%) 
Molecular subtypes (by IHC)  
Luminal (ER+ and/or PR+ HER2-negative)** 108 (77%) 
HER2-positive 14 (10%) 
Triple negative 18 (13%) 
Adjuvant therapy  
CT and ET 30 (21%) 
CT only 15 (11%) 
ET only 80 (57%) 
No treatment 15 (11%) 

F= female, M=male, T= tumor stage, N= lymph nodal stage, G= tumor grade, 
IHC = immunohistochemistry, ER= estrogen receptor, PR= progesterone re-
ceptor, eBC= early breast cancer, CT= chemotherapy, ET= endocrine therapy 
*Other=no special type invasive carcinomas, mixed ductal-lobuar carcinomas 
**ER+= ER ≥1%; PR+= PR ≥1%. 

Fig. 1. Proximity plots of the RF models discriminating advanced (red, n = 27) and early FFDR (light blue, n = 111) BC patients on the base of their serum 
metabolomics fingerprint using (A) NOESY1D; (B) CPMG; (C) Diffusion NMR spectra. 
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subtypes (luminal and TN). A significant difference was found between 
luminal tumors with high and low metabolomic risk (High risk/Lum vs. 
Low risk/Lum: HR 2.78, 95%CI 1.14–6.83, p = 0.025). The same trend 
was observed in patients with TN tumors (High risk/TN vs. Low risk/TN: 
HR 3.96, 95%CI 0.76–20.46, p = 0.101) (Fig. 4). 

Finally, we exploratively evaluated RF risk score ability to predict 
BC-specific survival and OS. Unfortunately, in both cases, supervised 
analysis using the RF classifier on NMR data showed no separation 
(supplementary figure 4–5). 

Discussion 

Clinicopathological prognostic factors commonly associated with 
increased risk of recurrence include large tumor size, nodal involve-
ment, high tumor grade, negative hormone receptor status, HER2 
overexpression, and the presence of lymph vascular invasion. These 
clinicopathological factors are combined within validated clinical tools 
(i.e. PREDICT tool [34], PORTRET tool [35]), to refine the prognostic 
risk estimation. Further refinement in risk stratification of eBC has been 
brought by gene-expression assays [11,12] which provide prognostic 

information by analyzing primary tumor tissues, and help in decisions 
regarding appropriate use of adjuvant chemotherapy in hormone 
receptor-positive/HER2-negative eBC. Despite the use of these prog-
nostic tools, a significant proportion of patients classified as “high risk”, 
do not relapse and receive chemotherapy unnecessarily. Metabolomics 
has been proposed as a supportive prognostic tool that, deriving from 
the periphery (blood serum or plasma) instead of from the primary 
tumor tissue, has the potential to detect the presence of residual 
micrometastatic disease, and to capture the signal derived from the 
surrounding stroma and any host response to the tumor. 

This retrospective analysis demonstrated that a metabolomic signa-
ture, identified employing NMR serum fingerprinting, had the ability to 
discriminate between early and advanced disease, in elderly patients 
with breast cancer. Metabolomics discriminated between early and 
metastatic groups with 81% sensitivity, 67% specificity and a predictive 
accuracy of 70% using NOESY spectra, implying that both low and high 
molecular weight molecules contribute to the discrimination between 
eBC and aBC. Metabolomics was also able to predict the risk of disease 
relapse in this patient population. The eBC patients who displayed a 
metabolomic profile resembling the metastatic disease, were classified 
as high risk, and had a higher probability to develop disease recurrence. 
Although age and menopausal status have emerged as crucial modula-
tors of the global levels of circulating metabolites [36,37], and aging is 
often accompanied by mild or relevant comorbidities that have an 
impact on each individual metabolic profile [38], we obtained results 
comparable to the ones found in the other age-agnostic studies led by 
our group [16,18,19]. Very recently, our group has published the results 
of a study focused on elderly patients with early colorectal cancer. In this 
population, metabolomics was found to be a valuable tool to refine risk 
stratification and predict disease relapse [39]. The results observed in 
the present study, regarding the discrimination between eBC and aBC 
patients, are also in line with those of another research group [40]. They 
discriminated eBC and aBC patients using an OPLS model calculated on 
serum NMR spectra with 89.8% sensitivity, 79.3% specificity, and 
84.1% accuracy, in a mostly postmenopausal population (mean age 56 
and 57 years for eBC and aBC patients, respectively), with ER-positive 
HER2-negative breast cancer. 

An examination of the individual metabolites that contributed to the 
discrimination of non-relapsed eBC as compared to aBC, was performed. 
Patients with metastatic disease were characterized by decreased levels 
of leucine, isoleucine, valine, acetate and histidine and increased levels 
of 3-hydroxybutyrate, citrate, N,N-Dimethylglycine, lipids and phenyl-
alanine, as compared with patients with early disease who did not 
relapse. These results are in line with those produced by other studies 
[18,19,40], and are explainable considering that low histidine levels and 
high lipids are features linked with the metastatic progression, being 
associated with high tumor cell proliferation, high cell membrane 
turnover and lipid activity in intracellular signal transduction [41]. We 
also correlated the levels of individual metabolites with the risk of 
recurrence in the eBC cohort. However, none of them reached the sta-
tistical significance. 

In our study, 66% of patients with eBC who experienced disease 
recurrence, were correctly classified as “high risk” from the metab-
olomic score. The metabolomic model showed a strong prognostic 
power, with “high risk” patients having a significantly increased prob-
ability of disease recurrence, as compared to patients with low risk 
metabolomic fingerprint (HR 3.42, 95% CI 1.58–7.37, p<0.001). We 
observed that the high risk metabolomic group, was slightly enriched in 
patients with known adverse clinicopathological prognostic factors, 
such as nodal involvement and tumor stage. Differently, tumor grading 
and molecular subtypes were equally distributed between high and low 
risk groups. In particular, TN tumors, that are commonly associated with 
a worse prognosis, were not enriched in the high risk metabolomic 
group. 

The influence of these clinicopathological factors on the prognostic 
effect of the metabolomic signature, was evaluated within a multivariate 

Fig. 2. Kaplan-Meier plot of RFI by metabolomic risk score.  

Table 2 
RFI uni/multivariate.   

Univariate Multivariate  
HR 95% CI p-value HR 95% CI p- 

value 

Metabolomic 
risk High vs 
Low 

3.39 1.57–7.33 0.002 2.96 1.35–6.48 0.01 

T stage T2 vs T1 3.18 1.47–6.85 0.003 1.76 0.77–4.05 0.2 
N stage N+ vs N0 4.07 1.80–9.21 <0.001 3.18 1.32–7.66 0.01 
Tumor grade 

G2–3 vs G1 
2.44 0.74–8.10 0.14    

Molecular 
subtypes Her2 
pos vs Lum 

0.99 0.23–4.28 >0.9 0.6 0.14–2.67 0.5 

Molecular 
subtypes TN vs 
Lum 

3.69 1.54–8.89 0.004 3.54 1.41–8.91 0.01 

HR= Hazard Ratio, CI= Confidence Interval, T stage= tumor stage, N stage=
lymph-nodal stage, Lum= luminal, TN=triple negative, pos=positive, RFI=
recurrence free interval. 
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analysis: the prognostic effect of the metabolomic classifier was inde-
pendent of pathological N stage and pathological T stage. Also molecular 
subtypes did not interact with the metabolomic risk score, that was 
independently predictive of recurrence. 

Similarly to genomic signatures, metabolomics can discriminate 
prognosis, independently from tumor stage, in older patients with 
luminal tumors. Of note, data from our group suggest that metabolomic 
prediction of risk recurrence could further split risk stratifications 
defined by Oncotype-DX alone [29]. Moreover, this study suggests that 
metabolomics is able to identify a subgroup of patients with TN tumors 
with a lower risk of disease recurrence, for whom it might be hypothe-
sized that adjuvant chemotherapy could be de-escalated. Of course, the 
limited number of TN patients analyzed (n = 18), requires caution in the 
interpretation of the results. 

Based on our data, we envisage two possible area of investigations of 
metabolomics in older BC patients. The benefit of adjuvant chemo-
therapy in older patients with high genomic risk ER+ eBC is still un-
certain. It would therefore be interesting to evaluate the role of a 
metabolomic signature to further refine the risk of recurrence in this 
subgroup. This could lead to the identification of a subset of “high-high” 
risk patients in which evaluate the additional benefit of chemotherapy to 
endocrine therapy. Decision on the intensity of adjuvant chemotherapy 
in fit older patients with TN tumors is based on tumor stage with more 
intensive regimens used in high-risk patients. If confirmed in a larger 
series of older patients with TN eBC, our data could open the way to the 
evaluation of chemotherapy de-escalation in high clinical stage-low 
metabolomic risk patients. 

To the best of our knowledge, this is the first study that has identified 
a metabolomic signature able to predict the risk of disease recurrence in 

an elderly BC cohort. The study has some limitations. Firstly, the limited 
number of patients with HER2-positive and TN eBC prevents firm con-
siderations in these subgroups. Secondly, the relatively small number of 
BC events in the eBC cohort has prevented the possibility to observe a 
possible role of the metabolic signature in predicting BC-specific sur-
vival. Thirdly, medications taken by the patients were not considered in 
the present analysis and we are aware that exogenous factors affect 
metabolomic profiles. Finally, this was a monocentric study. The 
reproducibility of our data should be confirmed in a multicentric context 
and within a larger population in which all BC subtypes are well rep-
resented. The biochemical composition of biospecimens is affected by 
how samples are collected, stored, prepared and analyzed, and conse-
quently differences in these steps can be particularly detrimental and 
affect the reproducibility of the model [42].The standardization of both 
pre-analytical and analytical procedures by universally adopting the 
specifications for metabolomics now available [43], has to be consid-
ered a mandatory step in future studies. 

Conclusions 

Older patients with eBC require a personalized approach. Other 
causes of death can compete with breast cancer in determining patients’ 
outcome. Prognosticators that take into account not only the tumor, but 
also the host might be particularly relevant in the elderly. Our study 
suggests that a metabolomic signature might be of value in defining 
patients’ prognosis independently from classical clinicopathological 
features. Further studies are needed to confirm and validate the results 
obtained from our analysis, in order to enhance the role of NMR-based 
metabolomics in the management of older BC patients. 

Fig. 3. Kaplan-Meier plot of RFI by metabolomic score and nodal status.  
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